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Imre Péter Tóth
Homework sheet 4 – solutions

4.1 (homework) Poisson approximation of the binomial distribution. Fix 0 < λ ∈ R. Show that
if Xn has binomial distribution with parameters (n, p) such that np → λ as n → ∞, then Xn

converges to Poi(λ) weakly.

Solution: Set qn = 1− pn, so Xn has characteristic function

ψXn
(t) =

(

qn + pne
it
)n

=

[

(

1 +
eit − 1

1/pn

)1/pn
]npn

.

The base of the power converges to exp(eit − 1) as pn → 0 by standard elementary calculus,
while the exponent converges to λ, so

ψXn
(t) → eλ(e

it−1),

which is exactly the characteristic function of the Poi(λ) distribution, so the continuity theorem
ensures that Xn converges to Poi(λ) weakly.

4.2 (homework) Let X be uniformly distributed on [−1; 1], and set Yn = nX .

a.) Calculate the characteristic function ψn of Yn.

b.) Calculate the pointwise limit lim
n→∞

ψn(t), if it exists.

c.) Does (the distribution of) Yn have a weak limit?

d.) How come?

Solution:

a.) The characteristic function of X is

ψ1(t) =

∫ 1

0

eitx
1

2
dx =

1

2

[

eitx

it

]1

0

=
sin t

t
,

so

ψn(t) = ψ1(nt) =
sin(nt)

nt
(with ψn(0) = 1, of course).

b.) So for every t 6= 0 we have |ψn(t)| ≤
1

n|t|
, which goes to 0 as n→ ∞, so

lim
n→∞

ψn(t) =

{

0, if t 6= 0

1, if t = 0.

c.) No: P(Yn < x) → 1
2
as n → ∞ for every x ∈ R, and the constant 1

2
is not a distribution

function. Another possible reasoning is that for any continuous φ : R → R which is bounded
by some K and supported on some bounded interval [a, b] we have

|Eφ(Yn)| ≤ E|φ(Yn)| ≤ KP(Yn ∈ [a, b]) ≤ K
b− a

2n

n→∞
−−−→ 0,

so if Yn would converge weakly to some Y , then we would have Eφ(Y ) = 0 for every such φ,
but then the distribution of Y has to give zero weight to every interval, which is impossible.
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d.) There is no contradiction with the continuity theorem, because the pointwise limit ψ(t) :=
limn→∞ ψn(t) of the sequence of characteristic functions is not continuous at 0 (and thus
not a characteristic function).

4.3 Durrett [1], Exercise 3.3.1

4.4 Durrett [1], Exercise 3.3.3

4.5 Durrett [1], Exercise 3.3.9

4.6 (homework) Durrett [1], Exercise 3.3.10. Show also that independence is needed.

Solution:

a.) Denote the characteristic functions of Xn, Yn and Xn + Yn by ψn, φn and ρn, respectively.
Then the assumptions about independence give ρn(t) = ψn(t)φn(t) for every t ∈ R and
1 ≤ n ≤ ∞, and the continuity theorem gives ψn(t) → ψ∞(t) and φn(t) → φ∞(t), so we get
ρn(t) → ρ∞(t). Using the continuity theorem again gives that Xn + Yn ⇒ X∞ + Y∞.

b.) To see that independence is needed, consider the following example. For 1 ≤ n < ∞ let
Xn ∼ B(1

2
) and Yn = 1 − Xn, so Yn ∼ B(1

2
) also. For n = ∞ let X∞ ∼ B(1

2
) again, but

set Y∞ = X∞. Again, this implies Y∞ ∼ B(1
2
). Clearly Xn ⇒ X∞ and Yn ⇒ Y∞, but

Xn + Yn ≡ 1 ; X∞ + Y∞, because e.g. P(X∞ + Y∞ = 1) = 0.

4.7 Durrett [1], Exercise 3.3.11

4.8 (homework) Durrett [1], Exercise 3.3.12

Solution: Let ξ1, ξ2, . . . be independent and uniform on the two-element set {−1; 1}, and set
Xn =

∑n
m=1

ξm
2m

. Then the characteristic function of the ξm is

ψξ(t) =
1

2
eit(−1) +

1

2
eit1 = cos(t)

and the characteristic function of Xn is

ψXn
(t) =

n
∏

m=1

ψξ

(

t

2m

)

=

n
∏

m=1

cos

(

t

2m

)

.

But notice that Xn is uniform on the 2n-element set
{

k

2n
: k = −2n + 1;−2n + 3;−2n + 5; . . . ; 2n − 3; 2n − 1

}

,

so Xn converges weakly to some X with the (continuous) uniform distribution on [−1; 1]. (This
can easily be seen e.g. from the pointwise convergence of the distribution functions.) So the
characteristic function of X is

ψX(t) =

∫ 1

−1

eitx
1

2
dx =

sin t

t
,

so the continuity theorem states that

sin t

t
= lim

n→∞
ψXn

(t) =

∞
∏

m=1

cos

(

t

2m

)

.
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4.9 Durrett [1], Exercise 3.3.13

4.10 (homework) Let X1, X2, . . . be i.i.d. random variables with density (w.r.t. Lebesgue measure)
f(x) = 1

π
1

1+x2 . (So they have the Cauchy distribution.) Find the weak limit (as n→ ∞) of the
average

X1 + · · ·+Xn

n
.

Warning: this is not hard, but also not as trivial as it may seem. Hint: a possible solution is

using characteristic functions. Calculating the characteristic function of the Cauchy distribution

is a little tricky, but you can look it up.

Solution: The characteristic function of the Cauchy distribution is ψXk
(t) = e−|t| (see e.g.

Durrett [1], Example 3.3.9). So Sn = X1 + · · · + Xn has characteristic function ψSn
(t) =

(ψXk
(t))n = e−n|t| and Sn

n
has characteristic function ψSn

n

(t) = ψSn

(

t
n

)

= e−|t|. This means

that Sn

n
has the same Cauchy distribution as the Xk for every n, so it also converges to the

Cauchy distribution weakly.

Note that this does not contradict the weak law of large numbers, because our Xk do not have
an expectation.

4.11 Durrett [1], Exercise 3.3.20

4.12 Durrett [1], Exercise 3.4.4

4.13 Durrett [1], Exercise 3.4.5

4.14 Durrett [1], Exercise 3.6.1

4.15 Durrett [1], Exercise 3.6.2
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