Stochastic Differential Equations Problem Set 2

Filtrations, Stopping Times, Markov Property, Martingales, ...

2.1 Let $t \mapsto X(t)$ be a stochastic process in a complete separable metric space S. Prove that the following two formulations of the Markov property are actually equivalent. (Note that formulation (b) is a priori stronger than (a).)
a.) For any $0 \leq t, 0 \leq u$ and $F: S \rightarrow \mathbb{R}$ bounded and measurable

$$
\mathbf{E}\left(F(X(t+u)) \mid \mathcal{F}_{t}^{X}\right)=\mathbf{E}\left(F(X(t+u)) \mid \sigma\left(X_{t}\right)\right)
$$

b.) For any $0 \leq t, n \in \mathbb{N}, 0 \leq u_{1} \leq u_{2} \leq \cdots \leq u_{n}$ and $F: S^{n} \rightarrow \mathbb{R}$ bounded and measurable

$$
\begin{aligned}
\mathbf{E}\left(F \left(X\left(t+u_{1}\right), X\left(t+u_{2}\right)\right.\right. & \left.\left.\ldots, X\left(t+u_{n}\right)\right) \mid \mathcal{F}_{t}^{X}\right)= \\
& \mathbf{E}\left(F\left(X\left(t+u_{1}\right), X\left(t+u_{2}\right), \ldots, X\left(t+u_{n}\right)\right) \mid \sigma\left(X_{t}\right)\right)
\end{aligned}
$$

Hint: Apply the "tower rule" of conditional probabilities.
2.2 a.) Prove that $t \mapsto B(t)$ is a martingale and $t \mapsto B(t)^{2}$ is a submartingale (with respect to the filtration $\left.\left(\mathcal{F}_{t}^{B}\right)_{t \geq 0}\right)$.
b.) Let $t \mapsto M(t)$ be a martingale (w.r.t. a filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$) and $\psi: \mathbb{R} \rightarrow \mathbb{R}$ a convex function. Let

$$
Y(t):=\psi(M(t))
$$

Assuming that $\mathbf{E}(|\psi(M(t))|)<\infty$ for all $t \geq 0$, prove that $t \mapsto Y(t)$ is a submartingale. Hint: Use Jensen's inequality.
2.3 Show that the processes $t \mapsto B(t), t \mapsto B(t)^{2}-t$ and $t \mapsto B(t)^{3}-3 t B(t)$ are martingales adapted to the filtration $\left\{\mathcal{F}_{t}^{B}\right\}_{t \geq 0}$.
2.4 Check whether the following processes are martingales with respect to the filtration $\left(\mathcal{F}_{t}^{B}\right)_{t \geq 0}:$
(a) $\quad X(t)=B(t)+4 t$,
(b) $\quad X(t)=B(t)^{2}$,
(c) $\quad X(t)=t^{2} B(t)-2 \int_{0}^{t} s B(s) d s$,
(d) $\quad X(t)=B_{1}(t) B_{2}(t)$,
where B_{1} and B_{2} are two independent Brownian motions.
2.5 Let $-a<0<b$ and denote
$\tau_{\text {left }}:=\inf \{s>0: B(s)=-a\}, \quad \tau_{\text {right }}:=\inf \{s>0: B(s)=b\}, \quad \tau:=\min \left\{\tau_{\text {left }}, \tau_{\text {right }}\right\}$.
a.) By applying the Optional Stopping Theorem compute $\mathbf{P}\left(\tau_{\text {left }}<\tau_{\text {right }}\right)$ and $\mathbf{E}(\tau)$.
b.) By "applying" the Optional Stopping Theorem it would "follow" that $\mathbf{E}\left(B\left(\tau_{a}\right)\right)=$ 0 . However, clearly $B\left(\tau_{a}\right)=a$ by definition (and continuity of the Brownian motion). What is wrong with the argument?
2.6 a.) Let $\theta \in \mathbb{R}$ be a fixed parameter. Show that the processes $t \mapsto \exp \left\{\theta B(t)-\theta^{2} t / 2\right\}$ is a martingale with respect to the filtration $\left\{\mathcal{F}_{t}^{B}\right\}_{t \geq 0}$.
b.) By differentiating with respect to θ and letting then $\theta=0$ derive a martingale which is a fourth order polynomial expression of $B(t)$
c.) For any $n \in \mathbb{N}$ let

$$
H_{n}(x):=e^{x^{2} / 2} \frac{d^{n}}{d x^{n}} e^{-x^{2} / 2}
$$

Show that $H_{n}(x)$ is a polynomial of order n in the variable x. (It is called the Hermite polynomial of order n.). Compute $H_{n}(x)$ for $n=1,2,3,4$.
d.) Show that for any $n \in \mathbb{N}$ the process $t \mapsto t^{n / 2} H_{n}(B(t) / \sqrt{t})$ is a martingale.
2.7 Let $t \mapsto B(t)$ be standard $1 d$ Brownian motion and $\tau:=\inf \{t>0:|B(t)|=1\}$. Prove that

$$
\mathbf{E}\left(e^{-\lambda \tau}\right)=\cosh (\sqrt{2 \lambda})^{-1}, \quad \lambda \geq 0
$$

Hint: Apply the Optional Stopping Theorem to the exponential martingale defined in problem 2.6.
2.8 Denote

$$
J: \mathbb{R} \rightarrow \mathbb{R}, \quad J(\lambda):=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} e^{\lambda \cos \theta} d \theta
$$

Let $B(t)=\left(B_{1}(t), B_{2}(t)\right)$ be a two-dimensional Brownian motion and

$$
\tau:=\inf \{t:|B(t)|=1\} .
$$

That is: τ is the first hitting time of the circle centred at the origin, with radius 1. Prove that

$$
\mathbf{E}\left(e^{-\lambda \tau}\right)=J(\sqrt{2 \lambda})^{-1}, \quad \lambda \geq 0
$$

Hint: Apply the Optional Stopping Theorem to the martingale $t \mapsto \exp \{\theta \cdot B(t)-$ $\left.|\theta|^{2} t / 2\right\}$, where $\theta \in \mathbb{R}^{2}$, with the stopping time τ.
2.9 Let $B(t)$ be a standard Brownian motion and let ξ be a random variable with Bernoulli $\left(\frac{1}{2}\right)$ distribution, independent of $B(t)$. Let $X(t)=\xi(1+B(t))$. Show that $X(t)$ is Markov but not strongly Markov (w.r.t. the natural filtration).
2.10 a.) Show that if $X(t)$ is a submartingale, $\psi: \mathbb{R} \rightarrow \mathbb{R}$ is convex and increasing such that $\mathbf{E}(\mid \psi(X(t) \mid)<\infty$ for every t, then $Y(t):=\psi(X(t)$ is also a submartingale.
b.) Give an example of a submartingale $X(t)$ such that $Y(t):=(X(t))^{2}$ is not a submartingale.
2.11 Let $B(t)$ be a standard Brownian motion and let $X(t)=B(t)-\frac{t}{2}$: a kind of "Brownian motion with drift to the left". Let $-a<0<b$, let $\tau_{\text {left }}=\inf \left\{t \in \mathbb{R}^{+} \mid X(t)=-a\right\}$ and $\tau_{\text {right }}=\inf \left\{t \in \mathbb{R}^{+} \mid X(t)=b\right\}$ be the first hitting times for $-a$ and b, and let $\tau=\inf \left\{\tau_{\text {left }}, \tau_{\text {right }}\right\}$. Let $p_{\text {left }}=p_{\text {left }}(a, b)=\mathbf{P}\left(\tau_{\text {left }}<\tau_{\text {right }}\right)$ be the probability that $-a$ is reached sooner than b, and $p_{\text {right }}=p_{\text {right }}(a, b)=\mathbf{P}\left(\tau_{\text {right }}<\tau_{\text {left }}\right)$ be the probability that b is reached sooner than $-a$.
a.) Show that $p_{\text {left }}+p_{\text {right }}=1$, which means exactly that either $-a$ or b is almost surely reached. (This is the same as saying that $\tau<\infty$ almost surely.)
b.) Find a number $q>0$ such that $M(t):=q^{X(t)}$ is a martingale.
c.) Apply the optional stopping theorem to $M(t)$ and τ to find $p_{\text {left }}$ and $p_{\text {right }}$.
d.) Find the probability that $X(t)$ ever reaches +1 . (Hint: set $b=1$, and look at $\lim p_{\text {right }}(a, b)$ as $a \rightarrow \infty$.)

