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Midterm exam, 10.04.2019 – solutions

Working time: 90 minutes

In this exercise sheet, “Brownian motion” is used as a synonym of “Wiener process”, and
B(t) denotes a standard 1-dimensional Brownian motion.

1. (6 points) Find the probability that there are real numbers s, t ∈ R with 0 ≤ s < t ≤ 1 for
which

a.) B(t)−B(s)
t−s

> 100

b.) |B(t)−B(s)|
t−s

< 1
100

c.) |B(t)−B(s)| > (t− s)
2

3

Solution: Note that the question is not about a particular probability for given s and t,
but the probability of existence of such s, t.

a.) This asks the probability that B(t) is not Lipschitz continuous with Lipschitz constant
100. This probability is 1, since we know (from the lecture) that B(t) is almost surely
nowhere Lipschitz continuous.

b.) This asks the probability that there is an interval where the increment is small (com-
pared to the length of the interval). This probability is 1, since we know (from the lec-
ture) that B(t) is almost surely nowhere monotone, so there are s 6= t with B(t) = B(s)
(even in any small interval).

c.) This asks the probability that B(t) is not 2
3
-Hölder continuous with Hölder constant 1.

This probability is 1, since we know (form HW 1.10 or 1.11) that B(t) is almost surely
nowhere 2

3
-Hölder continuous.

2. (4 points) Find values of u, α, β ∈ R for which the process

X(t) = B(u)− (α+ βt)B

(

1

1− t

)

, t ∈ [0, 1]

is a standard Brownian motion.

Solution: X(0) = B(u) − αB(1). This has to be identically zero, so we must have
u = α = 1, so X(t) = B(1) − (1 − βt)B

(

1
1−t

)

. At t = 1 the formula makes no sense,

but the limit as t ր 1 should exist. Then 1
1−t

→ ∞, so B
(

1
1−t

)

is divergent: it has to
be multiplied with something that goes to 0 if we want the product to be convergent. So
β = 1 and

X(t) = B(1)− (1− t)B

(

1

1− t

)

is the only possibility.

To check that this is really a Brownian motion, we can refer to HW 1.6: part (a) says that
Y (t) := tB

(

1
t

)

is a standard Brownian motion, so part (c) says that Z(t) = Y (1)−Y (1−t)
is also a standard Brownian motion. For this,

Z(t) = Y (1)− Y (1− t) = 1B

(

1

1

)

− (1− t)B

(

1

1− t

)

= X(t).
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Alternatively, the fact that X(t) is a standard Brownian motion can be checked by noting
that it’s a Gaussian process with mean 0 and calculating the covariances: Let’s assume
0 < s < t, then 1 < 1

1−s
< 1

1−t
, so

Cov(X(s), X(t)) =Cov

(

B(1)− (1− s)B

(

1

1− s

)

, B(1)− (1− t)B

(

1

1− t

))

=Cov(B(1), B(1))− (1− t)Cov

(

B(1), B

(

1

1− t

))

− (1− s)Cov

(

B

(

1

1− s

)

, B(1)

)

+ (1− s)(1− t)Cov

(

B

(

1

1− s

)

, B

(

1

1− t

))

=1− (1− t)1− (1− s)1 + (1− s)(1− t)
1

1− s
= s.

3. (8 points) For some fixed x > 0 let τx = inf{t > 0 |B(t) = x} be the first hitting time of
the point x. Calculate the density of the random variable τx.

(Hint: the distribution function can be calculated using the reflection principle.)

Solution: Let M(t) = max{B(s) | 0 ≤ s ≤ t} be the maximum of the Brownian motion
on [0, t]. Then, since x > 0, we have τx ≤ t if and only if M(t) ≥ x. So for t > 0 the
distribution function of τx is

Fτx(t) = P(τx ≤ t) = P(M(t) ≥ x).

Now we know from the reflection principle that P(M(t) ≥ x) = 2P(B(t) ≥ x). (This came
from the fact that P(B(t) > gex |M(t) ≥ x) = 1

2
and {B(t) ≥ x} ⊂ {M(t) ≥ x}.) So if ξ

is standard Gaussian and Φ is the standard Gaussian distribution function, then

Fτx(t) = 2P(B(t) ≥ x) = 2P(
√
tξ ≥ x) = 2P

(

ξ ≥ x√
t

)

= 2

(

1− Φ

(

x√
t

))

.

If φ denotes the standard normal density function, then the density of τx is

fτx(t) =

{

0 if t ≤ 0

F ′
τx
(t) = · · · = 1√

2π
x

t3/2
e−

x2

2t if t > 0
.

(Note that x is a parameter and fτx is a function of t.)

4. (4 points) Find a nonzero deterministic function f : R → R for which the process X(t) =
f(t)e2B(t) is a martingale.

Solution 1: We know from class, and also from HW 2.6 that t 7→ eθB(t)− θ2

2
t is a martingale

for every θ ∈ R. Choosing θ = 2 gives that t 7→ e2B(t)−2t = e−2te2B(t) is a martingale, so
f(t) := e−2t will do.

Solution 2: X(t) = F (t, B(t)) where F (t, x) = f(t)e2x, so

∂F

∂t
= f ′(t)e2x

∂F

∂x
= 2f(t)e2x

∂2F

∂x2
= 4f(t)e2x.
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The Itô formula gives

dX(t) = f ′(t)e2B(t) dt+ 2f(t)e2B(t) dB(t) +
1

2
4f(t)e2B(t) dt

= [f ′(t) + 2f(t)] e2B(t) + 2X(t) dB(t).

This means that X(t) is a martingale if and only if f ′(t) + 2f(t) = 0, which means

f(t) = const e−2t.

5. (8 points) Let X(t) = B(t)− t. For x ∈ R let τx = inf{t > 0 |X(t) = x} be the first hitting
time of the point x. Calculate Eτx for every x ∈ R.

(Hint: a possible solution is to apply the optional stopping theorem to M(t) = X(t) + αt

where α ∈ R is chosen appropriately. If you do this, think of the conditions of the optional
stopping theorem.)

Solution: Choose α so that M(t) = X(t) + αt = B(t) + (α − 1)t is a martingale, so
α = 1 and M(t) = X(t) + t. Applying the optional stopping theorem naively would give
EM(τ) = EM(0) = 0, which means in our case that EX(τ) + Eτ = 0. Since X(τ) = x,
this gives that

Eτ = −x.

This is clearly nonsense when x > 0, since τx ≥ 0. But of course, X(t) = B(t) − t has
a strong drift to the left, so there is no guarantee that a fixed positive x is ever reached.
Indeed, we know from HW 2.11 that if x > 0 then P(τx = ∞) > 0, so Eτx = ∞, and
the optional stopping theorem can not be applied. Taking that into consideration, we now
have

Eτx =

{

−x if x ≤ 0

∞ if x > 0
.

(Remark: Making the argument rigorous by checking the conditions of the optional stopping
theorem when x < 0 is more difficult, with many small arguments – I’m just writing it for
completeness. A possible way is to fix x < 0 and add an N > 0 where we also stop the
process, so consider τ := min{τx, τN}. This τ is easily seen to have finite expectation,
moreover the stopped process X(t ∧ τ) is bounded (it stays in [x,N ]). since X(t ∧ τ) is
bounded, its increments X((t+h)∧τ)−X(t∧τ) are also bounded, and so are the increments
(t + h) − t of the deterministic function t (with h > 0 fixed). So the stopped martingale
M(t ∧ τ) = X(t ∧ τ) − (t ∧ τ) also has bounded increments, and the optional stopping
theorem can be applied:

EX(τ) + Eτ = EM(τ) = EM(0) = 0.

To calculate EX(τ):

X(τ) =

{

x if τx < τN

N if τN < τx
,

so
EX(τ) = xP(τx < τN ) +NP(τN < τx).

We know from HW 2.11 that P(τx < τN ) → 1 and P(τN < τx) → 0 exponentially fast as
N → ∞, so

lim
N→∞

EX(τ) = x,

meaning
lim

N→∞
Eτ = −x.
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Finally, τ ր τx almost surely as N → ∞, so the monotone convergence theorem guarantees
that

Eτx = lim
N→∞

Eτ = −x.

)
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