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Homework sheet 5 — solutions

Durrett [1], Exercise 5.1.1

Durrett [1], Exercise 5.1.3

5.3 (homework) Durrett [1], Exercise 5.1.4

5.4
3.5

Solution:

a.) Existence: Y :=limy;_,o, Yy exists, because Y}, is increasing in M. The monotone conver-
gence theorem implies that for A € F

/ Y dP LY dim vy dp e i / Xy dP MLE / X dP,

M—oo

so Y will do.
b.) Uniqueness: If Y and Z are both F-measurable and [, Y dP = [, Z dP for every A € F,
then Y = Z a.s. because for any ¢ > 0 and M < oo
Ay ={we | Y(w)+e < Z(w) < M}

is F-measurable, so
0= /(Z —Y)dP > eP(A. ) = P(Acy) =0Ve, M.
A

But {Z>Y}=U,A1,,s0oP(Z>Y)=0. Similarly P(Y > Z) = 0.

Durrett [1], Exercise 5.1.6

(homework) Let X and Y be independent standard Gaussian random variables. Let U =
X+Y and V =2X =Y. Calculate E(V|U). (Hint: Example 5.1.2 says that if W is independent
of U, then E(W|U) = EW. If you choose A € R cleverly, then W := V — AU will be independent
of U. (Since U and W are jointly Gaussian, to show independence it’s enough to check that
Cov(U,W)=0.) Then write V.=\U +W.)

Solution: X and Y are independent standard Gaussians, so EX = EY = 0, Cov(X, X) =
Cov(Y,Y) =1 and Cov(X,Y) = 0. This implies
EU=EV = 0
Cov(U,U) = Coo(X+Y,X+Y)=Cov(X,X)+2Cou(X,Y)+ Cov(Y,Y) =2
Cov(V,V) = Cov(2X —Y,2X —Y) =4Cov(X,X) —4Cov(X,Y) + Cov(Y,Y) =5
Cov(U, V) = Cov(X+Y,2X -Y)=2Cou(X,X)+Cov(X,Y)—Cov(Y,Y) = 1.

So if we follow the hint and define W :=V — AU, then EW = 0 and
Cov(W,U) = Cov(V — AU, U) = Cov(V,U) — A\Cov(U,U) =1 — 2.

We choose \ = %, so Cov(W,U) = 0, and (by the property in the hint) W is independent of
U. So

E(VIU) =E (§U+ W‘U) = SEUIU) + E(W|U) = SU +EW = U.
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Durrett [1], Exercise 5.1.8
Durrett [1], Exercise 5.1.9

(homework) Durrett [1], Exercise 5.1.10
Solution: We will apply the statement of Exercise 5.1.9 with F := o (V).

Now if we fix N = n,then the (conditional) ditribution of X is easier: it’s the sum of n i.i.d.
random variables. So the conditional expectation and conditional variance are

E(X|N=n)=nu , var(X|N =n)=no’
With the measure theoretical notion of conditional expectation these are written as
E(X|N)=uN , var(X|N)=o>N.
We plug these into the statement of Exercise 5.1.9 to get
var(X) = E(var(X|N)) + var(E(X|N)) = E(¢®N) + var(uN) = 0°’EN + p*var(N).

(homework) Durrett [1], Exercise 5.1.11

Solution: To understand what’s going on, see Theorem 5.1.8, the remark after it, and its
proof.

Now, since X is G-measurable,

E(Y — X)}G) = E(Y?-2XY + X?|G) = E(Y?G) — 2XE(Y|G) + E(X?G) =
= E(Y?G) - 2X?+ X? =E(Y?G) — X2

So, by assumption
E(Y — X)?) =E[E((Y - X)}G)) =EY? -EX* = 0.

Since (Y — X)? > 0, this implies that Y — X = 0 almost surely.
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