Stochastic differential equations
 TU Budapest, spring semester 2019
 Imre Péter Tóth
 Makeup midterm exam, 13.05.2019

Working time: 90 minutes
In this exercise sheet, "Brownian motion" is used as a synonym of "Wiener process", and $B(t)$ denotes a standard 1-dimensional Brownian motion.

1. (6 points) Calculate the following conditional probabilities:
a.) $\mathbb{P}(B(1)>0 \mid B(2)>0)$
b.) $\mathbb{P}(B(4)>0 \mid B(2)>0)$
c.) $\mathbb{P}(B(s)>0 \mid B(t)>0)$ where $0<s, t \in \mathbb{R}$.
2. (4 points) For which values of the parameter $\alpha>0$ does the process $X(t)=t^{\alpha} B\left(\frac{1}{t}\right)$ converge as $t \rightarrow \infty$? (You may answer the question in the sense of weak or strong convergence - as you wish - but indicate which one you are discussing.)
3. (6 points) For every $x>0$ calculate

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\sum_{k=1}^{n}\left[B\left(\frac{k}{n}\right)-B\left(\frac{k-1}{n}\right)\right]^{4}>x\right) .
$$

4. (6 points) Find a real parameter $\alpha \in \mathbb{R}$ for which the process $X(t)=\left(B^{2}(t)-\alpha t\right)^{2}$ is a submartingale.
5. (8 points) Let $X(t)=\left(B_{1}(t), B_{2}(t), \ldots, B_{n}(t)\right)$ be a standard n-dimensional Browninan motion and let $\tau=\inf \{t>0| | X(t) \mid=1\}$ be the first hitting time of the unit sphere. Calculate $\mathbb{E} \tau$.
(Hint: a possible solution is to apply the optional stopping theorem to $M(t)=|X(t)|^{2}+\alpha t$ where $\alpha \in \mathbb{R}$ is chosen appropriately.)
