Stochastic differential equations
TU Budapest, spring semester 2019
Imre Péter Tóth
Midterm exam, 10.04.2019
Working time: 90 minutes

In this exercise sheet, "Brownian motion" is used as a synonym of "Wiener process", and $B(t)$ denotes a standard 1-dimensional Brownian motion.

1. (6 points) Find the probability that there are real numbers $s, t \in \mathbb{R}$ with $0 \leq s<t \leq 1$ for which
a.) $\frac{B(t)-B(s)}{t-s}>100$
b.) $\frac{|B(t)-B(s)|}{t-s}<\frac{1}{100}$
c.) $|B(t)-B(s)|>(t-s)^{\frac{2}{3}}$
2. (4 points) Find values of $u, \alpha, \beta \in \mathbb{R}$ for which the process

$$
X(t)=B(u)-(\alpha+\beta t) B\left(\frac{1}{1-t}\right) \quad, \quad t \in[0,1]
$$

is a standard Brownian motion.
3. (8 points) For some fixed $x>0$ let $\tau_{x}=\inf \{t>0 \mid B(t)=x\}$ be the first hitting time of the point x. Calculate the density of the random variable τ_{x}.
(Hint: the distribution function can be calculated using the reflection principle.)
4. (4 points) Find a nonzero deterministic function $f: \mathbb{R} \rightarrow \mathbb{R}$ for which the process $X(t)=$ $f(t) e^{2 B(t)}$ is a martingale.
5. (8 points) Let $X(t)=B(t)-t$. For $x \in \mathbb{R}$ Let $\tau_{x}=\inf \{t>0 \mid X(t)=x\}$ be the first hitting time of the point x. Calculate $\mathbb{E} \tau_{x}$ for every $x \in \mathbb{R}$.
(Hint: a possible solution is to apply the optional stopping theorem to $M(t)=X(t)+\alpha t$ where $\alpha \in \mathbb{R}$ is chosen appropriately. If you do this, think of the conditions of the optional stopping theorem.)

