Stochastic Differential Equations Problem Set 3 The Itô integral, Itô's formula

3.1 Let $s \mapsto v(s)$ be a smooth deterministic function with $\sup _{0 \leq s \leq T}\left|v^{\prime}(s)\right| \leq C$. Prove directly from the definition of the Itô integral that

$$
\int_{0}^{t} v(s) d B(s)=v(t) B(t)-\int_{0}^{t} v^{\prime}(s) B(s) d s
$$

Hint: Write

$$
\left.v\left(s_{i+1}\right) B\left(s_{i+1}\right)-v\left(s_{i}\right) B\left(s_{i}\right)=v\left(s_{i}\right)\left(B\left(s_{i+1}\right)-B\left(s_{i}\right)\right)+B\left(s_{i+1}\right)\left(v\left(s_{i+1}\right)\right)-v\left(s_{i}\right)\right)
$$

3.2 Prove directly form the definition of the Itô integral that

$$
\begin{aligned}
& \int_{0}^{t} B(s) d B(s)=\frac{1}{2} B(t)^{2}-\frac{t}{2} \\
& \int_{0}^{t} B(s)^{2} d B(s)=\frac{1}{3} B(t)^{3}-\int_{0}^{t} B(s) d s
\end{aligned}
$$

3.3 Suppose $v, w \in \mathcal{V}_{T}$ and $C, D \in \mathbb{R}$ are such that

$$
\int_{0}^{T} v(s) d B(s)+C=\int_{0}^{T} w(s) d B(s)+D
$$

Show that $C=D$ and $v=w(s, \omega)$-almost surely.
3.4 (a) For which values of $\alpha \in \mathbb{R}$ is the process

$$
Y_{\alpha}(t):=\int_{0}^{t}(t-s)^{-\alpha} d B(s)
$$

well defined as an Itô integral?.
(b) Compute the covariances $\mathbf{E}\left(Y_{\alpha}(s) Y_{\alpha}(t)\right)$.

Remark: The process $t \mapsto Y_{\alpha}(t)$ is called fractional Brownian motion.
3.5 Use Itô's formula to write the following processes $t \mapsto X(t)$ in the standard form

$$
X(t)=X(0)+\int_{0}^{t} u(s) d s+\int_{0}^{t} v(s) d B(s)
$$

Identify the processes $s \mapsto u(s)$ and $s \mapsto v(s)$ under the integrals. Notation: $B(t)$ denotes standard 1-dimensional Brownian motion, $\left(B_{1}(t), \ldots, B_{n}(t)\right)$ denotes standard n-dimensional Brownian motion (that is: n independent standard 1-dimensional Brownian motions).
(a) $X(t)=B(t)^{2}$
(b) $X(t)=2+t+e^{B(t)}$
(c) $X(t)=B_{1}(t)^{2}+B_{2}(t)^{2}$
(d) $X(t)=(t, B(t))$
(e) $X(t)=\left(B_{1}(t)+B_{2}(t)+B_{3}(t), B_{2}(t)^{2}-B_{1}(t) B_{3}(t)\right)$
3.6 Use Itô's formula to prove that

$$
\int_{0}^{t} B(s)^{2} d B(s)=\frac{1}{3} B(t)^{3}-\int_{0}^{t} B(s) d s
$$

3.7 Suppose $\theta(t)=\left(\theta_{1}(t), \ldots, \theta_{n}(t)\right) \in \mathbb{R}^{n}$ with $t \mapsto \theta_{j}(t), j=1, \ldots, n$, progressively measurable and a.s. bounded in any compact interval $[0, T]$. Define

$$
Z(t):=\exp \left\{\int_{0}^{t} \theta(s) d B(s)-\frac{1}{2} \int_{0}^{t}|\theta(s)|^{2} d s\right\}
$$

where $t \mapsto B(t)$ is standard Brownian motion in \mathbb{R}^{n} and $|\theta|^{2}=\theta_{1}^{2}+\cdots+\theta_{n}^{2}$.
(a) Use Itô's formula to prove that

$$
d Z(t)=Z(t) \theta(t) d B(t)
$$

(b) Deduce that $t \mapsto Z(t)$ is a martingale.
3.8 Let $t \mapsto B(t)$ be a standard 1-dimensional Brownian motion with $B(0)=0$, and

$$
\beta_{k}(t):=\mathbf{E}\left(B(t)^{k}\right)
$$

Use Itô's formula to prove that

$$
\beta_{k+2}(t)=\frac{1}{2}(k+2)(k+1) \int_{0}^{t} \beta_{k}(s) d s
$$

Compute explicitly $\beta_{k}(t)$ for $k=0,1,2, \ldots, 6$.
3.9 Let $t \mapsto B(t)$ be a standard one-dimensional Brownian motion and $r, \alpha \in \mathbb{R}$ constants. Define

$$
X(t):=\exp \{\alpha B(t)+r t\} .
$$

Prove that

$$
d X(t)=\left(r+\frac{\alpha^{2}}{2}\right) X(t) d t+\alpha X(t) d B(t)
$$

3.10 Let $t \mapsto B(t) \in \mathbb{R}^{m}$ be standard m-dimensional Brownian motion, $t \mapsto v(t) \in \mathbb{R}^{n \times m}$ progressively measurable and a.s. bounded. Define

$$
X(t)=\int_{0}^{t} v(s) d B(s) \in \mathbb{R}^{n}
$$

Prove that

$$
M(t):=|X(t)|^{2}-\int_{0}^{t} \operatorname{tr}\left\{v(s) v(s)^{T}\right\} d s
$$

is a martingale.
3.11 Use Itô's formula to prove that the following processes are $\left(\mathcal{F}_{t}^{B}\right)$-martingales.
(a) $X(t)=e^{t / 2} \cos B(t)$
(b) $X(t)=e^{t / 2} \sin B(t)$
(c) $X(t)=(B(t)+t) \exp \{-B(t)-t / 2\}$
3.12 Let $t \mapsto u(t)$ be progressively measurable and almost surely bounded. Define

$$
\begin{aligned}
& X(t):=\int_{0}^{t} u(s) d s+B(t) \\
& M(t):=\exp \left\{-\int_{0}^{t} u(s) d B(s)-\frac{1}{2} \int_{0}^{t} u(s)^{2} d s\right\}
\end{aligned}
$$

(Note that according to the statement of problem 7 the process $t \mapsto M(t)$ is a martingale.) Prove that the process

$$
t \mapsto Y(t):=X(t) M(t)
$$

is a $\left(\mathcal{F}_{t}^{B}\right)$-martingale.
3.13 In each of the cases below find a process $t \mapsto v(t)$ such that $v \in \mathcal{V}_{T}$ and the random variable X is written as

$$
X=\mathbf{E}(X)+\int_{0}^{T} v(s) d B(s)
$$

(a) $X=B(T)$,
(b) $X=\int_{0}^{T} B(s) d s$,
(c) $X=B(T)^{2}$,
(d) $B(T)^{3}$,
(e) $e^{B(T)}$,
$(f) \quad \sin B(T)$.
3.14 Let $x \geq 0$ and define the process

$$
X(t):=\left(x^{1 / 3}+\frac{1}{3} B(t)\right)^{3} .
$$

Show that

$$
d X(t)=\frac{1}{3} \operatorname{sgn}(X(t))|X(t)|^{1 / 3} d t+|X(t)|^{2 / 3} d B(t), \quad X(0)=x
$$

3.15 Let $0=t_{0}<t_{1}<\cdots<t_{n}=1$ and let $\phi_{0}, \phi_{1}, \ldots, \phi_{n-1}$ be random variables with finite variance. Then the random function $\psi:[0,1] \rightarrow \mathbb{R}$ defined as

$$
\begin{equation*}
\psi(t)=\sum_{i=1}^{n} \phi_{i-1} \mathbb{1}_{\left[t_{i-1}, t_{i}\right)}(t) \tag{1}
\end{equation*}
$$

is called simple. The stochastic integral of this ψ is defined as

$$
\int_{0}^{1} \psi(t) \mathrm{d} B(t):=\sum_{i=1}^{n} \phi_{i-1}\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right) .
$$

Now let's try to calculate $\int_{0}^{1} B(t) \mathrm{d} B(t)$ by approximating $B(t)$ with simple functions $\psi_{1}, \psi_{2}, \ldots$: this means that we calcluate the L^{2} limit

$$
I:=\lim _{n \rightarrow \infty} \int_{0}^{1} \psi_{n}(t) \mathrm{d} B(t)
$$

where $\psi_{n}(t) \rightarrow B(t)$. In this exercise, let's do this with ψ_{n} defined as (1) with $t_{i}=\frac{i}{n}$ and $\phi_{i-1}=B\left(\frac{t_{i-1}+t_{i}}{2}\right)$.
a.) Calculate this random variable I.
(Hint: Let $X_{k}=B\left(\frac{k}{2 n}\right)-B\left(\frac{k-1}{2 n}\right)$. Then
$\sum_{i=1}^{n} \phi_{i-1}\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)=\sum_{i=1}^{n} B\left(t_{i-1}\right)\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)+\sum_{i=1}^{n} X_{2 i-1}\left(X_{2 i-1}+X_{2 i}\right)$.
The first sum should be familiar from the lecture. For the second, calculate the expectation and the variance to get the L^{2} limit.)
b.) Why is this not equal to the Itô integral $\int_{0}^{1} B(t) \mathrm{d} B(t)$?
3.16 Let $B(t)$ be a standard Brownian motion and let \mathcal{F}_{t} be its natural filtration. Let the random variable X be $X=\mathbb{1}_{\{B(1) \geq 0\}}$. Of course, $X \in \mathcal{F}_{1}$.
a.) For $0 \leq t \leq 1$ let $M(t)=\mathbf{E}\left(X \mid \mathcal{F}_{t}\right)$. Calculate $M(t)$ explicitly for $0 \leq t<1$. (Hint: since X is a function of $B(1)$ and B is Markov, $M(t)$ is a function of t and $B(t)$: write it as $M(t)=f(t, B(t))$ with some function $f(t, x)$.)
b.) Check directly that $M(t) \rightarrow X$ almost surely as $t \nearrow 1$.
c.) Use the Itô formula to check directly that $M(t)$ is a martingale.
d.) Notice that you just found the Itô representation of $M(t)$ as well as the Itô representation of: X : write it as $X=\mathbf{E}(X)+\int_{0}^{1} v(t) \mathrm{d} B(t)$ with an appropriate process v.
e.) Calculate directly the integral $V:=\int_{0}^{1} \mathbf{E}\left(v(t)^{2}\right) \mathrm{d} t$, and check that the Itô isometry holds.
3.17 Let $B(t)$ be a standard Brownian motion and let \mathcal{F}_{t} be its natural filtration. Let T be the time spent by $B(t)$ on the positive half-line up to $t=1$:

$$
T:=\operatorname{Leb}(\{s \in[0,1] \mid B(s) \geq 0\})
$$

We will find the Itô representation of T - that is, the process $u(t)$ for which

$$
T=\mathbf{E}(T)+\int_{0}^{1} u(t) \mathrm{d} B(t) .
$$

a.) For every $0 \leq s \leq 1$ let $X_{s}=\mathbb{1}_{\{B(s) \geq 0\}}$. Then $T=\int_{0}^{1} X_{s} \mathrm{~d} s$. As in the previous exercise, find the martingale $t \mapsto M_{s}(t):=\mathbf{E}\left(X_{s} \mid \mathcal{F}_{t}\right), 0 \leq t \leq 1$. (Warning: the formula will be different for $t<s$ and $t \geq s$.)
b.) As in the previous exercise, find the Itô representation

$$
X_{s}=\mathbf{E}\left(X_{s}\right)+\int_{0}^{1} v_{s}(t) \mathrm{d} B(t)
$$

(Warning: you will encounter the integral $\int_{s}^{1} \frac{1}{\sqrt{t-s}} \varphi\left(\frac{x}{\sqrt{t-s}}\right)$ where φ is the standard normal density function. If you want to use substitution, be careful: the sign of x matters.)
c.) Use that $T=\int_{0}^{1} X_{s} \mathrm{~d} s$ to find the Itô representation of T.
d.) ${ }^{* *}$ An alternative way is to use the martingale

$$
N(t):=\mathbf{E}\left(T \mid \mathcal{F}_{t}\right)=\int_{0}^{1} \mathbf{E}\left(X_{s} \mid \mathcal{F}_{t}\right)
$$

Calculate $N(t)$, use Itô's formula to check that it is really a martingale and find its Itô representation, which is also the Itô representation of T. Check that you got the same as with the previous method.

