Stochastic Differential Equations Problem Set 4
 Stochastic differential equations, Dynkin formula, Girsanov theorem

4.1 Check that the following processes solve the corresponding SDE's, where $B(t)$ is 1-dimensional standard Brownian motion:
(a) $X(t)=e^{B(t)}$, with $B(0)=b$ solves

$$
d X(t)=\frac{1}{2} X(t) d t+X(t) d B(t), \quad X(0)=e^{b}
$$

(b) $X(t)=\frac{B(t)}{1+t}$, with $B_{0}=b$, solves

$$
d X(t)=-\frac{X(t)}{1+t} d t+\frac{1}{1+t} d B_{t}, \quad X(0)=b
$$

(c) $X(t)=\sin B(t)$, with $B(0)=b \in(-\pi / 2, \pi / 2)$, and $t<\min \{t:|B(t)|=\pi / 2\}$, solves

$$
d X(t)=-\frac{1}{2} X(t) d t+\sqrt{1-X(t)^{2}} d B_{t}, \quad X(0)=\sin b
$$

(d) $\left(X_{1}(t), X_{2}(t)\right)=(\cosh B(t), \sinh B(t))$, with $B(0)-b$, solves

$$
\binom{d X_{1}(t)}{d X_{2}(t)}=\frac{1}{2}\binom{X_{1}(t)}{X_{2}(t)} d t+\binom{X_{2}(t)}{X_{1}(t)} d B(t) .
$$

4.2 Let $B(t)$ be a standard 1-dimensional Brownian motion with $B(0)=b$, and $(U(t), V(t)):=$ $(\cos B(t), \sin B(t))$. Write down in vectorial notation the SDE driving the 2-dimensional process $(U(t), V(t)$.
4.3 Solve the following SDE's, where $B(t)$ is 1-dimensional standard Brownian motion starting from $B(0)=0$:
(a)

$$
d X(t)=-X(t) d t+e^{-t} d B(t)
$$

(b)

$$
d X(t)=r d t+\alpha X(t) d B(t)
$$

with $r, \alpha \in \mathbb{R}$ constants.
Hint: Multiply by $\exp \left(-\alpha B(t)+\frac{\alpha^{2}}{2} t\right)$.
(c) Now, $X(t)=\left(X_{1}(t), X_{2}(t)\right) \in \mathbb{R}^{2}$, and $B(t)=\left(B_{1}(t), B_{2}(t)\right)$ is standard 2dimensional Brownian motion.

$$
\begin{aligned}
& d X_{1}(t)=X_{2}(t) d t+\alpha d B_{1}(t) \\
& d X_{2}(t)=-X_{1}(t) d t+\beta d B_{2}(t)
\end{aligned}
$$

or in vector notation,

$$
d X(t)=J X(t) d t+A d B(t), \quad \text { where } J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad A=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right) .
$$

Hint: Multiply by left by $e^{-J t}$.
4.4 The Ornstein-Uhlenbeck process:
(a) Solve explicitly the stochastic differential equation

$$
d X(t)=-\gamma X(t) d t+a d B(t), \quad X(0)=x_{0},
$$

and show that the process $X(t)$ is Gaussian.
Hint: Multiply by $e^{\gamma t}$.
(b) Compute $\mathbf{E}(X(t))$ and $\operatorname{Cov}(X(s), X(t))$.
(c) Let $Y_{k}^{(n)}$ be the Markov chain on the state space $S^{(n)}:=\{0,1, \ldots, n\}$ with transition matrix

$$
P_{i, j}^{(n)}=\frac{i}{n} \delta_{i-1, j}+\frac{n-i}{n} \delta_{i+1, j}, \quad i, j \in S^{(n)} .
$$

The Markov chain $Y_{k}^{(n)}$ is called Ehrenfest's Urn Model (or Dogs and Fleas). Define the sequence of continuous time processes

$$
X^{(n)}(t):=\frac{Y_{\lfloor n t\rfloor}^{(n)}-(n / 2)}{\sqrt{n}}, \quad t \geq 0 .
$$

Write down an approximate stochastic differential equation for $X^{(n)}(t)$, with time increments $d t=\frac{1}{n}$ and conclude (non-rigorously) that the Ornstein-Uhlenbeck process is - in some sense - the limit of the processes $X^{(n)}(t)$ (that is: the scaling limit of Ehrenfest's Urn Model.)
4.5 Write down the infinitesimal generator as elliptic differential operator for the following Itô diffusions:
(a) $d X(t)=\beta d t+\alpha X(t) d B(t)$.
(b) $d Y(t)=\binom{d t}{d X(t)}$, where $d X(t)=-\gamma X(t) d t+\alpha d B(t)$.
(c) $\binom{d X_{1}(t)}{d X_{2}(t)}=\binom{1}{X_{2}(t)} d t+\binom{0}{e^{X_{1}(t)}} d B(t)$.
(d) $\binom{d X_{1}(t)}{d X_{2}(t)}=\binom{1}{0} d t+\left(\begin{array}{cc}1 & 0 \\ 0 & X_{1}\end{array}\right)\binom{d B_{1}(t)}{d B_{2}(t)}$.
4.6 Find an Itô diffusion (i.e., write down the SDE for it) whose infinitesimal generator is the following:
(a) $A f(x)=f^{\prime}(x)+f^{\prime \prime}(x), f \in C_{0}^{2}(\mathbb{R})$.
(b) $A f(t, x)=\frac{\partial f}{\partial t}+c x \frac{\partial f}{\partial x}+\frac{1}{2} \alpha^{2} x^{2} \frac{\partial^{2} f}{\partial x^{2}}, f \in C_{0}^{2}\left(\mathbb{R}^{2}\right)$.
4.7 Let $X(t)$ be a geometric Brownian motion, i.e. strong solution of the following SDE

$$
d X(t)=\beta X(t) d t+\alpha X(t) d B(t), \quad X_{0}=x>0
$$

where $\alpha>0, \beta \in \mathbb{R}$ are fixed parameters.
(a) Find the generator A of the diffusion $t \mapsto X(t)$ and compute $A f(x)$ when f : $\mathbb{R}_{+} \rightarrow \mathbb{R}$ is $f(x)=x^{\gamma}, \gamma$ constant.
(b) Let $0<r<R<\infty$, and $r \leq x \leq R$. using Dynkin's formula, compute

$$
\mathbf{P}\left(\tau_{r}<\tau_{R} \mid X(0)=x\right),
$$

where τ_{r}, and τ_{R} are the first hitting times of r, respectively, R.
Hint: Solve the boundary value problem $A f(x)=0$ for $r<x<R$, with $f(r)=1, f(R)=0$.
(c) Assume $\beta<\alpha^{2} / 2$. What is $\mathbf{P}(X(t)$ ever hits $R \mid X(0)=x)$?
(d) Assume $\beta>\alpha^{2} / 2$. What is $\mathbf{P}(X(t)$ ever hits $r \mid X(0)=x)$?
4.8 (a) Find the generator of the δ-dimensional Bessel process, $B E S(\delta)$

$$
d Y^{(\delta)}(t)=\frac{\delta-1}{2 Y^{(\delta)}(t)} d t+d B(t)
$$

on \mathbb{R}_{+}.
(b) Let $0<r<R<\infty$, and $r \leq x \leq R$. using Dynkin's formula, compute

$$
\mathbf{P}\left(\tau_{r}<\tau_{R} \mid Y^{(\delta)}(0)=x\right)
$$

where τ_{r}, and τ_{R} are the first hitting times of r, respectively, R.
Hint: Solve the boundary value problem $A f(x)=0$ for $r<x<R$, with $f(r)=1, f(R)=0$. Note that the solutions are qualitatively different for $\delta \in[0,2), \delta=2$, respectively, $\delta>2$.
(c) Show that $B E S(\delta)$ is transient if $\delta>2$.
(d) Show that $B E S(2)$ almost surely hits all points in $(0, \infty)$, but never hits 0 .
(e) Show that for $\delta \in[0,2) B E S(\delta)$ almost surely hits 0 (no matter where it starts).
4.9 Show that the solution $u(t, x)$ of the initial value problem

$$
\begin{aligned}
& \frac{\partial u}{\partial t}(t, x)=\frac{1}{2} \beta^{2} x^{2} \frac{\partial^{2} u}{\partial x^{2}}(t, x)+\alpha x \frac{\partial u}{\partial x}(t, x), \quad t>0, x \in \mathbb{R}, \\
& u(0, x)=f(x), \quad\left(f \in C_{K}^{2}(\mathbb{R}) \text { given }\right)
\end{aligned}
$$

can be expressed as follows:

$$
\begin{aligned}
u(t, x) & =\mathbf{E}\left(f\left(x \exp \left\{\beta B(t)+\left(\alpha-\beta^{2} / 2\right) t\right\}\right)\right) \\
& =\frac{1}{\sqrt{2 \pi t}} \int_{\mathbb{R}} f\left(x \exp \left\{\beta y+\left(\alpha-\beta^{2} / 2\right) t\right\}\right) \exp \left(-y^{2} /(2 t)\right) d y, \quad t>0
\end{aligned}
$$

In this expression $t \mapsto B(t)$ is standard 1-dimensional Brownian motion with $B(0)=$ 0 .
4.10 [Change of conditional expectation]

Let \mathbf{Q} and \mathbf{P} be two probability measures on (Ω, \mathcal{F}), with $\mathbf{Q} \ll \mathbf{P}$, and RadonNikodym derivative $\frac{d \mathbf{Q}}{d \mathbf{P}}(\omega)=\varrho(\omega)$. Let $\mathcal{G} \subseteq \mathcal{F}$ a sub- σ-algebra. Show that, for any \mathcal{F}-measurable random variable X, we have

$$
\begin{equation*}
\mathbf{E}_{\mathbf{Q}}(X \mid \mathcal{G})=\frac{\mathbf{E}_{\mathbf{P}}(\varrho X \mid \mathcal{G})}{\mathbf{E}_{\mathbf{P}}(\varrho \mid \mathcal{G})} \tag{1}
\end{equation*}
$$

4.11 [A discrete version of Girsanov's formula]

Let $\Omega_{n}:=\{\mathrm{H}, \mathrm{T}\}^{n}$, \mathbf{P} be the probability measure on Ω_{n} given by tossing a biased coin n times independently which gives probability $2 / 3$ to \mathbf{H}, and \mathbf{Q} the probability measure given by tossing a fair coin n times independently. Let $Z_{n}(\omega):=\frac{d \mathbf{Q}}{d \mathbf{P}}(\omega)$, and consider the martingale (with respect to the measure \mathbf{P}) $Z_{m}:=\mathbf{E}_{\mathbf{P}}\left(Z_{n} \mid \mathcal{F}_{m}\right)$ for $m \leq n$.
(a) Give explicitly the distribution of Z_{m+1} given Z_{m}, \ldots, Z_{1}.
(b) Note that (1) of the previous exercise translates to $\mathbf{E}_{\mathbf{Q}}\left(X \mid \mathcal{F}_{m}\right)=\left(Z_{m}\right)^{-1} \mathbf{E}_{\mathbf{P}}\left(X Z_{n} \mid \mathcal{F}_{m}\right)$. Check this numerically for $n=3, m=2, X=\#\left\{\right.$ heads in $\left.\left(\omega_{1}, \omega_{2}, \omega_{3}\right)\right\}$.
(c) Interpret this exercise as a discrete version of Girsanov's theorem.

4.12 [Cameron-Martin theorem]

(a) Let $f \in L^{2}[0,1]$ be a deterministic function and $F(t):=\int_{0}^{t} f(u) d u, t \in[0,1]$. Show that, if $t \mapsto B(t)$ is standard 1d Brownian motion, then the laws of the processes $\{t \mapsto F(t)+B(t): t \in[0,1]\}$ and $\{t \mapsto B(t): t \in[0,1]\}$ are mutually absolutely continuous w.r.t. each other. Compute the Radon-Nikodym derivatives.
(b) If $F(t)$ is such that the above $f(t)$ does not exist, then the laws of the two processes are mutually singular.
4.13 Let $B(t)=\left(B_{1}(t), B_{2}(t)\right), t \leq T$, be a 2-dimensional standard Brownian motion on the probability space $\left(\Omega, \mathcal{F}_{T}, \mathbf{P}\right)$. Find a probability measure \mathbf{Q} on \mathcal{F}_{T} that is mutually absolutely continuous w.r.t. \mathbf{P}, and under which the following process $t \mapsto Y(t)$ becomes a martingale:
(a)

$$
d Y(t)=\binom{2}{4} d t+\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{d B_{1}(t)}{d B_{2}(t)}, \quad t \leq T
$$

(b)

$$
d Y(t)=\binom{0}{1} d t+\left(\begin{array}{cc}
1 & 3 \\
-1 & -2
\end{array}\right)\binom{d B_{1}(t)}{d B_{2}(t)}, \quad t \leq T .
$$

4.14 Let $B(t)$ be standard 1-dimensional Brownian motion on the probability space $(\Omega, \mathcal{F}, \mathbf{P})$ and $Y(t)=t+B(t)$. For each $T>0$, find $\mathbf{Q}_{T} \sim \mathbf{P}$ on \mathbb{F}_{T} such that $\{t \mapsto Y(t)\}_{t \leq T}$ becomes a Brownian motion under \mathbb{Q}_{T}.
(a) Show that there exists a probability measure \mathbf{Q} on \mathcal{F} such that $\left.\mathbf{Q}\right|_{\mathcal{F}_{T}}=\mathbb{Q}_{T}$ for all $T>0$.
(b) Show that $\mathbf{P}\left(\lim _{t \rightarrow \infty} Y(t)=\infty\right)=1$, while $\mathbf{Q}\left(\lim _{t \rightarrow \infty} Y(t)=\infty\right)=0$. Why does not this contradict Girsanov's theorem?
4.15 Let $b: \mathbb{R} \rightarrow \mathbb{R}$ be Lipschitz, and $t \mapsto X(t)$ be the unique strong solution of the 1-dimensional SDE

$$
d X(t)=b(X(t)) d t+d B(t), \quad X(0)=x \in \mathbb{R}
$$

(a) Use Girsanov's theorem to prove that for any $M<\infty, x \in \mathbb{R}$, and $t>0$, we have $\mathbf{P}(X(t)>M)>0$.
(b) Choose $b(x)=-r$, where $r>0$ is a constant. Prove that, for all x, we have $\lim _{t \rightarrow \infty} X(t)=-\infty$, a.s. Compare this fact with the result in part (a).

