Probability 1
CEU Budapest, fall semester 2016
Imre Péter Tóth
Homework sheet 6 - solutions
6.1 Durrett [1], Exercise 5.2.1
6.2 (homework) Durrett [1], Exercise 5.2.3

Solution: $X_{n}=-\frac{1}{n}$ will do. (Of course: any increasing deterministic sequence is a submartingale. It is adapted to any filtration, and $\mathbb{E}\left(X_{n} \mid \mathcal{F}\right)=X_{n}$ for any $\mathcal{F}$. So, with any filtration $\left\{\mathcal{F}_{n}\right\}$ we have $\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=-\frac{1}{n+1} \geq-\frac{1}{n}=X_{n}$, so $X_{n}$ is indeed a submartingale. Similarly, $X_{n}^{2}=\frac{1}{n^{2}}$ is a decreasing determinstic sequence, so it's a supermartingale.)
(Remark: The even more boring process $X_{n} \equiv 0$ also does the job - but I think this is cheating. The good exercise would be to find a martingale $X_{n}$ such that $\mathbb{E}\left(X_{n+1}^{2} \mid \mathcal{F}_{n}\right)>X_{n}^{2}$ strictly. $)$
6.3 (homework) Durrett [1], Exercise 5.2.4

Solution: Following the hint, let $X_{n}=\xi_{1}+\cdots+\xi_{n}$ where the $\xi_{i}$ are independent with $\mathbb{E} \xi_{i}=0$. Such an $X_{n}$ is automatically a martingale (w.r.t. the natural filtration), so we only have to make sure that it goes to $-\infty$. But we have already seen such a thing in Homework 3.4. Indeed, let $\mathbb{P}\left(\xi_{k}=-1\right)=1-\frac{1}{k^{2}}$ and use the remaining $\frac{1}{k^{2}}$ in your favourite way so that you get $\mathbb{E} \xi_{k}=0$. Then $\sum_{k=1}^{\infty} \mathbb{P}\left(X_{k} \neq-1\right)=\sum_{k=1}^{\infty} \frac{1}{k^{2}}<\infty$, so the first Borel-Cantelli lemma says that almost surely $\xi_{k}=-1$ except for finitely many $k$. So, almost surely, $X_{n} \rightarrow-\infty$.
6.4 Let $0 \leq p \leq 1$ and $q=1-p$. Let $X_{1}, X_{2}, \ldots$ be i.i.d. with $\mathbb{P}\left(X_{i}=-1\right)=q$ and $\mathbb{P}\left(X_{i}=1\right)=p$. For $n=0,1, \ldots$ let $S_{n}=X_{1}+\cdots+X_{n}$. So $S_{n}$ is a simple asymmetric random walk starting from $S_{0}=0$. (Symmetric if $p=\frac{1}{2}$.) Show that $M_{n}:=S_{n}-n(p-q)$ is a martingale (w.r.t. the natural filtration).
6.5 (homework) Let $0 \leq p \leq 1$ and $q=1-p$. Let $X_{1}, X_{2}, \ldots$ be i.i.d. with $\mathbb{P}\left(X_{i}=-1\right)=q$ and $\mathbb{P}\left(X_{i}=1\right)=p$. For $n=0,1, \ldots$ let $S_{n}=X_{1}+\cdots+X_{n}$. So $S_{n}$ is a simple asymmetric random walk starting from $S_{0}=0$. (Symmetric if $p=\frac{1}{2}$.)
a.) Show that $M_{n}:=\left(\frac{q}{p}\right)^{S_{n}}$ is a martingale (w.r.t. the natural filtration).
b.) Let $H \subset \mathbb{N}$ and let $\tau$ be the random time when the random walk first reaches $H$, so

$$
\tau=\inf \left\{n \mid S_{n} \in H\right\}
$$

Show that $M_{\tau \wedge n}$ is also a martingale.
Solution: Of course, I wanted to say $0 \supsetneqq p \supsetneqq 1$ - sorry.
a.) Let's check the definition.
(i) Being adapted is automatic for the natural filtration.
(ii) $\left|X_{k}\right|=1$, so $\left|S_{n}\right| \leq n$, so $M_{n}:=\left(\frac{q}{p}\right)^{S_{n}}$ is bounded for every $n$, so $\mathbb{E}\left|M_{n}\right|<\infty$.
(iii) The essence is to check the martingale property. Let $\mathcal{F}_{n}$ denote the natural filtration.

$$
\mathbb{E}\left(M_{n+1} \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(\left.\left(\frac{q}{p}\right)^{S_{n}+X_{n+1}} \right\rvert\, \mathcal{F}_{n}\right)=\mathbb{E}\left(\left.M_{n}\left(\frac{q}{p}\right)^{X_{n+1}} \right\rvert\, \mathcal{F}_{n}\right) .
$$

$M_{n}$ is $\mathcal{F}_{n}$-measurable and $X_{n+1}$ is independent of $\mathcal{F}_{n}$, so

$$
\mathbb{E}\left(M_{n+1} \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(\left.M_{n}\left(\frac{q}{p}\right)^{X_{n+1}} \right\rvert\, \mathcal{F}_{n}\right)=M_{n} \mathbb{E}\left(\left(\frac{q}{p}\right)^{X_{n+1}}\right) .
$$

But

$$
\mathbb{E}\left(\left(\frac{q}{p}\right)^{X_{n+1}}\right)=q\left(\frac{q}{p}\right)^{-1}+p\left(\frac{q}{p}\right)^{+1}=p+q=1
$$

so

$$
\mathbb{E}\left(M_{n+1} \mid \mathcal{F}_{n}\right)=M_{n} .
$$

b.) $\tau$ is a stopping time, since $\{\tau \leq n\}=\cup_{k=1}^{n}\left\{X_{k} \in H\right\} \in \mathcal{F}_{n}$. So we know from the lecture (or Theorem 5.2.6 of Durrett [1]) that the stopped process $M_{\tau \wedge n}$ is also a martingale. (Actually, the proof was declared to be "homework", and it is (will be) indeed Homework 7.2.)
6.6 SORRY, the first version of this exercise was totally wrong! Let $X_{1}, X_{2}, \ldots$ be i.i.d. with $\mathbb{P}\left(X_{i}=-1\right)=\mathbb{P}\left(X_{i}=1\right)=\frac{1}{2}$. For $n=0,1, \ldots$ let $S_{n}=X_{1}+\cdots+X_{n}$. So $S_{n}$ is a simple symmetric random walk starting from $S_{0}=0$. Show that $S_{n}^{2}-n$ is a martingale (w.r.t. the natural filtration). This is a special case of Durrett [1], Exercise 5.2.6. You can also solve that - it' not any harder.
6.7 (homework) (Pólya's urn) In an urn there is initially (at time $n=0$ ) a black and a white ball. At each time step $n=1,2, \ldots$

- we draw a ball from the urn, uniformly at random,
- we look at its colour,
- we put it back, and we add another ball of the same colour.
(So we add exactly one ball in each step.) Let $X_{n}$ be the number of white balls in the urn after $n$ steps, and let $M_{n}=\frac{X_{n}}{n+2}$ be the proportion of white balls after $n$ steps.
a.) Show that $X_{n}$ is uniform on $\{1,2, \ldots, n+1\}$. (Hint: a possible solution is by induction.)
b.) Show that $M_{n}$ is almost surely convergent.
c.) What is the distribution of $M_{\infty}:=\lim _{n \rightarrow \infty} M_{n}$ ?

Solution: Let $\xi_{n}=1$ if the $n$th draw is white and $\xi_{n}=0$ if not.
a.) Note that after $n$ steps there are always $n+2$ balls. By induction:
(i) $X_{0} \equiv 1$ is indeed uniform on $\{1\}$.
(ii) Assume inductively that $X_{n}$ is uniform on $\{1,2, \ldots, n+1\}$, so $\mathbb{P}\left(X_{n}=k\right)=\frac{1}{n+1}$ for $k=1,2, \ldots, n+1$.
(iii) Then by total probability

$$
\mathbb{P}\left(X_{n+1}=l\right)=\mathbb{P}\left(X_{n}=l-1\right) \mathbb{P}\left(\xi_{n}=1 \mid X_{n}=l-1\right)+\mathbb{P}\left(X_{n}=l\right) \mathbb{P}\left(\xi_{n}=0 \mid X_{n}=l\right)
$$

- For $l=1$ the first term is zero and the second is $\frac{1}{n+1} \frac{n+1}{n+2}$, so $\mathbb{P}\left(X_{n+1}=1\right)=\frac{1}{n+2}$.
- For $2 \leq l \leq n+1$ both terms are nonzero and the sum is

$$
\mathbb{P}\left(X_{n+1}=l\right)=\frac{1}{n+1} \frac{l-1}{n+2}+\frac{1}{n+1} \frac{n+2-l}{n+2}=\frac{1}{n+2} .
$$

- For $l=n+2$ the second term is zero and the first is $\frac{1}{n+1} \frac{n+1}{n+2}$, so $\mathbb{P}\left(X_{n+1}=n+2\right)=$ $\frac{1}{n+2}$.

We got $\mathbb{P}\left(X_{n+1}=l\right)=\frac{1}{n+2}$ for $l=1,2, \ldots, n+2$, so $X_{n+1}$ is uniform on $\{1,2, \ldots, n+$ $2\}$.

The proof by induction is done.
b.) We first check that $M_{n}$ is a martingale w.r.t. the natural filtration. Adaptedness and integrability are trivial. To check the martingale property, notice that $\mathbb{E}\left(\xi_{n} \mid X_{n}=k\right)=$ $\mathbb{P}\left(\xi_{n}=1 \mid X_{n}=k\right)=\frac{k}{n+2}$, so $\mathbb{E}\left(\xi_{n} \mid \mathcal{F}_{n}\right)=\frac{X_{n}}{n+2}=M_{n}$. This means

$$
\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(X_{n}+\xi_{n} \mid \mathcal{F}_{n}\right)=X_{n}+M_{n}=(n+2) M_{n}+M_{n}=(n+3) M_{n},
$$

so

$$
\mathbb{E}\left(M_{n+1} \mid \mathcal{F}_{n}\right)=\frac{1}{n+3} \mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=M_{n}
$$

So $M_{n}$ is a martingale. Obviously $0 \leq M_{n} \leq 1$, so the martingale convergence theorem ensures that it is almost surely convergent.
c.) $M_{n} \rightarrow M_{\infty}$ strongly, so $M_{n} \Rightarrow M_{\infty}$ (weakly) as well. But $M_{n}$ is uniform on $\left\{\frac{1}{n+2}, \ldots, \frac{n+1}{n+2}\right\}$, so the weak limit is uniform on $[0,1]$. So $M_{\infty} \sim \operatorname{Uni}([0,1])$.
6.8 Durrett [1], Exercise 5.2.7
6.9 Durrett [1], Exercise 5.2.9
6.10 Durrett [1], Exercise 5.2.13

## References

[1] Durrett, R. Probability: Theory and Examples. 4th edition, Cambridge University Press (2010)

