Stochastic Differential Equations Problem Set 4 Stochastic differential equations, Dynkin formula, Girsanov theorem

- **4.1** Check that the following processes solve the corresponding SDE's, where B(t) is 1-dimensional standard Brownian motion:
 - (a) $X(t) = e^{B(t)}$, with B(0) = b solves

$$dX(t) = \frac{1}{2}X(t)dt + X(t)dB(t), \qquad X(0) = e^{b}$$

(b) $X(t) = \frac{B(t)}{1+t}$, with $B_0 = b$, solves

$$dX(t) = -\frac{X(t)}{1+t}dt + \frac{1}{1+t}dB_t, \qquad X(0) = b.$$

(c) $X(t) = \sin B(t)$, with $B(0) = b \in (-\pi/2, \pi/2)$, and $t < \min\{t : |B(t)| = \pi/2\}$, solves

$$dX(t) = -\frac{1}{2}X(t)dt + \sqrt{1 - X(t)^2}dB_t, \qquad X(0) = \sin b.$$

(d) $(X_1(t), X_2(t)) = (\cosh B(t), \sinh B(t))$, with B(0) - b, solves

$$\begin{pmatrix} dX_1(t) \\ dX_2(t) \end{pmatrix} = \frac{1}{2} \begin{pmatrix} X_1(t) \\ X_2(t) \end{pmatrix} dt + \begin{pmatrix} X_2(t) \\ X_1(t) \end{pmatrix} dB(t).$$

- **4.2** Let B(t) be a standard 1-dimensional Brownian motion with B(0) = b, and $(U(t), V(t)) := (\cos B(t), \sin B(t))$. Write down in vectorial notation the SDE driving the 2-dimensional process (U(t), V(t)).
- **4.3** Solve the following SDE's, where B(t) is 1-dimensional standard Brownian motion starting from B(0) = 0:

$$dX(t) = -X(t)dt + e^{-t}dB(t).$$

(b)

(a)

$$dX(t) = rdt + \alpha X(t)dB(t),$$

with $r, \alpha \in \mathbb{R}$ constants. Hint: Multiply by $\exp\left(-\alpha B(t) + \frac{\alpha^2}{2}t\right)$.

(c) Now, $X(t) = (X_1(t), X_2(t)) \in \mathbb{R}^2$, and $B(t) = (B_1(t), B_2(t))$ is standard 2-dimensional Brownian motion.

$$dX_1(t) = X_2(t)dt + \alpha dB_1(t)$$

$$dX_2(t) = -X_1(t)dt + \beta dB_2(t),$$

or in vector notation,

$$dX(t) = JX(t)dt + AdB(t),$$
 where $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad A = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$.

Hint: Multiply by left by e^{-Jt} .

- 4.4 The Ornstein-Uhlenbeck process:
 - (a) Solve explicitly the stochastic differential equation

$$dX(t) = -\gamma X(t)dt + adB(t), \qquad X(0) = x_0,$$

and show that the process X(t) is Gaussian. Hint: Multiply by $e^{\gamma t}$.

- (b) Compute $\mathbf{E}(X(t))$ and $\mathbf{Cov}(X(s), X(t))$.
- (c) Let $Y_k^{(n)}$ be the Markov chain on the state space $S^{(n)} := \{0, 1, \dots, n\}$ with transition matrix

$$P_{i,j}^{(n)} = \frac{i}{n} \delta_{i-1,j} + \frac{n-i}{n} \delta_{i+1,j}, \qquad i, j \in S^{(n)}.$$

The Markov chain $Y_k^{(n)}$ is called *Ehrenfest's Urn Model* (or *Dogs and Fleas*). Define the sequence of continuous time processes

$$X^{(n)}(t) := \frac{Y^{(n)}_{\lfloor nt \rfloor} - (n/2)}{\sqrt{n}}, \qquad t \ge 0.$$

Write down an approximate stochastic differential equation for $X^{(n)}(t)$, with time increments $dt = \frac{1}{n}$ and conclude (non-rigorously) that the Ornstein-Uhlenbeck process is – in some sense – the limit of the processes $X^{(n)}(t)$ (that is: the scaling limit of Ehrenfest's Urn Model.)

4.5 Write down the infinitesimal generator as elliptic differential operator for the following Itô diffusions:

(a)
$$dX(t) = \beta dt + \alpha X(t) dB(t).$$

(b) $dY(t) = \begin{pmatrix} dt \\ dX(t) \end{pmatrix}$, where $dX(t) = -\gamma X(t) dt + \alpha dB(t).$
(c) $\begin{pmatrix} dX_1(t) \\ dX_2(t) \end{pmatrix} = \begin{pmatrix} 1 \\ X_2(t) \end{pmatrix} dt + \begin{pmatrix} 0 \\ e^{X_1(t)} \end{pmatrix} dB(t).$
(d) $\begin{pmatrix} dX_1(t) \\ dX_2(t) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} dt + \begin{pmatrix} 1 & 0 \\ 0 & X_1 \end{pmatrix} \begin{pmatrix} dB_1(t) \\ dB_2(t) \end{pmatrix}.$

4.6 Find an Itô diffusion (i.e., write down the SDE for it) whose infinitesimal generator is the following:

(a)
$$Af(x) = f'(x) + f''(x), f \in C_0^2(\mathbb{R}).$$

(b) $Af(t,x) = \frac{\partial f}{\partial t} + cx\frac{\partial f}{\partial x} + \frac{1}{2}\alpha^2 x^2 \frac{\partial^2 f}{\partial x^2}, f \in C_0^2(\mathbb{R}^2).$

4.7 Let X(t) be a geometric Brownian motion, i.e. strong solution of the following SDE

$$dX(t) = \beta X(t)dt + \alpha X(t)dB(t), \qquad X_0 = x > 0,$$

where $\alpha > 0, \beta \in \mathbb{R}$ are fixed parameters.

- (a) Find the generator A of the diffusion $t \mapsto X(t)$ and compute Af(x) when $f : \mathbb{R}_+ \to \mathbb{R}$ is $f(x) = x^{\gamma}, \gamma$ constant.
- (b) Let $0 < r < R < \infty$, and $r \le x \le R$. using Dynkin's formula, compute

$$\mathbf{P}\big(\tau_r < \tau_R \mid X(0) = x\big),$$

where τ_r , and τ_R are the first hitting times of r, respectively, R. *Hint:* Solve the boundary value problem Af(x) = 0 for r < x < R, with f(r) = 1, f(R) = 0.

(c) Assume $\beta < \alpha^2/2$. What is $\mathbf{P}(X(t) \text{ ever hits } R \mid X(0) = x)$?

- (d) Assume $\beta > \alpha^2/2$. What is $\mathbf{P}(X(t) \text{ ever hits } r \mid X(0) = x)$?
- **4.8** (a) Find the generator of the δ -dimensional Bessel process, $BES(\delta)$

$$dY^{(\delta)}(t) = \frac{\delta - 1}{2Y^{(\delta)}(t)}dt + dB(t)$$

on \mathbb{R}_+ .

(b) Let $0 < r < R < \infty$, and $r \le x \le R$. using Dynkin's formula, compute

$$\mathbf{P}\big(\tau_r < \tau_R \mid Y^{(\delta)}(0) = x\big),$$

where τ_r , and τ_R are the first hitting times of r, respectively, R.

Hint: Solve the boundary value problem Af(x) = 0 for r < x < R, with f(r) = 1, f(R) = 0. Note that the solutions are qualitatively different for $\delta \in [0, 2), \delta = 2$, respectively, $\delta > 2$.

- (c) Show that $BES(\delta)$ is transient if $\delta > 2$.
- (d) Show that BES(2) almost surely hits all points in $(0, \infty)$, but never hits 0.
- (e) Show that for $\delta \in [0,2)$ BES(δ) almost surely hits 0 (no matter where it starts).
- **4.9** Show that the solution u(t, x) of the initial value problem

$$\begin{split} &\frac{\partial u}{\partial t}(t,x) = \frac{1}{2}\beta^2 x^2 \frac{\partial^2 u}{\partial x^2}(t,x) + \alpha x \frac{\partial u}{\partial x}(t,x), \qquad t > 0, \ x \in \mathbb{R}, \\ &u(0,x) = f(x), \qquad (f \in C_K^2(\mathbb{R}) \text{ given}) \end{split}$$

can be expressed as follows:

$$u(t,x) = \mathbf{E}\left(f\left(x\exp\{\beta B(t) + (\alpha - \beta^2/2)t\}\right)\right)$$
$$= \frac{1}{\sqrt{2\pi t}} \int_{\mathbb{R}} f\left(x\exp\{\beta y + (\alpha - \beta^2/2)t\}\right)\exp(-y^2/(2t))dy, \qquad t > 0.$$

In this expression $t \mapsto B(t)$ is standard 1-dimensional Brownian motion with B(0) = 0.

4.10 [Change of conditional expectation]

Let **Q** and **P** be two probability measures on (Ω, \mathcal{F}) , with **Q** \ll **P**, and Radon-Nikodym derivative $\frac{d\mathbf{Q}}{d\mathbf{P}}(\omega) = \varrho(\omega)$. Let $\mathcal{G} \subseteq \mathcal{F}$ a sub- σ -algebra. Show that, for any \mathcal{F} -measurable random variable X, we have

$$\mathbf{E}_{\mathbf{Q}}(X \mid \mathcal{G}) = \frac{\mathbf{E}_{\mathbf{P}}(\varrho X \mid \mathcal{G})}{\mathbf{E}_{\mathbf{P}}(\varrho \mid \mathcal{G})}$$
(1)

4.11 [A discrete version of Girsanov's formula]

Let $\Omega_n := \{\mathsf{H},\mathsf{T}\}^n$, **P** be the probability measure on Ω_n given by tossing a biased coin *n* times independently which gives probability 2/3 to **H**, and **Q** the probability measure given by tossing a fair coin *n* times independently. Let $Z_n(\omega) := \frac{d\mathbf{Q}}{d\mathbf{P}}(\omega)$, and consider the martingale (with respect to the measure **P**) $Z_m := \mathbf{E}_{\mathbf{P}}(Z_n | \mathcal{F}_m)$ for $m \leq n$.

(a) Give explicitly the distribution of Z_{m+1} given Z_m, \ldots, Z_1 .

(b) Note that (1) of the previous exercise translates to $\mathbf{E}_{\mathbf{Q}}(X \mid \mathcal{F}_m) = (Z_m)^{-1} \mathbf{E}_{\mathbf{P}}(XZ_n \mid \mathcal{F}_m)$. Check this numerically for $n = 3, m = 2, X = \#\{\text{heads in } (\omega_1, \omega_2, \omega_3)\}.$

(c) Interpret this exercise as a discrete version of Girsanov's theorem.

4.12 [Cameron-Martin theorem]

(a) Let $f \in L^2[0,1]$ be a deterministic function and $F(t) := \int_0^t f(u) du$, $t \in [0,1]$. Show that, if $t \mapsto B(t)$ is standard 1d Brownian motion, then the laws of the processes $\{t \mapsto F(t) + B(t) : t \in [0,1]\}$ and $\{t \mapsto B(t) : t \in [0,1]\}$ are mutually absolutely continuous w.r.t. each other. Compute the Radon-Nikodym derivatives.

(b) If F(t) is such that the above f(t) does not exist, then the laws of the two processes are mutually singular.

- **4.13** Let $B(t) = (B_1(t), B_2(t)), t \leq T$, be a 2-dimensional standard Brownian motion on the probability space $(\Omega, \mathcal{F}_T, \mathbf{P})$. Find a probability measure \mathbf{Q} on \mathcal{F}_T that is mutually absolutely continuous w.r.t. \mathbf{P} , and under which the following process $t \mapsto Y(t)$ becomes a martingale:
 - (a)

$$dY(t) = \begin{pmatrix} 2\\ 4 \end{pmatrix} dt + \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \begin{pmatrix} dB_1(t)\\ dB_2(t) \end{pmatrix}, \qquad t \le T$$

(b)

$$dY(t) = \begin{pmatrix} 0\\1 \end{pmatrix} dt + \begin{pmatrix} 1 & 3\\-1 & -2 \end{pmatrix} \begin{pmatrix} dB_1(t)\\dB_2(t) \end{pmatrix}, \qquad t \le T.$$

4.14 Let B(t) be standard 1-dimensional Brownian motion on the probability space $(\Omega, \mathcal{F}, \mathbf{P})$ and Y(t) = t + B(t). For each T > 0, find $\mathbf{Q}_T \sim \mathbf{P}$ on \mathbb{F}_T such that $\{t \mapsto Y(t)\}_{t \leq T}$ becomes a Brownian motion under \mathbb{Q}_T .

(a) Show that there exists a probability measure \mathbf{Q} on \mathcal{F} such that $\mathbf{Q}|_{\mathcal{F}_T} = \mathbb{Q}_T$ for all T > 0.

(b) Show that $\mathbf{P}(\lim_{t\to\infty} Y(t) = \infty) = 1$, while $\mathbf{Q}(\lim_{t\to\infty} Y(t) = \infty) = 0$. Why does not this contradict Girsanov's theorem?

4.15 Let $b : \mathbb{R} \to \mathbb{R}$ be Lipschitz, and $t \mapsto X(t)$ be the unique strong solution of the 1-dimensional SDE

$$dX(t) = b(X(t))dt + dB(t), \qquad X(0) = x \in \mathbb{R}.$$

(a) Use Girsanov's theorem to prove that for any $M < \infty$, $x \in \mathbb{R}$, and t > 0, we have $\mathbf{P}(X(t) > M) > 0$.

(b) Choose b(x) = -r, where r > 0 is a constant. Prove that, for all x, we have $\lim_{t\to\infty} X(t) = -\infty$, a.s. Compare this fact with the result in part (a).