Probability 1 CEU Budapest, fall semester 2016 Imre Péter Tóth Homework sheet 7 – solutions

- 7.1 (homework) Let \mathcal{F}_n be a filtration and X any random variable with $\mathbb{E}|X| < \infty$. Let $X_n = \mathbb{E}(X|\mathcal{F}_n)$.
 - a.) Show that X_n is a martingale w.r.t. \mathcal{F}_n .
 - b.) Show that X_n converges almost surely to some limit X_{∞} .
 - c.) Give a specific example when $X_{\infty} \neq X$.
 - d.) Give a specific example when $X_{\infty} = X$.

Solution:

a.) Since $X_n = \mathbb{E}(X|\mathcal{F}_n)$, we know that it is \mathcal{F}_n -measurable and integrable. Now since $\mathcal{F}_n \subset \mathcal{F}_{n+1}$,

$$\mathbb{E}(X_{n+1}|\mathcal{F}_n) = \mathbb{E}(\mathbb{E}(X|\mathcal{F}_{n+1})|\mathcal{F}_n) = \mathbb{E}(X|\mathcal{F}_n) = X_n.$$

- b.) Since $X_n = \mathbb{E}(X|\mathcal{F}_n)$, we know that $\mathbb{E}X_n^+ \leq \mathbb{E}|X_n| \leq \mathbb{E}|X|$, so $\mathbb{E}X_n^+$ is bounded by $\mathbb{E}|X| < \infty$. so the martingale convergence theorem ensures that X_n converges almost surely.
- d.) Let ξ_1, ξ_2, \ldots be i.i.d., $\xi_k \sim B(\frac{1}{2})$. Let $X = \sum_{k=1}^{\infty} \frac{\xi_k}{2^k}$ (so X is uniform on [0, 1]). Let $\mathcal{F}_n = \sigma(\xi_1, \ldots, \xi_n)$. Now

$$X_n := \mathbb{E}(X|\mathcal{F}_n) = \sum_{k=1}^n \frac{\xi_k}{2^k} + \sum_{k=n+1}^\infty \mathbb{E}\frac{\xi_k}{2^k} = \left(\sum_{k=1}^n \frac{\xi_k}{2^k}\right) + \frac{1}{2^{n+1}}$$

So X_n is X "rounded" to n bits (where we "round" not to an endpoint, but the middle of each interval $\left[\frac{l}{2^n}, \frac{l+1}{2^n}\right]$). Clearly $X_n \to X_{\infty} = X$ almost surely.

c.) Just like before, let ξ_1, ξ_2, \ldots be i.i.d., $\xi_k \sim B(\frac{1}{2})$. Let $X = \sum_{k=1}^{\infty} \frac{\xi_k}{2^k}$ (so X is uniform on [0, 1]). But this time let

$$\mathcal{F}_n = \sigma(\xi_2, \ldots, \xi_n),$$

so ξ_1 is left out, and the information in ξ_1 will not be represented in any \mathcal{F}_n . Accordingly,

$$X_n := \mathbb{E}(X|\mathcal{F}_n) = \mathbb{E}\frac{\xi_1}{2} + \sum_{k=2}^n \frac{\xi_k}{2^k} + \sum_{k=n+1}^\infty \mathbb{E}\frac{\xi_k}{2^k} = \left(\sum_{k=2}^n \frac{\xi_k}{2^k}\right) + \frac{1}{4} + \frac{1}{2^{n+1}}$$

Now

$$X_{\infty} = \frac{1}{4} + \sum_{k=2}^{\infty} \frac{\xi_k}{2^k} = X - \frac{\xi_1}{2} + \frac{1/2}{2}$$

Clearly $X_{\infty} \neq X$ – in particular, X_{∞} is uniform on $[\frac{1}{4}, \frac{3}{4}]$.

7.2 (homework) Let X_n be a martingale w.r.t. the filtration \mathcal{F}_n on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let the random variable $\tau : \Omega \to \mathbb{N}$ be a *stopping time*, meaning

$$\{\tau = k\} := \{\omega \in \Omega \mid \tau(\omega) = k\} \in \mathcal{F}_k \text{ for every } k.$$

Using the notation $a \wedge b := \min\{a, b\}$, we introduce the process

$$Y_n := X_{\tau \wedge n} = \begin{cases} X_n & \text{if } n < \tau, \\ X_\tau & \text{if } n \ge \tau. \end{cases}$$

Show that Y_n is also a martingale w.r.t. \mathcal{F}_n .

Solution 1: We check the definition.

- a.) For any $B \subset \mathbb{R}$ measurable, $\{Y_n \in B\} = (\{n < \tau\} \cap \{X_n \in B\}) \cup (\{\tau \le n\} \cap \{X_\tau \in B\}) \in \mathcal{F}_n$, so Y_n is adapted.
- b.) $|Y_n| = |X_{n \wedge \tau}| \le |X_1| + |X_2| + \dots + |X_n|$, so $\mathbb{E}|Y_n| \le \mathbb{E}|X_1| + \dots + \mathbb{E}|X_n| < \infty$, so Y_n is integrable.
- c.) The essence is to check that $\mathbb{E}(Y_{n+1}|\mathcal{F}_n) = Y_n$. We show this by checking the definition of the conditional expectation. We have seen that $Y_n \in \mathcal{F}_n$, so we only need that

$$\int_{B} Y_n \, \mathrm{d}\mathbb{P} = \int_{B} Y_{n+1} \, \mathrm{d}\mathbb{P} \quad \text{ for } B \in \mathcal{F}_n.$$

For this purpose, let $A = \{\tau \leq n\}$, so $A \in \mathcal{F}_n$.

- On the event A we have $\tau \leq n$, so $n \wedge \tau = \tau$, so $Y_n = X_{\tau}$. Also, we have $\tau \leq n+1$, so $Y_{n+1} = X_{\tau}$ as well. All in all, on the event A we have $Y_{n+1} = Y_n$.
- On the event A^c we have $\tau > n$, so $n \land \tau = n$, so $Y_n = X_n$. But we also have $\tau \ge n+1$, so $n+1 \land \tau = n+1$ and $Y_{n+1} = X_{n+1}$ (on A^c).

Now we take $B \in \mathcal{F}_n$ and write

$$\int_{B} Y_n \, \mathrm{d}\mathbb{P} = \int_{B \cap A} Y_n \, \mathrm{d}\mathbb{P} + \int_{B \setminus A} Y_n \, \mathrm{d}\mathbb{P}$$

In the first term $Y_n = Y_{n+1}$, since $B \cap A \subset A$. In the second term $Y_n = X_n$, since $B \setminus A \subset A^c$. Now we use that $B \setminus A \in \mathcal{F}_n$ and $\mathbb{E}(X_{n+1}|\mathcal{F}_n) = X_n$ to get

$$\int_{B\setminus A} Y_n \, \mathrm{d}\mathbb{P} = \int_{B\setminus A} X_n \, \mathrm{d}\mathbb{P} = \int_{B\setminus A} X_{n+1} \, \mathrm{d}\mathbb{P}.$$

We use that $X_{n+1} = Y_{n+1}$ on $B \setminus A \subset A^c$ to conclude that $\int_{B \setminus A} Y_n d\mathbb{P} = \int_{B \setminus A} Y_{n+1} d\mathbb{P}$. Putting these together, we get

$$\int_{B} Y_n \,\mathrm{d}\mathbb{P} = \int_{B \cap A} Y_n \,\mathrm{d}\mathbb{P} + \int_{B \setminus A} Y_n \,\mathrm{d}\mathbb{P} = \int_{B \cap A} Y_{n+1} \,\mathrm{d}\mathbb{P} + \int_{B \setminus A} Y_{n+1} \,\mathrm{d}\mathbb{P} = \int_{B} Y_{n+1} \,\mathrm{d}\mathbb{P}.$$

Solution 2: Think of X_n as a stock price. An investor buys one stock at time 0 and sells it at time τ . so the number of stocks she holds is

$$H_n := \begin{cases} 1 & \text{if } n \le \tau \\ 0 & \text{if } n > \tau \end{cases}.$$

Since τ is a stopping time, $\{\tau \leq n\} \in \mathcal{F}_n$, so $\{H_n = 0\} = \{\tau \leq n - 1\} \in \mathcal{F}_{n-1}$, meaning that H_n is predictable. H_n is also bounded, so we know that the discrete stochastic integral

$$(H \cdot X)_n := \sum_{m=1}^n H_m(X_m - X_{m-1})$$

is also a martingale. But

$$Y_n = X_0 + (H \cdot X)_n$$

and $X_o \in \mathcal{F}_0 \subset \mathcal{F}_n$ for every n, so Y_n is also a martingale.

7.3 Durrett [1], Exercise 5.3.12 (Hint: Use $Z_{n+1} = \sum_{k=1}^{Z_n} \xi_k^{n+1}$ (with the notation of Durrett) or $Z_{n+1} = \sum_{k=1}^{Z_n} X_{n,k}$ (with the notation of the lecture) to show that $r_* := \mathbb{P}(\lim Z_n/\mu^n > 0)$ is a fixed point of the generating function (which is φ in the book and was g on the lecture).)

7.4 Durrett [1], Exercise 5.3.13

7.5 (homework) Harry is organizing a *pyramid scheme* in his family.

(See http://en.wikipedia.org/wiki/Pyramid_scheme) The participants are not too persistent: every participant keeps trying to recruit new participants until the first failure (i.e. until he is first rejected). The probability of such a failure is p at every recruit attempt, independently of the history of the scheme.

The first participant is Harry, he forms the 0-th generation alone. The first generation consists of those recruited (directly) by Harry. The second generation consists of those recruited (directly) by members of the first generation, and so on.

Let Z_k denote the size of the k-th generation (k = 0, 1, 2, ...), and let N denote the total number of participants in the scheme (meaning $N = \sum_{k=0}^{\infty} Z_k$).

0-th question: What is the distribution of Z_1 (which is the same as the distribution of the number of participants recruited by any fixed member of the scheme)? This distribution has a name.

Answer the questions below

I. for
$$p = \frac{2}{3}$$
,

II. for
$$p = \frac{1}{2}$$

- III. for $p = \frac{1}{2}$, III. for $p = \frac{1}{3}$:
- a.) What is the probability that the scheme dies out (that is, one of the generations will already be empty)?
- b.) What is the expectation of N?
- c.) In case "not dying out" has positive probability, what is the growth rate of Z_n on this event?

Solution: 0-th question: Let q = 1 - p. Successfully recruiting k people means k successes and then 1 failure, so

$$\mathbb{P}(Z_1 = k) = q^k p, \quad k = 0, 1, 2, \dots$$

So Z_1 has a "pessimistic geometric distribution" with parameter p. As a result, the generating function is

$$g(z) = \sum_{k=0}^{\infty} q_k p z^k = \frac{p}{1 - qz}$$

and the expectation is $m = \mathbb{E}Z_1 = \frac{1}{p} - 1$.

From the description it follows that Z_n is a Galton-Watson branching process with $Z_0 = 1$.

- I. If $p = \frac{2}{3}$, then $m = \frac{1}{p} 1 = \frac{1}{2} < 1$, so the process is subcritical. This implies that
 - a.) $\mathbb{P}(\text{extinction}) = 1.$
 - b.) $\mathbb{E}N = \sum_{n=0}^{\infty} \mathbb{E}Z_n = \sum_{n=0}^{\infty} m^n = \frac{1}{1-m} = 2.$
 - c.) The question is not relevant: "not dying out" has zero probability.

II. If $p = \frac{1}{2}$, then $m = \frac{1}{p} - 1 = 1$, so the process is critical. This implies that

- a.) $\mathbb{P}(\text{extinction}) = 1$. (A critical process always dies out unless it is denerate such that everybody has exactly 1 child.)
- b.) $\mathbb{E}N = \sum_{n=0}^{\infty} \mathbb{E}Z_n = \sum_{n=0}^{\infty} m^n = \sum_{n=0}^{\infty} 1 = \infty.$
- c.) The question is not relevant: "not dying out" has zero probability.

III. If $p = \frac{1}{3}$, then $m = \frac{1}{n} - 1 = 2$, so the process is supercritical. This implies that

a.) $r_{\infty} = \mathbb{P}(\text{extinction}) < 1$, and we need to calculate: r_{∞} is the only solution in [0, 1) of the fixed point equation g(z) = z. In our case $g(z) = \frac{p}{1-qz} = \frac{1/3}{1-\frac{2}{3}z} = \frac{1}{3-2z}$ and the equation is

$$\frac{1}{3-2z} = z.$$

The solutions are $z = \frac{1}{2}$ and z = 1, so the only solution in [0, 1) is $r_{\infty} = \frac{1}{2}$. b.) $\mathbb{E}N = \sum_{n=0}^{\infty} \mathbb{E}Z_n = \sum_{n=0}^{\infty} m^n = \sum_{n=0}^{\infty} 2^n = \infty$.

c.) This time the question is relevant: "not dying out" has probability $\frac{1}{2}$. We know that $\frac{Z_n}{m^n}$ is a martingale. Since $Var(Z_1) < \infty$, we have seen that the L^2 martingale convergence theorem says that $W_n := \frac{Z_n}{m^n}$ converges to some W_∞ not only almost surely, but also in L^2 , so $\mathbb{E}W_\infty = \mathbb{E}W_0 = 1$. This means that $\{W_\infty \neq 0\}$ has positive probability, and on this event $Z_n \sim m^n = 2^n$. (Remark: we know from Exercise 3 that if $\mathbb{P}(W_\infty \neq 0) > 0$, then $\{W_\infty \neq 0\} = \{Z_n \neq 0\}$.)

References

[1] Durrett, R. Probability: Theory and Examples. 4th edition, Cambridge University Press (2010)