Probability 1

CEU Budapest, fall semester 2016

Imre Péter Tóth

Homework sheet 7 - solutions

7.1 (homework) Let \mathcal{F}_{n} be a filtration and X any random variable with $\mathbb{E}|X|<\infty$. Let $X_{n}=$ $\mathbb{E}\left(X \mid \mathcal{F}_{n}\right)$.
a.) Show that X_{n} is a martingale w.r.t. \mathcal{F}_{n}.
b.) Show that X_{n} converges almost surely to some limit X_{∞}.
c.) Give a specific example when $X_{\infty} \neq X$.
d.) Give a specific example when $X_{\infty}=X$.

Solution:

a.) Since $X_{n}=\mathbb{E}\left(X \mid \mathcal{F}_{n}\right)$, we know that it is \mathcal{F}_{n}-measurable and integrable. Now since $\mathcal{F}_{n} \subset$ \mathcal{F}_{n+1},

$$
\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(\mathbb{E}\left(X \mid \mathcal{F}_{n+1}\right) \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(X \mid \mathcal{F}_{n}\right)=X_{n}
$$

b.) Since $X_{n}=\mathbb{E}\left(X \mid \mathcal{F}_{n}\right)$, we know that $\mathbb{E} X_{n}^{+} \leq \mathbb{E}\left|X_{n}\right| \leq \mathbb{E}|X|$, so $\mathbb{E} X_{n}^{+}$is bounded by $\mathbb{E}|X|<\infty$. so the martingale convergence theorem ensures that X_{n} converges almost surely.
d.) Let ξ_{1}, ξ_{2}, \ldots be i.i.d., $\xi_{k} \sim B\left(\frac{1}{2}\right)$. Let $X=\sum_{k=1}^{\infty} \frac{\xi_{k}}{2^{k}}$ (so X is uniform on $[0,1]$). Let $\mathcal{F}_{n}=\sigma\left(\xi_{1}, \ldots, \xi_{n}\right)$. Now

$$
X_{n}:=\mathbb{E}\left(X \mid \mathcal{F}_{n}\right)=\sum_{k=1}^{n} \frac{\xi_{k}}{2^{k}}+\sum_{k=n+1}^{\infty} \mathbb{E} \frac{\xi_{k}}{2^{k}}=\left(\sum_{k=1}^{n} \frac{\xi_{k}}{2^{k}}\right)+\frac{1}{2^{n+1}}
$$

So X_{n} is X "rounded" to n bits (where we "round" not to an endpoint, but the middle of each interval $\left[\frac{l}{2^{n}}, \frac{l+1}{2^{n}}\right]$). Clearly $X_{n} \rightarrow X_{\infty}=X$ almost surely.
c.) Just like before, let ξ_{1}, ξ_{2}, \ldots be i.i.d., $\xi_{k} \sim B\left(\frac{1}{2}\right)$. Let $X=\sum_{k=1}^{\infty} \frac{\xi_{k}}{2^{k}}$ (so X is uniform on $[0,1]$). But this time let

$$
\mathcal{F}_{n}=\sigma\left(\xi_{2}, \ldots, \xi_{n}\right)
$$

so ξ_{1} is left out, and the information in ξ_{1} will not be represented in any \mathcal{F}_{n}. Accordingly,

$$
X_{n}:=\mathbb{E}\left(X \mid \mathcal{F}_{n}\right)=\mathbb{E} \frac{\xi_{1}}{2}+\sum_{k=2}^{n} \frac{\xi_{k}}{2^{k}}+\sum_{k=n+1}^{\infty} \mathbb{E} \frac{\xi_{k}}{2^{k}}=\left(\sum_{k=2}^{n} \frac{\xi_{k}}{2^{k}}\right)+\frac{1}{4}+\frac{1}{2^{n+1}}
$$

Now

$$
X_{\infty}=\frac{1}{4}+\sum_{k=2}^{\infty} \frac{\xi_{k}}{2^{k}}=X-\frac{\xi_{1}}{2}+\frac{1 / 2}{2}
$$

Clearly $X_{\infty} \neq X$ - in particular, X_{∞} is uniform on $\left[\frac{1}{4}, \frac{3}{4}\right]$.
7.2 (homework) Let X_{n} be a martingale w.r.t. the filtration \mathcal{F}_{n} on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let the random variable $\tau: \Omega \rightarrow \mathbb{N}$ be a stopping time, meaning

$$
\{\tau=k\}:=\{\omega \in \Omega \mid \tau(\omega)=k\} \in \mathcal{F}_{k} \quad \text { for every } k
$$

Using the notation $a \wedge b:=\min \{a, b\}$, we introduce the process

$$
Y_{n}:=X_{\tau \wedge n}= \begin{cases}X_{n} & \text { if } n<\tau \\ X_{\tau} & \text { if } n \geq \tau\end{cases}
$$

Show that Y_{n} is also a martingale w.r.t. \mathcal{F}_{n}.
Solution 1: We check the definition.
a.) For any $B \subset \mathbb{R}$ measurable, $\left\{Y_{n} \in B\right\}=\left(\{n<\tau\} \cap\left\{X_{n} \in B\right\}\right) \cup\left(\{\tau \leq n\} \cap\left\{X_{\tau} \in B\right\}\right) \in$ \mathcal{F}_{n}, so Y_{n} is adapted.
b.) $\left|Y_{n}\right|=\left|X_{n \wedge \tau}\right| \leq\left|X_{1}\right|+\left|X_{2}\right|+\cdots+\left|X_{n}\right|$, so $\mathbb{E}\left|Y_{n}\right| \leq \mathbb{E}\left|X_{1}\right|+\cdots+\mathbb{E}\left|X_{n}\right|<\infty$, so Y_{n} is integrable.
c.) The essence is to check that $\mathbb{E}\left(Y_{n+1} \mid \mathcal{F}_{n}\right)=Y_{n}$. We show this by checking the definition of the conditional expectation. We have seen that $Y_{n} \in \mathcal{F}_{n}$, so we only need that

$$
\int_{B} Y_{n} \mathrm{~d} \mathbb{P}=\int_{B} Y_{n+1} \mathrm{~d} \mathbb{P} \quad \text { for } B \in \mathcal{F}_{n}
$$

For this purpose, let $A=\{\tau \leq n\}$, so $A \in \mathcal{F}_{n}$.

- On the event A we have $\tau \leq n$, so $n \wedge \tau=\tau$, so $Y_{n}=X_{\tau}$. Also, we have $\tau \leq n+1$, so $Y_{n+1}=X_{\tau}$ as well. All in all, on the event A we have $Y_{n+1}=Y_{n}$.
- On the event A^{c} we have $\tau>n$, so $n \wedge \tau=n$, so $Y_{n}=X_{n}$. But we also have $\tau \geq n+1$, so $n+1 \wedge \tau=n+1$ and $Y_{n+1}=X_{n+1}\left(\right.$ on $\left.A^{c}\right)$.
Now we take $B \in \mathcal{F}_{n}$ and write

$$
\int_{B} Y_{n} \mathrm{~d} \mathbb{P}=\int_{B \cap A} Y_{n} \mathrm{~d} \mathbb{P}+\int_{B \backslash A} Y_{n} \mathrm{~d} \mathbb{P}
$$

In the first term $Y_{n}=Y_{n+1}$, since $B \cap A \subset A$. In the second term $Y_{n}=X_{n}$, since $B \backslash A \subset A^{c}$. Now we use that $B \backslash A \in \mathcal{F}_{n}$ and $\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=X_{n}$ to get

$$
\int_{B \backslash A} Y_{n} \mathrm{~d} \mathbb{P}=\int_{B \backslash A} X_{n} \mathrm{~d} \mathbb{P}=\int_{B \backslash A} X_{n+1} \mathrm{~d} \mathbb{P} .
$$

We use that $X_{n+1}=Y_{n+1}$ on $B \backslash A \subset A^{c}$ to conclude that $\int_{B \backslash A} Y_{n} \mathrm{~d} \mathbb{P}=\int_{B \backslash A} Y_{n+1} \mathrm{~d} \mathbb{P}$. Putting these together, we get

$$
\int_{B} Y_{n} \mathrm{~d} \mathbb{P}=\int_{B \cap A} Y_{n} \mathrm{~d} \mathbb{P}+\int_{B \backslash A} Y_{n} \mathrm{~d} \mathbb{P}=\int_{B \cap A} Y_{n+1} \mathrm{~d} \mathbb{P}+\int_{B \backslash A} Y_{n+1} \mathrm{~d} \mathbb{P}=\int_{B} Y_{n+1} \mathrm{~d} \mathbb{P}
$$

Solution 2: Think of X_{n} as a stock price. An investor buys one stock at time 0 and sells it at time τ. so the number of stocks she holds is

$$
H_{n}:=\left\{\begin{array}{ll}
1 & \text { if } n \leq \tau \\
0 & \text { if } n>\tau
\end{array} .\right.
$$

Since τ is a stopping time, $\{\tau \leq n\} \in \mathcal{F}_{n}$, so $\left\{H_{n}=0\right\}=\{\tau \leq n-1\} \in \mathcal{F}_{n-1}$, meaning that H_{n} is predictable. H_{n} is also bounded, so we know that the discrete stochastic integral

$$
(H \cdot X)_{n}:=\sum_{m=1}^{n} H_{m}\left(X_{m}-X_{m-1}\right)
$$

is also a martingale. But

$$
Y_{n}=X_{0}+(H \cdot X)_{n}
$$

and $X_{o} \in \mathcal{F}_{0} \subset \mathcal{F}_{n}$ for every n, so Y_{n} is also a martingale.
7.3 Durrett [1], Exercise 5.3 .12 (Hint: Use $Z_{n+1}=\sum_{k=1}^{Z_{n}} \xi_{k}^{n+1}$ (with the notation of Durrett) or $Z_{n+1}=\sum_{k=1}^{Z_{n}} X_{n, k}$ (with the notation of the lecture) to show that $r_{*}:=\mathbb{P}\left(\lim Z_{n} / \mu^{n}>0\right)$ is a fixed point of the generating function (which is φ in the book and was g on the lecture).)
7.4 Durrett [1], Exercise 5.3.13
7.5 (homework) Harry is organizing a pyramid scheme in his family.
(See http://en.wikipedia.org/wiki/Pyramid_scheme) The participants are not too persistent: every participant keeps trying to recruit new participants until the first failure (i.e. until he is first rejected). The probability of such a failure is p at every recruit attempt, independently of the history of the scheme.
The first participant is Harry, he forms the 0-th generation alone. The first generation consists of those recruited (directly) by Harry. The second generation consists of those recruited (directly) by members of the first generation, and so on.
Let Z_{k} denote the size of the k-th generation $(k=0,1,2, \ldots)$, and let N denote the total number of participants in the scheme (meaning $N=\sum_{k=0}^{\infty} Z_{k}$).
0-th question: What is the distribution of Z_{1} (which is the same as the distribution of the number of participants recruited by any fixed member of the scheme)? This distribution has a name.
Answer the questions below
I. for $p=\frac{2}{3}$,
II. for $p=\frac{1}{2}$,
III. for $p=\frac{1}{3}$:
a.) What is the probability that the scheme dies out (that is, one of the generations will already be empty)?
b.) What is the expectation of N ?
c.) In case "not dying out" has positive probability, what is the growth rate of Z_{n} on this event?

Solution: 0 -th question: Let $q=1-p$. Successfully recruiting k people means k successes and then 1 failure, so

$$
\mathbb{P}\left(Z_{1}=k\right)=q^{k} p, \quad k=0,1,2, \ldots
$$

So Z_{1} has a "pessimistic geometric distribution" with parameter p. As a result, the generating function is

$$
g(z)=\sum_{k=0}^{\infty} q_{k} p z^{k}=\frac{p}{1-q z}
$$

and the expectation is $m=\mathbb{E} Z_{1}=\frac{1}{p}-1$.
From the description it follows that Z_{n} is a Galton-Watson branching process with $Z_{0}=1$.
I. If $p=\frac{2}{3}$, then $m=\frac{1}{p}-1=\frac{1}{2}<1$, so the process is subcritical. This implies that
a.) $\mathbb{P}($ extinction $)=1$.
b.) $\mathbb{E} N=\sum_{n=0}^{\infty} \mathbb{E} Z_{n}=\sum_{n=0}^{\infty} m^{n}=\frac{1}{1-m}=2$.
c.) The question is not relevant: "not dying out" has zero probability.
II. If $p=\frac{1}{2}$, then $m=\frac{1}{p}-1=1$, so the process is critical. This implies that
a.) $\mathbb{P}($ extinction $)=1$. (A critical process always dies out unless it is denerate such that everybody has exactly 1 child.)
b.) $\mathbb{E} N=\sum_{n=0}^{\infty} \mathbb{E} Z_{n}=\sum_{n=0}^{\infty} m^{n}=\sum_{n=0}^{\infty} 1=\infty$.
c.) The question is not relevant: "not dying out" has zero probability.
III. If $p=\frac{1}{3}$, then $m=\frac{1}{p}-1=2$, so the process is supercritical. This implies that
a.) $r_{\infty}=\mathbb{P}$ (extinction) <1, and we need to calculate: r_{∞} is the only solution in $[0,1)$ of the fixed point equation $g(z)=z$. In our case $g(z)=\frac{p}{1-q z}=\frac{1 / 3}{1-\frac{2}{3} z}=\frac{1}{3-2 z}$ and the equation is

$$
\frac{1}{3-2 z}=z
$$

The solutions are $z=\frac{1}{2}$ and $z=1$, so the only soultion in $[0,1)$ is $r_{\infty}=\frac{1}{2}$.
b.) $\mathbb{E} N=\sum_{n=0}^{\infty} \mathbb{E} Z_{n}=\sum_{n=0}^{\infty} m^{n}=\sum_{n=0}^{\infty} 2^{n}=\infty$.
c.) This time the question is relevant: "not dying out" has probability $\frac{1}{2}$. We know that $\frac{Z_{n}}{m^{n}}$ is a martingale. Since $\operatorname{Var}\left(Z_{1}\right)<\infty$, we have seen that the L^{2} martingale convergence theorem says that $W_{n}:=\frac{Z_{n}}{m^{n}}$ converges to some W_{∞} not only almost surely, but also in L^{2}, so $\mathbb{E} W_{\infty}=\mathbb{E} W_{0}=1$. This means that $\left\{W_{\infty} \neq 0\right\}$ has positive probability, and on this event $Z_{n} \sim m^{n}=2^{n}$. (Remark: we know from Exercise 3 that if $\mathbb{P}\left(W_{\infty} \neq 0\right)>0$, then $\left\{W_{\infty} \neq 0\right\}=\left\{Z_{n} \nrightarrow 0\right\}$.)

References

[1] Durrett, R. Probability: Theory and Examples. 4th edition, Cambridge University Press (2010)

