Probability 1
CEU Budapest, fall semester 2016
Imre Péter Tóth
Homework sheet 5 - solutions
5.1 Durrett [1], Exercise 5.1.1
5.2 Durrett [1], Exercise 5.1.3
5.3 (homework) Durrett [1], Exercise 5.1.4

Solution:

a.) Existence: $Y:=\lim _{M \rightarrow \infty} Y_{M}$ exists, because Y_{M} is increasing in M. The monotone convergence theorem implies that for $A \in \mathcal{F}$

$$
\int_{A} Y \mathrm{~d} \mathbb{P}^{Y_{M} \nearrow Y} \lim _{M \rightarrow \infty} Y_{M} \mathrm{~d} \mathbb{P}^{Y_{n}=\mathbb{E}\left(X_{M} \mid \mathcal{F}\right)} \lim _{M \rightarrow \infty} \int_{A} X_{M} \mathrm{~d} \mathbb{P}^{X_{M} \nearrow X}=\int_{A} X \mathrm{dP}
$$

so Y will do.
b.) Uniqueness: If Y and Z are both \mathcal{F}-measurable and $\int_{A} Y \mathrm{~d} \mathbb{P}=\int_{A} Z \mathrm{~d} \mathbb{P}$ for every $A \in \mathcal{F}$, then $Y=Z$ a.s. because for any $\varepsilon>0$ and $M<\infty$

$$
A_{\varepsilon, M}:=\{\omega \in \Omega \mid Y(\omega)+\varepsilon \leq Z(\omega) \leq M\}
$$

is \mathcal{F}-measurable, so

$$
0=\int_{A}(Z-Y) \mathrm{d} \mathbb{P} \geq \varepsilon \mathbb{P}\left(A_{\varepsilon, M}\right) \quad \Rightarrow \quad \mathbb{P}\left(A_{\varepsilon, M}\right)=0 \forall \varepsilon, M
$$

But $\{Z>Y\}=\bigcup_{n} A_{\frac{1}{n}, n}$, so $\mathbb{P}(Z>Y)=0$. Similarly $\mathbb{P}(Y>Z)=0$.
5.4 Durrett [1], Exercise 5.1.6
5.5 (homework) Let X and Y be independent standard Gaussian random variables. Let $U=$ $X+Y$ and $V=2 X-Y$. Calculate $\mathbb{E}(V \mid U)$. (Hint: Example 5.1.2 says that if W is independent of U, then $\mathbb{E}(W \mid U)=\mathbb{E} W$. If you choose $\lambda \in \mathbb{R}$ cleverly, then $W:=V-\lambda U$ will be independent of U. (Since U and W are jointly Gaussian, to show independence it's enough to check that $\operatorname{Cov}(U, W)=0$.) Then write $V=\lambda U+W$.)
Solution: X and Y are independent standard Gaussians, so $\mathbb{E} X=\mathbb{E} Y=0, \operatorname{Cov}(X, X)=$ $\operatorname{Cov}(Y, Y)=1$ and $\operatorname{Cov}(X, Y)=0$. This implies

$$
\begin{aligned}
\mathbb{E} U=\mathbb{E} V & =0 \\
\operatorname{Cov}(U, U) & =\operatorname{Cov}(X+Y, X+Y)=\operatorname{Cov}(X, X)+2 \operatorname{Cov}(X, Y)+\operatorname{Cov}(Y, Y)=2 \\
\operatorname{Cov}(V, V) & =\operatorname{Cov}(2 X-Y, 2 X-Y)=4 \operatorname{Cov}(X, X)-4 \operatorname{Cov}(X, Y)+\operatorname{Cov}(Y, Y)=5 \\
\operatorname{Cov}(U, V) & =\operatorname{Cov}(X+Y, 2 X-Y)=2 \operatorname{Cov}(X, X)+\operatorname{Cov}(X, Y)-\operatorname{Cov}(Y, Y)=1 .
\end{aligned}
$$

So if we follow the hint and define $W:=V-\lambda U$, then $\mathbb{E} W=0$ and

$$
\operatorname{Cov}(W, U)=\operatorname{Cov}(V-\lambda U, U)=\operatorname{Cov}(V, U)-\lambda \operatorname{Cov}(U, U)=1-2 \lambda .
$$

We choose $\lambda=\frac{1}{2}$, so $\operatorname{Cov}(W, U)=0$, and (by the property in the hint) W is independent of U. So

$$
\mathbb{E}(V \mid U)=\mathbb{E}\left(\left.\frac{1}{2} U+W \right\rvert\, U\right)=\frac{1}{2} \mathbb{E}(U \mid U)+\mathbb{E}(W \mid U)=\frac{1}{2} U+\mathbb{E} W=\frac{1}{2} U .
$$

5.6 Durrett [1], Exercise 5.1.8
5.7 Durrett [1], Exercise 5.1.9
5.8 (homework) Durrett [1], Exercise 5.1.10

Solution: We will apply the statement of Exercise 5.1 .9 with $\mathcal{F}:=\sigma(N)$.
Now if we fix $N=n$, then the (conditional) ditribution of X is easier: it's the sum of n i.i.d. random variables. So the conditional expectation and conditional variance are

$$
\mathbb{E}(X \mid N=n)=n \mu \quad, \quad \operatorname{var}(X \mid N=n)=n \sigma^{2}
$$

With the measure theoretical notion of conditional expectation these are written as

$$
\mathbb{E}(X \mid N)=\mu N \quad, \quad \operatorname{var}(X \mid N)=\sigma^{2} N
$$

We plug these into the statement of Exercise 5.1.9 to get

$$
\operatorname{var}(X)=\mathbb{E}(\operatorname{var}(X \mid N))+\operatorname{var}(\mathbb{E}(X \mid N))=\mathbb{E}\left(\sigma^{2} N\right)+\operatorname{var}(\mu N)=\sigma^{2} \mathbb{E} N+\mu^{2} \operatorname{var}(N)
$$

5.9 (homework) Durrett [1], Exercise 5.1.11

Solution: To understand what's going on, see Theorem 5.1.8, the remark after it, and its proof.
Now, since X is \mathcal{G}-measurable,

$$
\begin{aligned}
\mathbb{E}\left((Y-X)^{2} \mid \mathcal{G}\right) & =\mathbb{E}\left(Y^{2}-2 X Y+X^{2} \mid \mathcal{G}\right)=\mathbb{E}\left(Y^{2} \mid \mathcal{G}\right)-2 X \mathbb{E}(Y \mid \mathcal{G})+\mathbb{E}\left(X^{2} \mid \mathcal{G}\right)= \\
& =\mathbb{E}\left(Y^{2} \mid \mathcal{G}\right)-2 X^{2}+X^{2}=\mathbb{E}\left(Y^{2} \mid \mathcal{G}\right)-X^{2}
\end{aligned}
$$

So, by assumption

$$
\mathbb{E}\left((Y-X)^{2}\right)=\mathbb{E}\left(\mathbb{E}\left((Y-X)^{2} \mid \mathcal{G}\right)\right)=\mathbb{E} Y^{2}-\mathbb{E} X^{2}=0
$$

Since $(Y-X)^{2} \geq 0$, this implies that $Y-X=0$ almost surely.

References

[1] Durrett, R. Probability: Theory and Examples. 4th edition, Cambridge University Press (2010)

