Stochastic differential equations
 TU Budapest, spring semester 2019
 Imre Péter Tóth
 Midterm exam, 10.04.2019 - solutions

Working time: 90 minutes
In this exercise sheet, "Brownian motion" is used as a synonym of "Wiener process", and $B(t)$ denotes a standard 1-dimensional Brownian motion.

1. (6 points) Find the probability that there are real numbers $s, t \in \mathbb{R}$ with $0 \leq s<t \leq 1$ for which
a.) $\frac{B(t)-B(s)}{t-s}>100$
b.) $\frac{|B(t)-B(s)|}{t-s}<\frac{1}{100}$
c.) $|B(t)-B(s)|>(t-s)^{\frac{2}{3}}$

Solution: Note that the question is not about a particular probability for given s and t, but the probability of existence of such s, t.
a.) This asks the probability that $B(t)$ is not Lipschitz continuous with Lipschitz constant 100 . This probability is 1 , since we know (from the lecture) that $B(t)$ is almost surely nowhere Lipschitz continuous.
b.) This asks the probability that there is an interval where the increment is small (compared to the length of the interval). This probability is 1 , since we know (from the lecture) that $B(t)$ is almost surely nowhere monotone, so there are $s \neq t$ with $B(t)=B(s)$ (even in any small interval).
c.) This asks the probability that $B(t)$ is not $\frac{2}{3}$-Hölder continuous with Hölder constant 1 . This probability is 1 , since we know (form HW 1.10 or 1.11) that $B(t)$ is almost surely nowhere $\frac{2}{3}$-Hölder continuous.
2. (4 points) Find values of $u, \alpha, \beta \in \mathbb{R}$ for which the process

$$
X(t)=B(u)-(\alpha+\beta t) B\left(\frac{1}{1-t}\right) \quad, \quad t \in[0,1]
$$

is a standard Brownian motion.
Solution: $X(0)=B(u)-\alpha B(1)$. This has to be identically zero, so we must have $u=\alpha=1$, so $X(t)=B(1)-(1-\beta t) B\left(\frac{1}{1-t}\right)$. At $t=1$ the formula makes no sense, but the limit as $t \nearrow 1$ should exist. Then $\frac{1}{1-t} \rightarrow \infty$, so $B\left(\frac{1}{1-t}\right)$ is divergent: it has to be multiplied with something that goes to 0 if we want the product to be convergent. So $\beta=1$ and

$$
X(t)=B(1)-(1-t) B\left(\frac{1}{1-t}\right)
$$

is the only possibility.
To check that this is really a Brownian motion, we can refer to HW 1.6: part (a) says that $Y(t):=t B\left(\frac{1}{t}\right)$ is a standard Brownian motion, so part (c) says that $Z(t)=Y(1)-Y(1-t)$ is also a standard Brownian motion. For this,

$$
Z(t)=Y(1)-Y(1-t)=1 B\left(\frac{1}{1}\right)-(1-t) B\left(\frac{1}{1-t}\right)=X(t)
$$

Alternatively, the fact that $X(t)$ is a standard Brownian motion can be checked by noting that it's a Gaussian process with mean 0 and calculating the covariances: Let's assume $0<s<t$, then $1<\frac{1}{1-s}<\frac{1}{1-t}$, so

$$
\begin{aligned}
\operatorname{Cov}(X(s), X(t))= & \operatorname{Cov}\left(B(1)-(1-s) B\left(\frac{1}{1-s}\right), B(1)-(1-t) B\left(\frac{1}{1-t}\right)\right) \\
= & \operatorname{Cov}(B(1), B(1))-(1-t) \operatorname{Cov}\left(B(1), B\left(\frac{1}{1-t}\right)\right) \\
& -(1-s) \operatorname{Cov}\left(B\left(\frac{1}{1-s}\right), B(1)\right) \\
& +(1-s)(1-t) \operatorname{Cov}\left(B\left(\frac{1}{1-s}\right), B\left(\frac{1}{1-t}\right)\right) \\
= & 1-(1-t) 1-(1-s) 1+(1-s)(1-t) \frac{1}{1-s}=s .
\end{aligned}
$$

3. (8 points) For some fixed $x>0$ let $\tau_{x}=\inf \{t>0 \mid B(t)=x\}$ be the first hitting time of the point x. Calculate the density of the random variable τ_{x}.
(Hint: the distribution function can be calculated using the reflection principle.)
Solution: Let $M(t)=\max \{B(s) \mid 0 \leq s \leq t\}$ be the maximum of the Brownian motion on $[0, t]$. Then, since $x>0$, we have $\tau_{x} \leq t$ if and only if $M(t) \geq x$. So for $t>0$ the distribution function of τ_{x} is

$$
F_{\tau_{x}}(t)=\mathbb{P}\left(\tau_{x} \leq t\right)=\mathbb{P}(M(t) \geq x)
$$

Now we know from the reflection principle that $\mathbb{P}(M(t) \geq x)=2 \mathbb{P}(B(t) \geq x)$. (This came from the fact that $\mathbb{P}(B(t)>g e x \mid M(t) \geq x)=\frac{1}{2}$ and $\{B(t) \geq x\} \subset\{M(t) \geq x\}$.) So if ξ is standard Gaussian and Φ is the standard Gaussian distribution function, then

$$
F_{\tau_{x}}(t)=2 \mathbb{P}(B(t) \geq x)=2 \mathbb{P}(\sqrt{t} \xi \geq x)=2 \mathbb{P}\left(\xi \geq \frac{x}{\sqrt{t}}\right)=2\left(1-\Phi\left(\frac{x}{\sqrt{t}}\right)\right)
$$

If ϕ denotes the standard normal density function, then the density of τ_{x} is

$$
f_{\tau_{x}}(t)= \begin{cases}0 & \text { if } t \leq 0 \\ F_{\tau_{x}}^{\prime}(t)=\cdots=\frac{1}{\sqrt{2 \pi} t^{3 / 2}} e^{-\frac{x^{2}}{2 t}} & \text { if } t>0\end{cases}
$$

(Note that x is a parameter and $f_{\tau_{x}}$ is a function of t.)
4. (4 points) Find a nonzero deterministic function $f: \mathbb{R} \rightarrow \mathbb{R}$ for which the process $X(t)=$ $f(t) e^{2 B(t)}$ is a martingale.
Solution 1: We know from class, and also from HW 2.6 that $t \mapsto e^{\theta B(t)-\frac{\theta^{2}}{2} t}$ is a martingale for every $\theta \in \mathbb{R}$. Choosing $\theta=2$ gives that $t \mapsto e^{2 B(t)-2 t}=e^{-2 t} e^{2 B(t)}$ is a martingale, so $f(t):=e^{-2 t}$ will do.
Solution 2: $X(t)=F(t, B(t))$ where $F(t, x)=f(t) e^{2 x}$, so

$$
\begin{aligned}
\frac{\partial F}{\partial t} & =f^{\prime}(t) e^{2 x} \\
\frac{\partial F}{\partial x} & =2 f(t) e^{2 x} \\
\frac{\partial^{2} F}{\partial x^{2}} & =4 f(t) e^{2 x}
\end{aligned}
$$

The Itô formula gives

$$
\begin{aligned}
d X(t) & =f^{\prime}(t) e^{2 B(t)} \mathrm{d} t+2 f(t) e^{2 B(t)} \mathrm{d} B(t)+\frac{1}{2} 4 f(t) e^{2 B(t)} \mathrm{d} t \\
& =\left[f^{\prime}(t)+2 f(t)\right] e^{2 B(t)}+2 X(t) \mathrm{d} B(t)
\end{aligned}
$$

This means that $X(t)$ is a martingale if and only if $f^{\prime}(t)+2 f(t)=0$, which means

$$
f(t)=\text { const } e^{-2 t}
$$

5. (8 points) Let $X(t)=B(t)-t$. For $x \in \mathbb{R}$ let $\tau_{x}=\inf \{t>0 \mid X(t)=x\}$ be the first hitting time of the point x. Calculate $\mathbb{E} \tau_{x}$ for every $x \in \mathbb{R}$.
(Hint: a possible solution is to apply the optional stopping theorem to $M(t)=X(t)+\alpha t$ where $\alpha \in \mathbb{R}$ is chosen appropriately. If you do this, think of the conditions of the optional stopping theorem.)
Solution: Choose α so that $M(t)=X(t)+\alpha t=B(t)+(\alpha-1) t$ is a martingale, so $\alpha=1$ and $M(t)=X(t)+t$. Applying the optional stopping theorem naively would give $\mathbb{E} M(\tau)=\mathbb{E} M(0)=0$, which means in our case that $\mathbb{E} X(\tau)+\mathbb{E} \tau=0$. Since $X(\tau)=x$, this gives that

$$
\mathbb{E} \tau=-x
$$

This is clearly nonsense when $x>0$, since $\tau_{x} \geq 0$. But of course, $X(t)=B(t)-t$ has a strong drift to the left, so there is no guarantee that a fixed positive x is ever reached. Indeed, we know from HW 2.11 that if $x>0$ then $\mathbb{P}\left(\tau_{x}=\infty\right)>0$, so $\mathbb{E} \tau_{x}=\infty$, and the optional stopping theorem can not be applied. Taking that into consideration, we now have

$$
\mathbb{E} \tau_{x}= \begin{cases}-x & \text { if } x \leq 0 \\ \infty & \text { if } x>0\end{cases}
$$

(Remark: Making the argument rigorous by checking the conditions of the optional stopping theorem when $x<0$ is more difficult, with many small arguments - I'm just writing it for completeness. A possible way is to fix $x<0$ and add an $N>0$ where we also stop the process, so consider $\tau:=\min \left\{\tau_{x}, \tau_{N}\right\}$. This τ is easily seen to have finite expectation, moreover the stopped process $X(t \wedge \tau)$ is bounded (it stays in $[x, N]$). since $X(t \wedge \tau)$ is bounded, its increments $X((t+h) \wedge \tau)-X(t \wedge \tau)$ are also bounded, and so are the increments $(t+h)-t$ of the deterministic function t (with $h>0$ fixed). So the stopped martingale $M(t \wedge \tau)=X(t \wedge \tau)-(t \wedge \tau)$ also has bounded increments, and the optional stopping theorem can be applied:

$$
\mathbb{E} X(\tau)+\mathbb{E} \tau=\mathbb{E} M(\tau)=\mathbb{E} M(0)=0
$$

To calculate $\mathbb{E} X(\tau)$:

$$
X(\tau)= \begin{cases}x & \text { if } \tau_{x}<\tau_{N} \\ N & \text { if } \tau_{N}<\tau_{x}\end{cases}
$$

so

$$
\mathbb{E} X(\tau)=x \mathbb{P}\left(\tau_{x}<\tau_{N}\right)+N \mathbb{P}\left(\tau_{N}<\tau_{x}\right)
$$

We know from HW 2.11 that $\mathbb{P}\left(\tau_{x}<\tau_{N}\right) \rightarrow 1$ and $\mathbb{P}\left(\tau_{N}<\tau_{x}\right) \rightarrow 0$ exponentially fast as $N \rightarrow \infty$, so

$$
\lim _{N \rightarrow \infty} \mathbb{E} X(\tau)=x
$$

meaning

$$
\lim _{N \rightarrow \infty} \mathbb{E} \tau=-x
$$

Finally, $\tau \nearrow \tau_{x}$ almost surely as $N \rightarrow \infty$, so the monotone convergence theorem guarantees that

$$
\mathbb{E} \tau_{x}=\lim _{N \rightarrow \infty} \mathbb{E} \tau=-x
$$

)

