Stochastic Differential Equations Problem Set 1

Brownian Motion: Construction and Basic Properties

1.1 Let

 $\varphi: \mathbb{R} \to \mathbb{R}_+, \quad \varphi(x) := \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, \quad \text{be the standard normal density function,}$

 $\Phi: \mathbb{R} \to [0,1], \quad \Phi(x) := \int_{-\infty}^{x} \varphi(y) dy, \quad \text{be the standard normal distribution function.}$

Prove that for any x > 0

$$\left(\frac{1}{x} - \frac{1}{x^3}\right)\varphi(x) < 1 - \Phi(x) < \frac{1}{x}\varphi(x).$$

Hint: Compare the derivatives.

1.2 For every $n \in \mathbb{N}$ let $X_1^{(n)}, X_2^{(n)}, \dots, X_n^{(n)}$ be i.i.d. normal random variables with

$$\mathbf{E}\left(X_j^{(n)}\right) = 0, \quad \mathbf{Var}\left(X_j^{(n)}\right) = \frac{1}{n}, \quad j = 1, \dots, n.$$

Define the stochastic process $t \mapsto B^{(n)}(t), t \in [0, 1]$ as follows:

$$B^{(n)}(t) := \sum_{j=1}^{\lfloor nt \rfloor} X_j^{(n)}.$$

(a) Compute the expectations and covariances

$$\mathbf{E}(B^{(n)}(t)) =?, \quad \mathbf{Cov}(B^{(n)}(t), B^{(n)}(s)) =?, \quad s, t \in [0, 1],$$

and their limits as $n \to \infty$.

(b) What is the joint distribution of the random variables $\{B^{(n)}(t): t \in [0,1]\}$?

(c) Let

$$\delta_n := \max \{ |B^{(n)}(t+) - B^{(n)}(t-)| : t \in [0,1] \}.$$

(In plain words: δ_n is the largest jump discontinuity of the process $\{B^{(n)}(t): t \in [0,1]\}$.)

Prove that for any fixed $\varepsilon > 0$,

$$\lim_{n\to\infty} \mathbf{P}\left(\delta_n \ge \varepsilon\right) = 0.$$

Hint: Note that $\delta_n = \max_{1 \leq j \leq n} |X_j^{(n)}|$ and use the upper bound from problem 1.1.

1.3 For every $n \in \mathbb{N}$ let $Y_1^{(n)}, Y_2^{(n)}, \dots, Y_n^{(n)}$ be i.i.d. Poisson random variables with parameter 1/n. So,

$$\mathbf{E}\left(Y_j^{(n)}\right) = \frac{1}{n}, \quad \mathbf{Var}\left(Y_j^{(n)}\right) = \frac{1}{n}, \quad j = 1, \dots, n.$$

Define the stochastic process $t \mapsto B^{(n)}(t)$, $t \in [0, 1]$ as follows:

$$Z^{(n)}(t) := \sum_{j=1}^{\lfloor nt \rfloor} \left(Y_j^{(n)} - \frac{1}{n} \right).$$

(a) Compute the expectations and covariances

$$\mathbf{E}(Z^{(n)}(t)) =?, \quad \mathbf{Cov}(Z^{(n)}(t), Z^{(n)}(s)) =?, \quad s, t \in [0, 1],$$

and their limits as $n \to \infty$.

- (b) What is the joint distribution of the random variables $\{Z^{(n)}(t): t \in [0,1]\}$? Explain in plain words.
- (c) Let

$$\delta_n := \max \{ |Z^{(n)}(t+) - Z^{(n)}(t-)| : t \in [0,1] \}.$$

(In plain words: δ_n is the largest jump discontinuity of the process $\{Z^{(n)}(t): t \in [0,1]\}$.)

Compute, for $\varepsilon > 0$ fixed,

$$\lim_{n\to\infty} \mathbf{P}\left(\delta_n \ge \varepsilon\right).$$

Hint: Note that $\delta_n = \max_{1 \le j \le n} \left| Y_j^{(n)} \right|$ and use all you know about Poisson random variables.

- 1.4 Interpret the results of problems 1.2, respectively, 1.3.
- **1.5** (a) Let Y_1, Y_2, \ldots, Y_n be random variables with $\mathbf{E}(Y_j) = 0$ and $\mathbf{Cov}(Y_i, Y_j) =: c_{i,j}$. Assume that the covariance matrix $C := (c_{i,j})_{i,j=1}^n$ is non-degenerate, $\det(C) \neq 0$. Prove that the random variables Y_1, Y_2, \ldots, Y_n are jointly Gaussian if and only if there exist i.i.d. $\mathcal{N}(0,1)$ -distributed random variables X_1, X_2, \ldots, X_n and real coefficients $(a_{i,j})_{i,j=1}^n$ such that

$$Y_i = \sum_{j=1}^n a_{ij} X_j.$$

Hint: Express the matrix $A = (a_{i,j})_{i,j=1}^n$ from the covariance matrix $C = (c_{i,j})_{i,j=1}^n$.

- (b) Let $t \mapsto B(t)$ be standard 1d Brownian motion and $0 \le t_1 \le t_2 \le \cdots \le t_n$. Explain why it follows from the definition of Brownian motion (i.e. independent and Gaussian increments) that the random variables $B(t_1), B(t_2), \ldots, B(t_n)$ have jointly Gaussian distribution.
- (c) Determine the covariance matrix of the random variables $B(t_1), B(t_2), \ldots, B(t_n)$.
- **1.6** Let $t \mapsto B(t)$ be standard 1d Brownian motion. Prove that the following processes are also standard 1d Brownian motions:
 - (a) The rescaled process: $X(t) := a^{-1/2}B(at)$, where a > 0 is fixed parameter.
 - (b) The time reversed process: Y(t) := tB(1/t).
 - (c) The backwards process: Z(t) := B(T) B(T t), where T > 0 is fixed and $t \in [0, T]$.

Hint: Prove that the processes X(t), Y(t), Z(t) are Gaussian and compute their covariances.

- **1.7** For j = 1, ..., n, let $t \mapsto B_j(t)$, be independent 1d Brownian motions with variance σ_j^2 , and a_j fixed real numbers. Prove that the process $t \mapsto Z(t) := \sum_{j=1}^n a_j B_j(t)$ is also a 1d Brownian motion. Determine the variance of the process Z(t).
- **1.8** Let $t \mapsto B(t)$ be standard 1d Brownian motion. Determine (without painful computations) the conditional probability

$$P(B(2) > 0 \mid B(1) > 0).$$

- **1.9** Show that 1d Brownian motion changes sign infinitely many times in any time interval $[0, \delta]$ of positive length δ .
- 1.10 Let $t_* \in [0,1]$ be arbitrary but fixed. Let $\frac{1}{2} < \alpha \le 1$. Show that B(t) is almost surely not α -Hölder continuous at t_* , meaning that there are no $\delta > 0$ and $C < \infty$ such that $|B(t_* + h) B(t_*)| \le C|h|^{\alpha}$ whenever $|h| \le \delta$. (Hint: look at the proof of non-differentiability at deterministic t or just calculate the probability of $|B(t_* + h) B(t_*)| \le C|h|^{\alpha}$ for a given h.)
- **1.11** Show that almost surely there is no point $t \in [0, 1]$ where B is $\frac{2}{3}$ -Hölder continuous. (Hint: mimic the proof of nowhere-differentiability.)
- **1.12** (Based on Exercise 8.1.3. from [1].) Let B(t) be a standard Brownian motion (Wiener process). Fix t > 0 and for n = 0, 1, 2, ... let

$$V_n = \sum_{m=0}^{2^n - 1} \left(B\left(\frac{m+1}{2^n}t\right) - B\left(\frac{m}{2^n}t\right) \right)^2.$$

Calculate the expectation and the variance of V_n . Use the Borel-Cantelli lemma to show that $V_n \to t$ almost surely as $n \to \infty$.

- **1.13** For $\alpha \geq 0$ Let $m_{\alpha} = \mathbf{E}(|\xi|^{\alpha})$ and $c_{\alpha} = \mathbf{Var}(|\xi|^{\alpha})$, where ξ is standard Gaussian. Express c_{α} using m_{α} and $m_{2\alpha}$.
- **1.14** Let $X_1, X_2, ...$ be random variables such that $\mathbf{E}(X_n) \to \infty$ and $\frac{\mathbf{Var}(X_n)}{(\mathbf{E}(X_n))^2} \to 0$ as $n \to \infty$. Show that $X_n \to \infty$ in probability that is: $\mathbf{P}(X_n \le M) \to 0$ for any $M < \infty$.
- **1.15** Find eigenvalues and eigenvectors of $K: L^2([0,1]) \to L^2([0,1])$ where $(Kf)(t) = \int_0^1 \mathcal{K}(t,s) f(s) ds$ and $\mathcal{K}(t,s) = \min\{t,s\}$. (Hint 1: the solution is given in the next exercise. If you are tough, don't look at it. Checking the solution is much easier than finding it. Hint 2: try $f(s) = e^{\lambda s}$ first. It will not work, but you will see how to fix it.)
- **1.16** On the Hilbert space $\mathcal{L}^2([0,1], dx)$ define the self-adjoint compact (actually: Hilbert-Schmidt) operator

$$Kf(t) := \int_0^1 \min\{t, s\} f(s) ds.$$

Prove that

$$\lambda_n = \frac{4}{\pi^2 (2n-1)^2}, \quad \psi_n(t) = \sqrt{2} \sin\left(\frac{\pi (2n-1)}{2}t\right), \quad n = 1, 2, \dots$$

are eigenvalues and eigenvectors of the operator K.

1.17 Check that for $t, s \in [0, 1]$

$$\min\{t, s\} = \sum_{n=1}^{\infty} \lambda_n \psi_n(t) \psi_n(s)$$

where

$$\lambda_n = \frac{4}{\pi^2 (2n-1)^2}, \quad \psi_n(t) = \sqrt{2} \sin\left(\frac{\pi (2n-1)}{2}t\right), \quad n = 1, 2, \dots$$

(Hint: fix $t \in [0,1]$, and look at both sides of the equation as a function of s. Then the RHS is the Fourier series of a function on \mathbb{R} which is periodic with some period l (and it happens that $l \neq 1$). This function is odd. So extend the LHS from [0,1] to \mathbb{R} to get an odd, l-periodic and continuous function to make sure that its equal to its Fourier series poitwise. Now just calculate the Fourier expansion.)

- **1.18** For n = 1, 2, ... let $c_n = \frac{2}{\pi(2n-1)}$ and $\psi_n(t) = \sqrt{2} \sin\left(\frac{\pi(2n-1)}{2}t\right)$. Let $\xi_1, \xi_2, ...$ be independent standard Gaussian random variables.
 - a.) Prove that the series

$$B(t) = \sum_{n=1}^{\infty} c_n \xi_n \psi_n(t)$$

is almost surely convergent for every fixed $t \in [0, 1]$. (Hint 1 (overshooting): the Kolmogorov three series theorem can be applied. Hint 2: The partial sum is a martingale. Apply a martingale convergence theorem.)

b.) Prove that the series

$$B = \sum_{n=1}^{\infty} c_n \xi_n \psi_n$$

is convergent in $L^2([0,1])$.

1.19 Show that the function

$$\phi: \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}, \qquad \phi(t, x) := \frac{1}{\sqrt{t}} \varphi\left(\frac{x}{\sqrt{t}}\right)$$

solves the heat equation

$$\partial_t \phi(t, x) = \frac{1}{2} \partial_x^2 \phi(t, x).$$

1.20 Exercise 1 implies that if ξ is a standard Gaussian random variable and $x \geq 1$, then

$$\mathbf{P}(|X| \ge x) \le \sqrt{\frac{2}{\pi}} e^{-\frac{x^2}{2}}.$$

Use this to show that if ξ_1, ξ_2, \ldots are i.i.d. standard Gaussian, then, with probability 1, the event $\{|\xi_n| > 2 \ln n\}$ occurs for at most finitely many n-s.

- **1.21** Fix t > 0 and let $Y \sim \mathcal{N}(0, t)$. Let $\xi \sim \mathcal{N}(0, \sigma^2)$ with some $\sigma > 0$ be independent of Y and let $X = \frac{Y}{2} + \xi$.
 - a.) How should σ be chosen for X and Y X to be independent?
 - b.) In this case, what is the variance of X?
- 1.22 Paul Lévy's construction of the Wiener process. In a possible construction of the Wiener process (or Brownian motion) on [0,1] we define a sequence of piecewise linear continuous random functions so that we first define f_n at dyadic rationals that are multiples of $\frac{1}{2^n}$, inheriting every second value (at multiples of $\frac{1}{2^{n-1}}$) form f_{n-1} , and setting the values at the remaining points (of the form $\frac{2k-1}{2^n}$) to be the average of the two neighbouring values, plus an independent Gaussian random value with mean 0 and variance $\frac{1}{2^{n+1}}$. Then we extend f_n to [0,1] piecewise linearly.

Formally: we take independent standard Gaussian random variables ξ_0 and $\xi_{n,k}$ where $n = 1, 2, \ldots$ and $k = 1, 2, \ldots, 2^{n-1}$. Then

- In the 0th step we fix $f_0(0) = 0$ and $f_0(1) = \xi_0$. We connect these two values linearly.
- In the 1st step we leave $f_1(0) = f_0(0)$ and $f_1(1) = f_0(1)$, but also set $f_1(\frac{1}{2}) = f_0(\frac{1}{2}) + \frac{1}{2}\xi_{1,1}$. We connect these three values linearly.
- ... in the *n*th step we leave $f_n\left(\frac{k}{2^{n-1}}\right) = f_{n-1}\left(\left(\frac{k}{2^{n-1}}\right)\right)$ for $k = 0, 1, \ldots, 2^{n-1}$, but also set $f_n\left(\frac{k-\frac{1}{2}}{2^{n-1}}\right) = f_{n-1}\left(\frac{k-\frac{1}{2}}{2^{n-1}}\right) + \frac{1}{\sqrt{2^{n+1}}}\xi_{n,k}$ for $k = 1, \ldots, 2^{n-1}$. We connect these $2^n + 1$ values linearly.

Notice that, in this construction, the difference $g_n := f_{n+1} - f_n$ is the sum of 2^n "tent" maps with disjoint supports and i.i.d. Gaussian "heights".

(a) Use the statement of Exercise 20 to show that, with probability 1, the series

$$\lim_{n \to \infty} f_n = f_0 + \sum_{n=0}^{\infty} g_n$$

is uniformly absolutely convergent.

(b) Check that the limit is a Wiener process.

References

[1] Durrett, R. Probability: Theory and Examples. 4th edition, Cambridge University Press (2010)