Stochastic Differential Equations Problem Set 1
 Brownian Motion: Construction and Basic Properties

1.1 Let

$\varphi: \mathbb{R} \rightarrow \mathbb{R}_{+}, \quad \varphi(x):=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad$ be the standard normal density function,
$\Phi: \mathbb{R} \rightarrow[0,1], \quad \Phi(x):=\int_{-\infty}^{x} \varphi(y) d y$, be the standard normal distribution function.
Prove that for any $x>0$

$$
\left(\frac{1}{x}-\frac{1}{x^{3}}\right) \varphi(x)<1-\Phi(x)<\frac{1}{x} \varphi(x) .
$$

Hint: Compare the derivatives.
1.2 For every $n \in \mathbb{N}$ let $X_{1}^{(n)}, X_{2}^{(n)}, \ldots, X_{n}^{(n)}$ be i.i.d. normal random variables with

$$
\mathbf{E}\left(X_{j}^{(n)}\right)=0, \quad \operatorname{Var}\left(X_{j}^{(n)}\right)=\frac{1}{n}, \quad j=1, \ldots, n
$$

Define the stochastic process $t \mapsto B^{(n)}(t), t \in[0,1]$ as follows:

$$
B^{(n)}(t):=\sum_{j=1}^{\lfloor n t\rfloor} X_{j}^{(n)}
$$

(a) Compute the expectations and covariances

$$
\mathbf{E}\left(B^{(n)}(t)\right)=?, \quad \operatorname{Cov}\left(B^{(n)}(t), B^{(n)}(s)\right)=?, \quad s, t \in[0,1],
$$

and their limits as $n \rightarrow \infty$.
(b) What is the joint distribution of the random variables $\left\{B^{(n)}(t): t \in[0,1]\right\}$?
(c) Let

$$
\delta_{n}:=\max \left\{\left|B^{(n)}(t+)-B^{(n)}(t-)\right|: t \in[0,1]\right\} .
$$

(In plain words: δ_{n} is the largest jump discontinuity of the process $\left\{B^{(n)}(t): t \in\right.$ [0, 1]\}.)
Prove that for any fixed $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(\delta_{n} \geq \varepsilon\right)=0
$$

Hint: Note that $\delta_{n}=\max _{1 \leq j \leq n}\left|X_{j}^{(n)}\right|$ and use the upper bound from problem 1.1.
1.3 For every $n \in \mathbb{N}$ let $Y_{1}^{(n)}, Y_{2}^{(n)}, \ldots, Y_{n}^{(n)}$ be i.i.d. Poisson random variables with parameter $1 / n$. So,

$$
\mathbf{E}\left(Y_{j}^{(n)}\right)=\frac{1}{n}, \quad \operatorname{Var}\left(Y_{j}^{(n)}\right)=\frac{1}{n}, \quad j=1, \ldots, n .
$$

Define the stochastic process $t \mapsto B^{(n)}(t), t \in[0,1]$ as follows:

$$
Z^{(n)}(t):=\sum_{j=1}^{\lfloor n t\rfloor}\left(Y_{j}^{(n)}-\frac{1}{n}\right)
$$

(a) Compute the expectations and covariances

$$
\mathbf{E}\left(Z^{(n)}(t)\right)=?, \quad \operatorname{Cov}\left(Z^{(n)}(t), Z^{(n)}(s)\right)=?, \quad s, t \in[0,1]
$$

and their limits as $n \rightarrow \infty$.
(b) What is the joint distribution of the random variables $\left\{Z^{(n)}(t): t \in[0,1]\right\}$? Explain in plain words.
(c) Let

$$
\delta_{n}:=\max \left\{\left|Z^{(n)}(t+)-Z^{(n)}(t-)\right|: t \in[0,1]\right\} .
$$

(In plain words: δ_{n} is the largest jump discontinuity of the process $\left\{Z^{(n)}(t): t \in\right.$ $[0,1]\}$.)
Compute, for $\varepsilon>0$ fixed,

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(\delta_{n} \geq \varepsilon\right)
$$

Hint: Note that $\delta_{n}=\max _{1 \leq j \leq n}\left|Y_{j}^{(n)}\right|$ and use all you know about Poisson random variables.
1.4 Interpret the results of problems 1.2, respectively, 1.3.
1.5 (a) Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be random variables with $\mathbf{E}\left(Y_{j}\right)=0$ and $\operatorname{Cov}\left(Y_{i}, Y_{j}\right)=: c_{i, j}$. Assume that the covariance matrix $C:=\left(c_{i, j}\right)_{i, j=1}^{n}$ is non-degenerate, $\operatorname{det}(C) \neq$ 0. Prove that the random variables $Y_{1}, Y_{2}, \ldots, Y_{n}$ are jointly Gaussian if and only if there exist i.i.d. $\mathcal{N}(0,1)$-distributed random variables $X_{1}, X_{2}, \ldots, X_{n}$ and real coefficients $\left(a_{i, j}\right)_{i, j=1}^{n}$ such that

$$
Y_{i}=\sum_{j=1}^{n} a_{i j} X_{j}
$$

Hint: Express the matrix $A=\left(a_{i, j}\right)_{i, j=1}^{n}$ from the covariance matrix $C=\left(c_{i, j}\right)_{i, j=1}^{n}$.
(b) Let $t \mapsto B(t)$ be standard $1 d$ Brownian motion and $0 \leq t_{1} \leq t_{2} \leq \cdots \leq t_{n}$. Explain why it follows from the definition of Brownian motion (i.e. independent and Gaussian increments) that the random variables $B\left(t_{1}\right), B\left(t_{2}\right), \ldots, B\left(t_{n}\right)$ have jointly Gaussian distribution.
(c) Determine the covariance matrix of the random variables $B\left(t_{1}\right), B\left(t_{2}\right), \ldots, B\left(t_{n}\right)$.
1.6 Let $t \mapsto B(t)$ be standard $1 d$ Brownian motion. Prove that the following processes are also standard $1 d$ Brownian motions:
(a) The rescaled process: $X(t):=a^{-1 / 2} B(a t)$, where $a>0$ is fixed parameter.
(b) The time reversed process: $Y(t):=t B(1 / t)$.
(c) The backwards process: $Z(t):=B(T)-B(T-t)$, where $T>0$ is fixed and $t \in[0, T]$.

Hint: Prove that the processes $X(t), Y(t), Z(t)$ are Gaussian and compute their covariances.
1.7 For $j=1, \ldots, n$, let $t \mapsto B_{j}(t)$, be independent $1 d$ Brownian motions with variance σ_{j}^{2}, and a_{j} fixed real numbers. Prove that the process $t \mapsto Z(t):=\sum_{j=1}^{n} a_{j} B_{j}(t)$ is also a $1 d$ Brownian motion. Determine the variance of the process $Z(t)$.
1.8 Let $t \mapsto B(t)$ be standard $1 d$ Brownian motion. Determine (without painful computations) the conditional probability

$$
\mathbf{P}(B(2)>0 \mid B(1)>0)
$$

1.9 Show that $1 d$ Brownian motion changes sign infinitely many times in any time interval $[0, \delta]$ of positive length δ.
1.10 Let $t_{*} \in[0,1]$ be arbitrary but fixed. Let $\frac{1}{2}<\alpha \leq 1$. Show that $B(t)$ is almost surely not α-Hölder continuous at t_{*}, meaning that there are no $\delta>0$ and $C<$ ∞ such that $\left|B\left(t_{*}+h\right)-B\left(t_{*}\right)\right| \leq C|h|^{\alpha}$ whenever $|h| \leq \delta$. (Hint: look at the proof of non-differentiability at deterministic t - or just calculate the probablity of $\left|B\left(t_{*}+h\right)-B\left(t_{*}\right)\right| \leq C|h|^{\alpha}$ for a given h.)
1.11 Show that almost surely there is no point $t \in[0,1]$ where B is $\frac{2}{3}$-Hölder continuous. (Hint: mimic the proof of nowhere-differentiability.)
1.12 (Based on Exercise 8.1.3. from [1].) Let $B(t)$ be a standard Brownian motion (Wiener process). Fix $t>0$ and for $n=0,1,2, \ldots$ let

$$
V_{n}=\sum_{m=0}^{2^{n}-1}\left(B\left(\frac{m+1}{2^{n}} t\right)-B\left(\frac{m}{2^{n}} t\right)\right)^{2} .
$$

Calculate the expectation and the variance of V_{n}. Use the Borel-Cantelli lemma to show that $V_{n} \rightarrow t$ almost surely as $n \rightarrow \infty$.
1.13 For $\alpha \geq 0$ Let $m_{\alpha}=\mathbf{E}\left(|\xi|^{\alpha}\right)$ and $c_{\alpha}=\operatorname{Var}\left(|\xi|^{\alpha}\right)$, where ξ is standard Gaussian. Express c_{α} using m_{α} and $m_{2 \alpha}$.
1.14 Let X_{1}, X_{2}, \ldots be random variables such that $\mathbf{E}\left(X_{n}\right) \rightarrow \infty$ and $\frac{\operatorname{Var}\left(X_{n}\right)}{\left(\mathbf{E}\left(X_{n}\right)\right)^{2}} \rightarrow 0$ as $n \rightarrow \infty$. Show that $X_{n} \rightarrow \infty$ in probability - that is: $\mathbf{P}\left(X_{n} \leq M\right) \rightarrow 0$ for any $M<\infty$.
1.15 Find eigenvalues and eigenvectors of $K: L^{2}([0,1]) \rightarrow L^{2}([0,1])$ where $(K f)(t)=$ $\int_{0}^{1} \mathcal{K}(t, s) f(s) \mathrm{d} s$ and $\mathcal{K}(t, s)=\min \{t, s\}$. (Hint 1: the solution is given in the next exercise. If you are tough, don't look at it. Checking the solution is much easier than finding it. Hint 2: try $f(s)=e^{\lambda s}$ first. It will not work, but you will see how to fix it.)
1.16 On the Hilbert space $\mathcal{L}^{2}([0,1], d x)$ define the self-adjoint compact (actually: HilbertSchmidt) operator

$$
K f(t):=\int_{0}^{1} \min \{t, s\} f(s) d s
$$

Prove that

$$
\lambda_{n}=\frac{4}{\pi^{2}(2 n-1)^{2}}, \quad \psi_{n}(t)=\sqrt{2} \sin \left(\frac{\pi(2 n-1)}{2} t\right), \quad n=1,2, \ldots
$$

are eigenvalues and eigenvectors of the operator K.
1.17 Check that for $t, s \in[0,1]$

$$
\min \{t, s\}=\sum_{n=1}^{\infty} \lambda_{n} \psi_{n}(t) \psi_{n}(s)
$$

where

$$
\lambda_{n}=\frac{4}{\pi^{2}(2 n-1)^{2}}, \quad \psi_{n}(t)=\sqrt{2} \sin \left(\frac{\pi(2 n-1)}{2} t\right), \quad n=1,2, \ldots
$$

(Hint: fix $t \in[0,1]$, and look at both sides of the equation as a function of s. Then the RHS is the Fourier series of a function on \mathbb{R} which is periodic with some period l (and it happens that $l \neq 1$). This function is odd. So extend the LHS from $[0,1]$ to \mathbb{R} to get an odd, l-periodic and continuous function to make sure that its equal to its Fourier series poitwise. Now just calculate the Fourier expansion.)
1.18 For $n=1,2, \ldots$ let $c_{n}=\frac{2}{\pi(2 n-1)}$ and $\psi_{n}(t)=\sqrt{2} \sin \left(\frac{\pi(2 n-1)}{2} t\right)$. Let ξ_{1}, ξ_{2}, \ldots be independent standard Gaussian random variables.
a.) Prove that the series

$$
B(t)=\sum_{n=1}^{\infty} c_{n} \xi_{n} \psi_{n}(t)
$$

is almost surely convergent for every fixed $t \in[0,1]$. (Hint 1 (overshooting): the Kolmogorov three series theorem can be applied. Hint 2: The partial sum is a martingale. Apply a martingale convergence theorem.)
b.) Prove that the series

$$
B=\sum_{n=1}^{\infty} c_{n} \xi_{n} \psi_{n}
$$

is convergent in $L^{2}([0,1])$.
1.19 Show that the function

$$
\phi: \mathbb{R}_{+} \times \mathbb{R} \rightarrow \mathbb{R}, \quad \phi(t, x):=\frac{1}{\sqrt{t}} \varphi\left(\frac{x}{\sqrt{t}}\right)
$$

solves the heat equation

$$
\partial_{t} \phi(t, x)=\frac{1}{2} \partial_{x}^{2} \phi(t, x) .
$$

1.20 Exercise 1 implies that if ξ is a standard Gaussian random variable and $x \geq 1$, then

$$
\mathbf{P}(|X| \geq x) \leq \sqrt{\frac{2}{\pi}} e^{-\frac{x^{2}}{2}}
$$

Use this to show that if ξ_{1}, ξ_{2}, \ldots are i.i.d. standard Gaussian, then, with probability 1 , the event $\left\{\left|\xi_{n}\right|>2 \ln n\right\}$ occurs for at most finitely many n-s.
1.21 Fix $t>0$ and let $Y \sim \mathcal{N}(0, t)$. Let $\xi \sim \mathcal{N}\left(0, \sigma^{2}\right)$ with some $\sigma>0$ be independent of Y and let $X=\frac{Y}{2}+\xi$.
a.) How should σ be chosen for X and $Y-X$ to be independent?
b.) In this case, what is the variance of X ?
1.22 Paul Lévy's construction of the Wiener process. In a possible construction of the Wiener process (or Brownian motion) on $[0,1]$ we define a sequence of piecewise linear continuous random functions so that we first define f_{n} at dyadic rationals that are multiples of $\frac{1}{2^{n}}$, inheriting every second value (at multiples of $\frac{1}{2^{n-1}}$) form f_{n-1}, and setting the values at the remaining points (of the form $\frac{2 k-1}{2^{n}}$) to be the average of the two neighbouring values, plus an independent Gaussian random value with mean 0 and variance $\frac{1}{2^{n+1}}$. Then we extend f_{n} to $[0,1]$ piecewise linearly.
Formally: we take independent standard Gaussian random variables ξ_{0} and $\xi_{n, k}$ where $n=1,2, \ldots$ and $k=1,2, \ldots, 2^{n-1}$. Then

- In the 0 th step we fix $f_{0}(0)=0$ and $f_{0}(1)=\xi_{0}$. We connect these two values linearly.
- In the 1 st step we leave $f_{1}(0)=f_{0}(0)$ and $f_{1}(1)=f_{0}(1)$, but also set $f_{1}\left(\frac{1}{2}\right)=$ $f_{0}\left(\frac{1}{2}\right)+\frac{1}{2} \xi_{1,1}$. We connect these three values linearly.
- in the nth step we leave $f_{n}\left(\frac{k}{2^{n-1}}\right)=f_{n-1}\left(\left(\frac{k}{2^{n-1}}\right)\right.$ for $k=0,1, \ldots, 2^{n-1}$, but also set $f_{n}\left(\frac{k-\frac{1}{2}}{2^{n-1}}\right)=f_{n-1}\left(\frac{k-\frac{1}{2}}{2^{n-1}}\right)+\frac{1}{\sqrt{2^{n+1}}} \xi_{n, k}$ for $k=1, \ldots, 2^{n-1}$. We connect these $2^{n}+1$ values linearly.

Notice that, in this construction, the difference $g_{n}:=f_{n+1}-f_{n}$ is the sum of 2^{n} "tent" maps with disjoint supports and i.i.d. Gaussian "heights".
(a) Use the statement of Exercise 20 to show that, with probability 1, the series

$$
\lim _{n \rightarrow \infty} f_{n}=f_{0}+\sum_{n=0}^{\infty} g_{n}
$$

is uniformly absolutely convergent.
(b) Check that the limit is a Wiener process.

References

[1] Durrett, R. Probability: Theory and Examples. 4th edition, Cambridge University Press (2010)

