Stochastic differential equations
 TU Budapest, spring semester 2019
 Imre Péter Tóth

Second makeup midterm exam, 21.05.2019
Working time: 90 minutes
In this exercise sheet, "Brownian motion" is used as a synonym of "Wiener process", and $B(t), B_{1}(t), B_{2}(t)$, denote independent standard 1-dimensional Brownian motions.

1. (6 points) For which $c \in \mathbb{R}$ is $\mathbb{P}(\exists t>0: B(t)=c+t)=1$? Justify your statement.
2. (6 points) Calculate the following probabilities:
a.) $\mathbb{P}(\exists t \in[0,2]: B(t)>2)$
b.) $\mathbb{P}(\exists t \in(1,2): B(t)=B(1))$
c.) $\mathbb{P}(\exists t \in[0,2]:|B(t)|>t)$
3. (6 points) Let $\lambda, s, t>0$. How much is the expectation

$$
\mathbb{E}\left(e^{\lambda\left[B_{1}(t+s)+B_{2}(t+s)-B_{1}(t)-B_{2}(t)\right]}\right) ?
$$

4. (6 points) Calculate the probabilty that the process $X(t):=B(t)+50 t$ hits the point 100 before hitting -1 . (Hint: with λ chosen correctly, $e^{\lambda X(t)}$ is a martingale.)
5. (6 points) For which functions $f:[0, \infty) \rightarrow \mathbb{R}$ is the process $X(t):=f(t) B\left(\frac{1}{1+t}\right)$ a martingale?
