Stochastic Differential Equations Problem Set 3 The Itô integral, Itô's formula

3.1 Let $s \mapsto v(s)$ be a smooth deterministic function with $\sup_{0 \le s \le T} |v'(s)| \le C$. Prove directly from the definition of the Itô integral that

$$\int_0^t v(s)dB(s) = v(t)B(t) - \int_0^t v'(s)B(s)ds.$$

Hint: Write

$$v(s_{i+1})B(s_{i+1}) - v(s_i)B(s_i) = v(s_i)(B(s_{i+1}) - B(s_i)) + B(s_{i+1})(v(s_{i+1})) - v(s_i)$$

3.2 Prove directly form the definition of the Itô integral that

$$\int_0^t B(s)dB(s) = \frac{1}{2}B(t)^2 - \frac{t}{2},$$

$$\int_0^t B(s)^2 dB(s) = \frac{1}{3}B(t)^3 - \int_0^t B(s)ds.$$

3.3 Suppose $v, w \in \mathcal{V}_T$ and $C, D \in \mathbb{R}$ are such that

$$\int_0^T v(s)dB(s) + C = \int_0^T w(s)dB(s) + D.$$

Show that C = D and v = w (s, ω) -almost surely.

3.4 (a) For which values of $\alpha \in \mathbb{R}$ is the process

$$Y_{\alpha}(t) := \int_0^t (t-s)^{-\alpha} dB(s)$$

well defined as an Itô integral?.

(b) Compute the covariances $\mathbf{E}(Y_{\alpha}(s)Y_{\alpha}(t))$.

Remark: The process $t \mapsto Y_{\alpha}(t)$ is called fractional Brownian motion.

3.5 Use Itô's formula to write the following processes $t \mapsto X(t)$ in the standard form

$$X(t) = X(0) + \int_0^t u(s)ds + \int_0^t v(s)dB(s).$$

Identify the processes $s \mapsto u(s)$ and $s \mapsto v(s)$ under the integrals. Notation: B(t) denotes standard 1-dimensional Brownian motion, $(B_1(t), \ldots, B_n(t))$ denotes standard n-dimensional Brownian motion (that is: n independent standard 1-dimensional Brownian motions).

(a)
$$X(t) = B(t)^2$$

(b)
$$X(t) = 2 + t + e^{B(t)}$$

(c)
$$X(t) = B_1(t)^2 + B_2(t)^2$$

$$(d) X(t) = (t, B(t))$$

(e)
$$X(t) = (B_1(t) + B_2(t) + B_3(t), B_2(t)^2 - B_1(t)B_3(t))$$

3.6 Use Itô's formula to prove that

$$\int_0^t B(s)^2 dB(s) = \frac{1}{3}B(t)^3 - \int_0^t B(s)ds.$$

3.7 Suppose $\theta(t) = (\theta_1(t), \dots, \theta_n(t)) \in \mathbb{R}^n$ with $t \mapsto \theta_j(t)$, $j = 1, \dots, n$, progressively measurable and a.s. bounded in any compact interval [0, T]. Define

$$Z(t) := \exp\left\{ \int_0^t \theta(s) dB(s) - \frac{1}{2} \int_0^t |\theta(s)|^2 ds \right\},\,$$

where $t \mapsto B(t)$ is standard Brownian motion in \mathbb{R}^n and $|\theta|^2 = \theta_1^2 + \cdots + \theta_n^2$.

(a) Use Itô's formula to prove that

$$dZ(t) = Z(t)\theta(t)dB(t).$$

- (b) Deduce that $t \mapsto Z(t)$ is a martingale.
- **3.8** Let $t \mapsto B(t)$ be a standard 1-dimensional Brownian motion with B(0) = 0, and

$$\beta_k(t) := \mathbf{E}\left(B(t)^k\right).$$

Use Itô's formula to prove that

$$\beta_{k+2}(t) = \frac{1}{2}(k+2)(k+1)\int_0^t \beta_k(s)ds.$$

Compute explicitly $\beta_k(t)$ for $k = 0, 1, 2, \dots, 6$.

3.9 Let $t \mapsto B(t)$ be a standard one-dimensional Brownian motion and $r, \alpha \in \mathbb{R}$ constants. Define

$$X(t) := \exp\{\alpha B(t) + rt\}.$$

Prove that

$$dX(t) = \left(r + \frac{\alpha^2}{2}\right)X(t)dt + \alpha X(t)dB(t).$$

3.10 Let $t \mapsto B(t) \in \mathbb{R}^m$ be standard m-dimensional Brownian motion, $t \mapsto v(t) \in \mathbb{R}^{n \times m}$ progressively measurable and a.s. bounded. Define

$$X(t) = \int_0^t v(s)dB(s) \in \mathbb{R}^n.$$

Prove that

$$M(t) := |X(t)|^2 - \int_0^t \operatorname{tr}\{v(s)v(s)^T\}ds$$

is a martingale.

3.11 Use Itô's formula to prove that the following processes are (\mathcal{F}_t^B) -martingales.

(a)
$$X(t) = e^{t/2} \cos B(t)$$

(b)
$$X(t) = e^{t/2} \sin B(t)$$

(c)
$$X(t) = (B(t) + t) \exp\{-B(t) - t/2\}$$

3.12 Let $t \mapsto u(t)$ be progressively measurable and almost surely bounded. Define

$$X(t) := \int_0^t u(s)ds + B(t),$$

$$M(t) := \exp\left\{-\int_0^t u(s)dB(s) - \frac{1}{2}\int_0^t u(s)^2 ds\right\}$$

(Note that according to the statement of problem 7 the process $t \mapsto M(t)$ is a martingale.) Prove that the process

$$t \mapsto Y(t) := X(t)M(t)$$

is a (\mathcal{F}_t^B) -martingale.

3.13 In each of the cases below find a process $t \mapsto v(t)$ such that $v \in \mathcal{V}_T$ and the random variable X is written as

$$X = \mathbf{E}(X) + \int_0^T v(s)dB(s).$$

(a)
$$X = B(T)$$
, (b) $X = \int_0^T B(s)ds$, (c) $X = B(T)^2$,

$$(d) B(T)^3,$$
 $(e) e^{B(T)},$ $(f) \sin B(T).$

3.14 Let $x \geq 0$ and define the process

$$X(t) := (x^{1/3} + \frac{1}{3}B(t))^3.$$

Show that

$$dX(t) = \frac{1}{3}\operatorname{sgn}(X(t)) |X(t)|^{1/3} dt + |X(t)|^{2/3} dB(t), \qquad X(0) = x.$$

3.15 Let $0 = t_0 < t_1 < \cdots < t_n = 1$ and let $\phi_0, \phi_1, \ldots, \phi_{n-1}$ be random variables with finite variance. Then the random function $\psi : [0, 1] \to \mathbb{R}$ defined as

$$\psi(t) = \sum_{i=1}^{n} \phi_{i-1} \mathbb{1}_{[t_{i-1}, t_i)}(t)$$
(1)

is called *simple*. The stochastic integral of this ψ is defined as

$$\int_0^1 \psi(t) dB(t) := \sum_{i=1}^n \phi_{i-1}(B(t_i) - B(t_{i-1})).$$

Now let's try to calculate $\int_0^1 B(t) dB(t)$ by approximating B(t) with simple functions ψ_1, ψ_2, \ldots : this means that we calculate the L^2 limit

$$I := \lim_{n \to \infty} \int_0^1 \psi_n(t) dB(t),$$

where $\psi_n(t) \to B(t)$. In this exercise, let's do this with ψ_n defined as (1) with $t_i = \frac{i}{n}$ and $\phi_{i-1} = B\left(\frac{t_{i-1}+t_i}{2}\right)$.

a.) Calculate this random variable I.

(Hint: Let
$$X_k = B\left(\frac{k}{2n}\right) - B\left(\frac{k-1}{2n}\right)$$
. Then

$$\sum_{i=1}^{n} \phi_{i-1}(B(t_i) - B(t_{i-1})) = \sum_{i=1}^{n} B(t_{i-1})(B(t_i) - B(t_{i-1})) + \sum_{i=1}^{n} X_{2i-1}(X_{2i-1} + X_{2i}).$$

The first sum should be familiar from the lecture. For the second, calculate the expectation and the variance to get the L^2 limit.)

- b.) Why is this not equal to the Itô integral $\int_0^1 B(t) dB(t)$?
- **3.16** Let B(t) be a standard Brownian motion and let \mathcal{F}_t be its natural filtration. Let the random variable X be $X = \mathbb{1}_{\{B(1) \geq 0\}}$. Of course, $X \in \mathcal{F}_1$.
 - a.) For $0 \le t \le 1$ let $M(t) = \mathbf{E}(X \mid \mathcal{F}_t)$. Calculate M(t) explicitly for $0 \le t < 1$. (Hint: since X is a function of B(1) and B is Markov, M(t) is a function of t and B(t): write it as M(t) = f(t, B(t)) with some function f(t, x).)
 - b.) Check directly that $M(t) \to X$ almost surely as $t \nearrow 1$.
 - c.) Use the Itô formula to check directly that M(t) is a martingale.
 - d.) Notice that you just found the Itô representation of M(t) as well as the Itô representation of: X: write it as $X = \mathbf{E}(X) + \int_0^1 v(t) dB(t)$ with an appropriate process v.
 - e.) Calculate directly the integral $V := \int_0^1 \mathbf{E}\left(v(t)^2\right) dt$, and check that the Itô isometry holds.
- **3.17** Let B(t) be a standard Brownian motion and let \mathcal{F}_t be its natural filtration. Let T be the time spent by B(t) on the positive half-line up to t = 1:

$$T := Leb(\{s \in [0,1] \,|\, B(s) \geq 0\}).$$

We will find the Itô representation of T – that is, the process u(t) for which

$$T = \mathbf{E}(T) + \int_0^1 u(t) dB(t).$$

- a.) For every $0 \le s \le 1$ let $X_s = \mathbb{1}_{\{B(s) \ge 0\}}$. Then $T = \int_0^1 X_s ds$. As in the previous exercise, find the martingale $t \mapsto M_s(t) := \mathbf{E}(X_s \mid \mathcal{F}_t)$, $0 \le t \le 1$. (Warning: the formula will be different for t < s and $t \ge s$.)
- b.) As in the previous exercise, find the Itô representation

$$X_s = \mathbf{E}(X_s) + \int_0^1 v_s(t) \mathrm{d}B(t).$$

(Warning: you will encounter the integral $\int_s^1 \frac{1}{\sqrt{t-s}} \varphi\left(\frac{x}{\sqrt{t-s}}\right)$ where φ is the standard normal density function. If you want to use substitution, be careful: the sign of x matters.)

c.) Use that $T = \int_0^1 X_s ds$ to find the Itô representation of T.

d.) ** An alternative way is to use the martingale

$$N(t) := \mathbf{E}(T \mid \mathcal{F}_t) = \int_0^1 \mathbf{E}(X_s \mid \mathcal{F}_t).$$

Calculate N(t), use Itô's formula to check that it is really a martingale and find its Itô representation, which is also the Itô representation of T. Check that you got the same as with the previous method.