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Imre Péter Tóth
Homework sheet 5 – solutions

5.1 Durrett [1], Exercise 5.1.1

5.2 Durrett [1], Exercise 5.1.3

5.3 (homework) Durrett [1], Exercise 5.1.4

Solution:

a.) Existence: Y := limM→∞ YM exists, because YM is increasing in M . The monotone conver-
gence theorem implies that for A ∈ F

∫

A

Y dP
YMրY
= lim

M→∞
YM dP

Yn=E(XM |F)
= lim

M→∞

∫

A

XM dP
XMրX
=

∫

A

X dP,

so Y will do.

b.) Uniqueness: If Y and Z are both F -measurable and
∫

A
Y dP =

∫

A
Z dP for every A ∈ F ,

then Y = Z a.s. because for any ε > 0 and M < ∞

Aε,M := {ω ∈ Ω | Y (ω) + ε ≤ Z(ω) ≤ M}

is F -measurable, so

0 =

∫

A

(Z − Y ) dP ≥ εP(Aε,M) ⇒ P(Aε,M) = 0 ∀ε,M.

But {Z > Y } =
⋃

n A 1

n
,n, so P(Z > Y ) = 0. Similarly P(Y > Z) = 0.

5.4 Durrett [1], Exercise 5.1.6

5.5 (homework) Let X and Y be independent standard Gaussian random variables. Let U =
X+Y and V = 2X−Y . Calculate E(V |U). (Hint: Example 5.1.2 says that if W is independent
of U , then E(W |U) = EW . If you choose λ ∈ R cleverly, then W := V −λU will be independent
of U . (Since U and W are jointly Gaussian, to show independence it’s enough to check that
Cov(U,W ) = 0.) Then write V = λU +W .)

Solution: X and Y are independent standard Gaussians, so EX = EY = 0, Cov(X,X) =
Cov(Y, Y ) = 1 and Cov(X, Y ) = 0. This implies

EU = EV = 0

Cov(U, U) = Cov(X + Y,X + Y ) = Cov(X,X) + 2Cov(X, Y ) + Cov(Y, Y ) = 2

Cov(V, V ) = Cov(2X − Y, 2X − Y ) = 4Cov(X,X)− 4Cov(X, Y ) + Cov(Y, Y ) = 5

Cov(U, V ) = Cov(X + Y, 2X − Y ) = 2Cov(X,X) + Cov(X, Y )− Cov(Y, Y ) = 1.

So if we follow the hint and define W := V − λU , then EW = 0 and

Cov(W,U) = Cov(V − λU, U) = Cov(V, U)− λCov(U, U) = 1− 2λ.

We choose λ = 1
2
, so Cov(W,U) = 0, and (by the property in the hint) W is independent of

U . So

E(V |U) = E

(

1

2
U +W

∣

∣

∣

∣

U

)

=
1

2
E(U |U) + E(W |U) =

1

2
U + EW =

1

2
U.

1



5.6 Durrett [1], Exercise 5.1.8

5.7 Durrett [1], Exercise 5.1.9

5.8 (homework) Durrett [1], Exercise 5.1.10

Solution: We will apply the statement of Exercise 5.1.9 with F := σ(N).

Now if we fix N = n,then the (conditional) ditribution of X is easier: it’s the sum of n i.i.d.
random variables. So the conditional expectation and conditional variance are

E(X |N = n) = nµ , var(X |N = n) = nσ2.

With the measure theoretical notion of conditional expectation these are written as

E(X |N) = µN , var(X |N) = σ2N.

We plug these into the statement of Exercise 5.1.9 to get

var(X) = E(var(X|N)) + var(E(X|N)) = E(σ2N) + var(µN) = σ2
EN + µ2var(N).

5.9 (homework) Durrett [1], Exercise 5.1.11

Solution: To understand what’s going on, see Theorem 5.1.8, the remark after it, and its
proof.

Now, since X is G-measurable,

E((Y −X)2|G) = E(Y 2 − 2XY +X2|G) = E(Y 2|G)− 2XE(Y |G) + E(X2|G) =

= E(Y 2|G)− 2X2 +X2 = E(Y 2|G)−X2.

So, by assumption

E((Y −X)2) = E(E((Y −X)2|G)) = EY 2 − EX2 = 0.

Since (Y −X)2 ≥ 0, this implies that Y −X = 0 almost surely.
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