Stochastic differential equations TU Budapest, spring semester 2019 Imre Péter Tóth Final exam, 29.05.2019 Working time: 90 minutes

In this exercise sheet, "Brownian motion" is used as a synonym of "Wiener process", and B(t) denotes a standard 1-dimensional Brownian motion.

1. (10 points) For n = 1, 2, ... let $t \mapsto J_n(t) \in \mathbb{R}$ be a continuous martingale for $t \in [0, T]$ with $J_n(0) = 0$. Assume that

$$\mathbb{E}\left[(J_{n+1}(T) - J_n(T))^2\right] < \frac{1}{8^n}$$

for every n. Show that almost surely $J_n(t)$ converges uniformly on [0, T] as $n \to \infty$. (*Hint: estimate*

$$\mathbb{P}\left(\sup_{t\in[0,T]}|J_{n+1}(t)-J_n(t)|>\frac{1}{2^n}\right)$$

from above.)

2. (10 points) Find all strong solutions of the stochastic differential equation

$$dX(t) = X(t) dt + X(t) dB(t)$$
, $X(0) = x_0$

where $0 < x_0 \in \mathbb{R}$. (*Hint: consider* $Y(t) = \ln X(t)$.)

3. Let X(t) be the strong solution of the stochastic differential equation

$$dX(t) = -X(t) dt + \sqrt{1 - X^2(t)} dB(t) \quad , \quad X(0) = x_0 \in (-1, 1).$$

- a.) (5 points) Find the infinitesimal generator A of the diffusion process X(t).
- b.) (5 points) Check that the function $f(x) = \ln(1+x) \ln(1-x)$ is a solution of the differential equation Af = 0. (If you prefer, you can use that $f(x) = 2 \operatorname{artanh} x$.)
- c.) (5 points) For $y \in (-1, 1)$ let $\tau_y = \inf\{t \ge 0 : X(t) = y\}$. Calculate $\mathbb{P}_{x_0}(\tau_a < \tau_b)$ for every $-1 < a < x_0 < b < 1$. (You can use without proof that $\mathbb{E}_{x_0}(\min\{\tau_a, \tau_b\}) < \infty$.
- d.) (5 points) Calculate $\mathbb{P}_{x_0}(\tau_a < \infty)$ for every $-1 < a < x_0 < 1$.

4. (10 points) Let X(t) be the strong solution of the stochastic differential equation

$$dX(t) = -X(t) dt + \sqrt{1 - X^2(t)} dB(t) \quad , \quad X(0) = \xi$$

where ξ is a random variable, independent of B(t) and uniformly distributed on (-1, 1). Show that, for every t > 0, X(t) is also uniformly distributed on (-1, 1). (*Hint: let* p(t, x) be the density of X(t) at $x \in (-1, 1)$.)