Stochastic Differential Equations
Problem Set 1
Brownian Motion: Construction and Basic Properties

1.1 Let
1 2
v:R=>Ry, ox):= \/Q_e’x /2 be the standard normal density function,
T
¢:R—[0,1], P(x):= / ©(y)dy, be the standard normal distribution function.

Prove that for any x > 0

(l _ i) p(z) < 1 B(x) < %w(x)-

x a3

Hint: Compare the derivatives.

1.2 For every n € N let Xf"), Xz(n), ..., X be i.i.d. normal random variables with

1
B(xO) -0 Var(x")-L -1
j ar( j ) 0 ] n

Define the stochastic process ¢t — B™(t), t € [0, 1] as follows:

[nt)
BMW(t) =) x".
j=1

(a) Compute the expectations and covariances
E (B™(t)) =?,  Cov(B™(t),B"(s)) =7,  s,te[0,1],
and their limits as n — oco.

(b) What is the joint distribution of the random variables {B™ () : t € [0,1]}?



1.3

(c) Let
Op i= max{} B™(t+) — B™(t—) ’ e [0,1]}.
(In plain words: &, is the largest jump discontinuity of the process {B™(t) : t €

[0,1]}.)

Prove that for any fixed ¢ > 0,

lim P (4, >¢) =0.

n—oo

x ™ ) and use the upper bound from problem 1.1.

Hint: Note that 0, = maxi<j<, | X;

For every n € N let Yl("),YQ("), ...,Y!™ be ii.d. Poisson random variables with

parameter 1/n. So,

1 1
™\ _ (n)y _ _
E(Yj )_ﬁ’ Var (Y] )_E’ j=1,...,n.

Define the stochastic process t — B™(t), t € [0, 1] as follows:
ZM(t) .= NAE—
=3 (1)

(a) Compute the expectations and covariances
E(ZM(@®) =2,  Cov(Z"(t),Zz™(s)) =2,  s,tel0,1],
and their limits as n — oco.

(b) What is the joint distribution of the random variables {Z(™(t) : t € [0,1]}?

Explain in plain words.

(c) Let
Op 1= max{’ ZW(t4) — 2 (t-) } :te[0,1]}.
(In plain words: 6, is the largest jump discontinuity of the process {Z™(t) : t €

[0,1]}.)
Compute, for € > 0 fixed,
lim P (5, > ¢).

n—oo

Hint: Note that §,, = maxi<j<,

Yj(") ‘ and use all you know about Poisson random

variables.



1.4

1.5

1.6

1.7

1.8

Interpret the results of problems 1.2, respectively, 1.3.

(a) Let Y1,Ys,...,Y, be random variables with E (Y;) = 0 and Cov(Y;,Y;) =: ¢;;.

Assume that the covariance matrix C' := (¢;;)}',—; is non-degenerate, det(C) #

ij=
0. Prove that the random variables Y7, Y5, ... Y, are jointly Gaussian if and only
if there exist i.i.d. A(0, 1)-distributed random variables X, X5, ..., X, and real

coefficients (a;;);;_, such that

Y; = i OJZ']'X]'.
j=1

Hint: Express the matrix A = (a;;);,_, from the covariance matrix C' = (¢; ;) ,_,-

(b) Let ¢t — B(t) be standard 1d Brownian motion and 0 < t; < ¢y < -+ < £,
Explain why it follows from the definition of Brownian motion (i.e. independent and
Gaussian increments) that the random variables B(t;), B(ts), ..., B(t,) have jointly

Gaussian distribution.
(c) Determine the covariance matrix of the random variables B(t,), B(tz), ..., B(t,).

Let ¢ — B(t) be standard 1d Brownian motion. Prove that the following processes

are also standard 1d Brownian motions:
(a) The rescaled process: X(t) := a~'/?2B(at), where a > 0 is fixed parameter.
(b) The time reversed process: Y (t) := tB(1/t).

(c) The backwards process: Z(t) := B(T) — B(T — t), where T' > 0 is fixed and
t €10,7].

Hint: Prove that the processes X (t),Y (t), Z(t) are Gaussian and compute their

covariances.
For j =1,...,n, let t = Bj(t), be independent 1d Brownian motions with variance
03, and a; fixed real numbers. Prove that the process t — Z(t) := > i1 a;Bj(t) is

also a 1d Brownian motion. Determine the variance of the process Z(t).

Let t — B(t) be standard 1d Brownian motion. Determine (without painful compu-

tations) the conditional probability

P(B(2) > 0| B(1) > 0).



1.9

1.10

1.11

1.12

Show that 1d Brownian motion changes sign infinitely many times in any time in-

terval [0, 0] of positive length 0.
The Brownian meander process.
(a) Let € > 0 be fixed. Using the reflection principle prove that for any = > 0, ¢ > 0

P(B(t) >z —¢ | OrélsigtB(s) > —¢) = O((=2 +5)2/q§£)/;§(_(—1x —)/V1)

- ™)

(b) Letting e — 0 in the previous formula prove that the conditional density of B(t),
given {B(s) > 0:s € [0,t]} is

X
2 exp{—2%/(20) Hl gy,

Remark: Note that the probability of the condition is zero (see problem 1.9). So,
strictly speaking, the conditional distribution doesn’t make sense. Indeed, let us

define the conditional probabilities as

P(B(t) e A| B(s) > 0:s€[0,1]) := y{%P(B(t) € A| min B(s) > —¢).

0<s<t
Brownian motion conditioned to stay positive in this sense is called Brownian me-

ander.

On the Hilbert space £2([0, 1], dz) define the self-adjoint compact (actually: Hilbert-
Schmidt) operator

K f(t) ::/0 min{t, s} f(s)ds.

Prove that

B 4 B . (7m(2n—1) B
)\n—m, ’l/)n(t)—\/isnl (72 t) s n—1,2,...

are eigenvalues and eigenvectors of the operator K.

Let £ be a standard normal random variable and define, for A < 1

Y(A) :=logE (exp{)\(§2 — 1)/2}) )

Prove that

V() = 3 (log(1 = ) + 1),

and investigate the analytic properties of the function () (convexity, minima,
asymptotes, ...). Plot the graph of the function A — ¥ (\).

4



1.13

1.14

1.15

Show that the function
6:R, xRoOR,  ¢tz) = — (x)
: , ,X) = — —
* Vit \Vi

solves the heat equation

00(1,2) = 5080(1,).

Exercise 1 implies that if ¢ is a standard Gaussian random variable and x > 1, then

2 a2
P(X|>2)<y/oe .
™

Use this to show that if &1, &, ... arei.i.d. standard Gaussian, then, with probability

1, the event {|&,| > 2Inn} occurs for at most finitely many n-s.

Paul Lévy construction of the Wiener process. Second version: wrong constants
corrected — sorry. In a possible construction of the Wiener process (or Brownian

motion) on [0, 1] we define a sequence of piecewise linear continuous random functions

1
2n 9

second value (at multiples of --15) form f,_1, and setting the values at the remaining

2k—1
on

independent Gaussian random value with mean 0 and variance Qn% Then we extend

so that we first define f,, at dyadic rationals that are multiples of -, inheriting every

points (of the form ) to be the average of the two neighbouring values, plus an

fn to [0, 1] piecewise linearly.

Formally: we take independent standard Gaussian random variables {, and &,
where n =1,2,... and k=1,2,...,2" ', Then

e In the Oth step we fix fo(0) = 0 and fo(1) = &. We connect these two values

linearly.

e In the 1st step we leave f1(0) = fo(0) and f1(1) = fo(1), but also set fi(3) =

fo(3) + 3&.1. We connect these three values linearly.

e ...in the nth step we leave f, (Qn%) = fa1 ((%) for k=0,1,...,2" % but

_1 _1
also set f, (;—j) = fu_1 (;—j) + ﬁfn,k for k =1,...,2" ', 'We connect
these 2" + 1 values linearly.

Notice that, in this construction, the difference g, := f,.1 — f. is the sum of 2"

“tent” maps with disjoint supports and i.i.d. Gaussian “heights”.



(a) Use the statement of Exercise 14 to show that, with probability 1, the series
lim f, = fo+ Z%gn

is uniformly absolutely convergent.

(b) Check that the limit is a Wiener process.

1.16 (Based on Ezercise 8.1.3. from [1].) Let B(t) be a standard Brownian motion
(Wiener process). Fix ¢t > 0 and for n =0,1,2,... let
2" -1 2
m+ 1 m
v, — (") _B (— ) .
> (o () -2 G)

Calculate the expectation and the variance of V,,. Use the Borel-Cantelli lemma to

show that V,, — t almost surely as n — oc.
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