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Imre Péter Tóth
Homework sheet 6 – solutions

6.1 Durrett [1], Exercise 5.2.1

6.2 (homework) Durrett [1], Exercise 5.2.3

Solution: Xn = − 1

n
will do. (Of course: any increasing deterministic sequence is a submartin-

gale. It is adapted to any filtration, and E(Xn|F) = Xn for any F . So, with any filtration
{Fn} we have E(Xn+1|Fn) = − 1

n+1
≥ − 1

n
= Xn, so Xn is indeed a submartingale. Similarly,

X2
n = 1

n2 is a decreasing determinstic sequence, so it’s a supermartingale.)

(Remark: The even more boring process Xn ≡ 0 also does the job – but I think this is cheating.
The good exercise would be to find a martingale Xn such that E(X2

n+1|Fn) > X2
n strictly.)

6.3 (homework) Durrett [1], Exercise 5.2.4

Solution: Following the hint, let Xn = ξ1+ · · ·+ξn where the ξi are independent with Eξi = 0.
Such an Xn is automatically a martingale (w.r.t. the natural filtration), so we only have to
make sure that it goes to −∞. But we have already seen such a thing in Homework 3.4. Indeed,
let P(ξk = −1) = 1− 1

k2
and use the remaining 1

k2
in your favourite way so that you get Eξk = 0.

Then
∑

∞

k=1
P(Xk 6= −1) =

∑

∞

k=1

1

k2
< ∞, so the first Borel-Cantelli lemma says that almost

surely ξk = −1 except for finitely many k. So, almost surely, Xn → −∞.

6.4 Let 0 ≤ p ≤ 1 and q = 1−p. Let X1, X2, . . . be i.i.d. with P(Xi = −1) = q and P(Xi = 1) = p.
For n = 0, 1, . . . let Sn = X1 + · · ·+Xn. So Sn is a simple asymmetric random walk starting
from S0 = 0. (Symmetric if p = 1

2
.) Show that Mn := Sn − n(p− q) is a martingale (w.r.t. the

natural filtration).

6.5 (homework) Let 0 ≤ p ≤ 1 and q = 1− p. Let X1, X2, . . . be i.i.d. with P(Xi = −1) = q and
P(Xi = 1) = p. For n = 0, 1, . . . let Sn = X1 + · · ·+Xn. So Sn is a simple asymmetric random
walk starting from S0 = 0. (Symmetric if p = 1

2
.)

a.) Show that Mn :=
(

q

p

)Sn

is a martingale (w.r.t. the natural filtration).

b.) Let H ⊂ N and let τ be the random time when the random walk first reaches H , so

τ = inf{n |Sn ∈ H}.

Show that Mτ∧n is also a martingale.

Solution: Of course, I wanted to say 0 � p � 1 – sorry.

a.) Let’s check the definition.

(i) Being adapted is automatic for the natural filtration.

(ii) |Xk| = 1, so |Sn| ≤ n, so Mn :=
(

q

p

)Sn

is bounded for every n, so E|Mn| < ∞.

(iii) The essence is to check the martingale property. Let Fn denote the natural filtration.

E(Mn+1|Fn) = E

(

(

q

p

)Sn+Xn+1

∣

∣

∣

∣

∣

Fn

)

= E

(

Mn

(

q

p

)Xn+1

∣

∣

∣

∣

∣

Fn

)

.
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Mn is Fn-measurable and Xn+1 is independent of Fn, so

E(Mn+1|Fn) = E

(

Mn

(

q

p

)Xn+1

∣

∣

∣

∣

∣

Fn

)

= MnE

(

(

q

p

)Xn+1

)

.

But

E

(

(

q

p

)Xn+1

)

= q

(

q

p

)

−1

+ p

(

q

p

)+1

= p+ q = 1,

so
E(Mn+1|Fn) = Mn.

b.) τ is a stopping time, since {τ ≤ n} = ∪n
k=1

{Xk ∈ H} ∈ Fn. So we know from the lecture (or
Theorem 5.2.6 of Durrett [1]) that the stopped process Mτ∧n is also a martingale. (Actually,
the proof was declared to be “homework”, and it is (will be) indeed Homework 7.2.)

6.6 SORRY, the first version of this exercise was totally wrong! Let X1, X2, . . . be i.i.d.
with P(Xi = −1) = P(Xi = 1) = 1

2
. For n = 0, 1, . . . let Sn = X1 + · · ·+Xn. So Sn is a simple

symmetric random walk starting from S0 = 0. Show that S2
n − n is a martingale (w.r.t. the

natural filtration). This is a special case of Durrett [1], Exercise 5.2.6. You can also solve that
– it’ not any harder.

6.7 (homework) (Pólya’s urn) In an urn there is initially (at time n = 0) a black and a white
ball. At each time step n = 1, 2, . . .

• we draw a ball from the urn, uniformly at random,

• we look at its colour,

• we put it back, and we add another ball of the same colour.

(So we add exactly one ball in each step.) Let Xn be the number of white balls in the urn after
n steps, and let Mn = Xn

n+2
be the proportion of white balls after n steps.

a.) Show that Xn is uniform on {1, 2, . . . , n+ 1}. (Hint: a possible solution is by induction.)

b.) Show that Mn is almost surely convergent.

c.) What is the distribution of M∞ := limn→∞Mn?

Solution: Let ξn = 1 if the nth draw is white and ξn = 0 if not.

a.) Note that after n steps there are always n+ 2 balls. By induction:

(i) X0 ≡ 1 is indeed uniform on {1}.

(ii) Assume inductively that Xn is uniform on {1, 2, . . . , n + 1}, so P(Xn = k) = 1

n+1
for

k = 1, 2, . . . , n+ 1.

(iii) Then by total probability

P(Xn+1 = l) = P(Xn = l − 1)P(ξn = 1|Xn = l − 1) + P(Xn = l)P(ξn = 0|Xn = l).

• For l = 1 the first term is zero and the second is 1

n+1

n+1

n+2
, so P(Xn+1 = 1) = 1

n+2
.

• For 2 ≤ l ≤ n+ 1 both terms are nonzero and the sum is

P(Xn+1 = l) =
1

n + 1

l − 1

n + 2
+

1

n + 1

n+ 2− l

n+ 2
=

1

n+ 2
.

• For l = n+2 the second term is zero and the first is 1

n+1

n+1

n+2
, so P(Xn+1 = n+2) =

1

n+2
.
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We got P(Xn+1 = l) = 1

n+2
for l = 1, 2, . . . , n+2, so Xn+1 is uniform on {1, 2, . . . , n+

2}.

The proof by induction is done.

b.) We first check that Mn is a martingale w.r.t. the natural filtration. Adaptedness and
integrability are trivial. To check the martingale property, notice that E(ξn|Xn = k) =
P(ξn = 1|Xn = k) = k

n+2
, so E(ξn|Fn) =

Xn

n+2
= Mn. This means

E(Xn+1|Fn) = E(Xn + ξn|Fn) = Xn +Mn = (n+ 2)Mn +Mn = (n+ 3)Mn,

so

E(Mn+1|Fn) =
1

n + 3
E(Xn+1|Fn) = Mn.

So Mn is a martingale. Obviously 0 ≤ Mn ≤ 1, so the martingale convergence theorem
ensures that it is almost surely convergent.

c.) Mn → M∞ strongly, so Mn ⇒ M∞ (weakly) as well. But Mn is uniform on { 1

n+2
, . . . , n+1

n+2
},

so the weak limit is uniform on [0, 1]. So M∞ ∼ Uni([0, 1]).

6.8 Durrett [1], Exercise 5.2.7

6.9 Durrett [1], Exercise 5.2.9

6.10 Durrett [1], Exercise 5.2.13
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