Probability 1 CEU Budapest, fall semester 2016 Imre Péter Tóth Homework sheet 3 – solutions

3.1 Exchangeability of integral and limit. Consider the sequences of functions $f_n : [0,1] \to \mathbb{R}$ and $g_n : [0,1] \to \mathbb{R}$ concerning their pointwise limits and the limits of their integrals. Do there exist integrable functions $f : [0,1] \to \mathbb{R}$ and $g : [0,1] \to \mathbb{R}$, such that $f_n(x) \to f(x)$ and $g_n(x) \to g(x)$ for Lebesgue almost every $x \in [0,1]$? What is $\lim_{n \to \infty} \left(\int_0^1 f_n(x) dx \right)$ and $\lim_{n \to \infty} \left(\int_0^1 g_n(x) dx \right)$? Are the conditions of the dominated and monotone convergence theorems and the Fatou lemma satisfied? If yes, what do these theorems ensure about these specific examples?

(a)

$$f_n(x) = \begin{cases} n^2 x & \text{if } 0 \le x < 1/n, \\ 2n - n^2 x & \text{if } 1/n \le x \le 2/n, \\ 0 & \text{otherwise.} \end{cases}$$

(b) Write n as $n = 2^k + l$, where k = 0, 1, 2... and $l = 0, 1, ..., 2^k - 1$ (this can be done in a unique way for every n). Now let

$$g_n(x) = \begin{cases} 1 & \text{if } \frac{l}{2^k} \le x < \frac{l+1}{2^k}, \\ 0 & \text{otherwise.} \end{cases}$$

3.2 Exchangeability of integrals. Consider the following function $f : \mathbb{R}^2 \to \mathbb{R}$:

$$f(x) = \begin{cases} 1 & \text{if } 0 < x, \ 0 < y \text{ and } 0 \le x - y \le 1, \\ -1 & \text{if } 0 < x, \ 0 < y \text{ and } 0 < y - x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Calculate $\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x,y) dx \right) dy$ and $\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x,y) dy \right) dx$. What's the situation with the Fubini theorem?

3.3 (homework) For real numbers a_1, a_2, a_3, \ldots define the infinite product $\prod_{k=1}^{\infty} a_k$ as

$$\prod_{k=1}^{\infty} a_k := \lim_{n \to \infty} \prod_{k=1}^n a_k,$$

whenever this limit exists.

Let p_1, p_2, p_3, \ldots satisfy $0 \le p_k < 1$ for all k. Show that $\prod_{k=1}^{\infty} (1-p_k) > 0$ if and only if $\sum_{k=1}^{\infty} p_k < \infty$. (*Hint: estimate the logarithm of* (1-p) with p.)

Solution: For $0 \le p_k \ge 1$ we have that $\prod_{k=1}^{\infty} (1 - p_k) > 0$ if and only if $\lim_{n \to \infty} \sum_{k=1}^{n} \ln(1 - p_k) > -\infty.$ (1) Now if $p_k \neq 0$, then this is clearly false. If $p_k \to 0$, then we get from the linear approximation of $x \mapsto \ln(1+x)$ near $x_0 = 0$ that – except possibly for finitely many k-s –

$$-p_k \ge \ln(1-p_k) \ge -2p_k$$

This implies that

$$C - \sum_{k=1}^{n} p_k \ge \sum_{k=1}^{n} \ln(1 - p_k) \ge C - 2\sum_{k=1}^{n} p_k,$$

which means that (1) holds if and only if $\lim_{n\to\infty} \sum_{k=1}^n p_k < \infty$.

3.4 Let X_1, X_2, \ldots be independent random variables such that

$$\mathbb{P}(X_n = n^2 - 1) = \frac{1}{n^2}, \quad \mathbb{P}(X_n = -1) = 1 - \frac{1}{n^2}.$$

Show that $\mathbb{E}X_n = 0$ for every *n*, but

$$\lim_{n \to \infty} \frac{X_1 + \dots + X_n}{n} = -1$$

almost surely.

- 3.5 Let X_1, X_2, \ldots, X_n be i.i.d. random variables. Prove that the following two statements are equivalent:
 - (i) $\mathbb{E}|X_i| < \infty$.
 - (ii) $\mathbb{P}(|X_n| > n \text{ for infinitely many } n-s) = 0.$
- 3.6 (homework) Prove that for any sequence X_1, X_2, \ldots of random variables (real valued, defined on the same probability space) there exists a sequence c_1, c_2, \ldots of numbers such that

$$\frac{X_n}{c_n} \to 0 \text{ almost surely.}$$

Solution: let a_n be so big that $\mathbb{P}(|X_n| > a_n) \leq \frac{1}{n^2}$, and let $c_n = na_n$. Then by the first Borel-Cantelli lemma, almost surely $|X_n| \leq a_n$ for all but finitely many values of n, so $\left|\frac{X_n}{n}\right| \leq \frac{1}{n}$ for all but finitely many values of n. This implies

$$\mathbb{P}\left(\frac{X_n}{c_n} \to 0\right) = 1.$$

- 3.7 Let the random variables $X_1, X_2, \ldots, X_n, \ldots$ and X be defined on the same probability space. Prove that the following two statements are equivalent:
 - (i) $X_n \to X$ in probability as $n \to \infty$.
 - (ii) From every subsequence $\{n_k\}_{k=1}^{\infty}$ a sub-subsequence $\{n_{k_j}\}_{j=1}^{\infty}$ can be chosen such that $X_{n_{k_j}} \to X$ almost surely as $j \to \infty$.
- 3.8 (homework) Let X_1, X_2, \ldots be independent such that X_n has $Bernoulli(p_n)$ distribution. Determine what property the sequence p_n has to satisfy so that
 - (a) $X_n \to X$ in probability as $n \to \infty$

(b) $X_n \to X$ almost surely as $n \to \infty$.

Solution: First, let's see what the possible limits can be. If X_n converges either strongly or in probability, then it also has to converge weakly, so p_n also has to converge to some $p \in [0, 1]$, and $X \sim B(p)$. Now if $p = \lim_{n\to\infty} p_n \notin \{0, 1\}$, then the sequence of *independent* X_n has no chance to converge to X in probability, since $\mathbb{P}(|X_n - X_{n+1}| = 1) \not\to 0$ (that is, the sequence X_n makes big jumps often).

So we need either $p_n \to 0$ and $X_n \equiv 0$, or $p_n \to 1$ and $X_n \equiv 1$.

- I. Let's see $X_n \to 0$ first.
 - a.) $X_n \to 0$ in probability iff $\forall \varepsilon > 0$ we have $\mathbb{P}(|X_n| < \varepsilon) \to 0$. but $X_n \in \{0, 1\}$, so for $0 < \varepsilon < 1, \{|X_n| > \varepsilon\} = \{X_n = 1\}$, so

 $X_n \to 0$ in probability $\Leftrightarrow \mathbb{P}(X_n = 1) \to 0 \Leftrightarrow p_n \to 0.$

b.) Since $X_n \in \{0, 1\}$, $X_n \to 0$ almost surely iff $X_n = 0$ for all but finitley many *n*-s, almost surely. By independence and the Borel-Cantelli lemmas, this happens iff

$$\sum_{n=0}^{\infty} \mathbb{P}(X_n \neq 0) = \sum_{n=0}^{\infty} p_n < \infty.$$

- II. Similarly for $X_n \to 0$
 - a.) $X_n \to 1$ in probability iff $\mathbb{P}(X_n \neq 1) \to 0$ iff $1 p_n \to 0$ iff $p_n \to 1$.
 - b.) $X_n \to 1$ almost surely iff $\sum_n \mathbb{P}(X_n \neq 1) < \infty$ iff $\sum_n (1 p_n) < \infty$.
- 3.9 Let X_1, X_2, \ldots be independent random variables. Show that $\mathbb{P}(\sup_n X_n < \infty) = 1$ if and only if there is some $A \in \mathbb{R}$ for which $\sum_{n=1}^{\infty} \mathbb{P}(X_n > A) < \infty$.
- 3.10 Let X_1, X_2, \ldots be independent exponentially distributed random variables such that X_n has parameter λ_n . Let $S_n := \sum_{i=1}^n X_i$. Show that if $\sum_{n=1}^{\infty} \frac{1}{\lambda_n} = \infty$, then $S_n \to \infty$ almost surely, but if $\sum_{n=1}^{\infty} \frac{1}{\lambda_n} < \infty$, then $S_n \to S$ almost surely, where S is some random variable which is almost surely finite.
- 3.11 Let X_1, X_2, \ldots be i.i.d. random variables with distribution Bernoulli(p) for some $p \in (0; 1)$ but $p \neq \frac{1}{2}$. Let $Y := \sum_{n=1}^{\infty} 2^{-n} X_n$. (The sum is absolutely convergent.) Show that the distribution of Y is continuous, but singular w.r.t. Lebesgue measure.
- 3.12 (homework) Let the random variables $X_1, X_2, \ldots, X_n, \ldots$ and X be defined on the same probability space and suppose that $X_n \to X$ in probability as $n \to \infty$.
 - (a) If $f : \mathbb{R} \to \mathbb{R}$ is a continuous function, $Y_n = f(X_n)$ and Y = f(X), show that $Y_n \to Y$ in probability as $n \to \infty$.

Solution: We need to see that for any $\delta > 0$ and $\varepsilon > 0$ if *n* is big enough, then $\mathbb{P}(|Y_n - Y| > \delta) < \varepsilon$. since $Y_n = f(X_n)$ and Y = f(X) where *f* is continuous, if $|Y_n - Y|$ can only be big when $wX_n - X|$ is also big.

More precisely, if f is **uniformly** continuous, so that for any $\delta > 0$ there is a $\delta' > 0$ such that $|f(x) - f(x_0)| \leq \delta$ whenever $|x - x_0| \leq \delta'$, then

$$\mathbb{P}(|Y_n - Y| > \delta) \le \mathbb{P}(|X_x - X| > \delta') < \varepsilon \text{ if } n \text{ is big enough.}$$

since $X_n \to X$ in probability.

Unfortunately, a continuous $f : \mathbb{R} \to \mathbb{R}$ is in general *not* uniformly continuous. To treat this problem, for any $\varepsilon > 0$ choose K so big that $\mathbb{P}(|X| > K) < \frac{\varepsilon}{2}$. Now the interval I := [-K - 1, K + 1] is compact, so f is uniformly continuous on I: for any $\delta > 0$ there is a $\delta' > 0$ such that $|f(x) - f(x_0)| \le \delta$ whenever $|x - x_0| \le \delta'$ and $x_0, x \in I$. We can safely assume that $\delta' < 1$.

Now if $|Y_n - Y| = |f(X_n) - f(X)| > \delta$, then either $|X_n - X| > \delta'$, or |X| > K. This means that

$$\mathbb{P}(|Y_n - Y| > \delta) \le \mathbb{P}(|X_n - X| > \delta') + \mathbb{P}(|X| > K) \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
bugh.

if n is big enough.

(b) Show that if the X_n are almost surely uniformly bounded [that is: there exists a constant $M < \infty$ such that $\mathbb{P}(\forall n \in \mathbb{N} | X_n | \leq M) = 1$], then $\lim_{n \to \infty} \mathbb{E}X_n = \mathbb{E}X$.

Solution: Since $X_n \to X$ in probability, $X_n \Rightarrow X$ weakly as well. The expectations are $\mathbb{E}X_n = \mathbb{E}f(X_n)$ and $\mathbb{E}X = \mathbb{E}f(X)$ where $f : \mathbb{R} \to \mathbb{R}$ is the identity function: f(x) = x. If this f was bounded, then $X_n \Rightarrow X$ would imply $\mathbb{E}f(X_n) \to \mathbb{E}f(X)$. Of course, f is not bounded, but if all the X_n are a.s. bounded by M, then so is X, and f can "replaced" by some bounded continuous f_M , for which $f = f_M$ on [-M, M]. E.g.

$$f_M(x) := \begin{cases} -M & \text{if } x < -M \\ x & \text{if } -M \le x \le M \\ M & \text{if } x > M \end{cases}$$

will do. So $\mathbb{E}X_n = \mathbb{E}f_M(X_n)$, $\mathbb{E}X = \mathbb{E}f_M(X)$, and $X_n \Rightarrow X$ implies $\mathbb{E}f_M(X_n) \to \mathbb{E}f_M(X)$.

(c) Show, through an example, that for the previous statement, tha condition of boundedness is needed.

Solution: Let $\mathbb{P}(X_n = n) = \frac{1}{n}$ and $\mathbb{P}(X_n = 0) = 1 - \frac{1}{n}$. then $X_n \to 0$ in probability, but $\mathbb{E}X_n = 1$ for every n.

- 3.13 Let the random variables $X_1, X_2, \ldots, Y_1, Y_2, \ldots, X$ and Y be defined on the same probability space and assume that $X_n \to X$ and $Y_n \to Y$ in probability. Show that
 - (a) $X_n Y_n \to XY$ in probability.
 - (b) If almost surely $Y_n \neq 0$ and $Y \neq 0$, then $X_n/Y_n \rightarrow X/Y$ in probability.
- 3.14 (homework) Prove that

$$\lim_{n \to \infty} \int_0^1 \int_0^1 \dots \int_0^1 \frac{x_1^2 + x_2^2 + \dots + x_n^2}{x_1 + x_2 + \dots + x_n} \, \mathrm{d}x_1 \, \mathrm{d}x_2 \dots \, \mathrm{d}x_n = \frac{2}{3}.$$

Solution: Let X_1, X_2, \ldots be i.i.d. ~ Uni([0,1]). Then the joint density of X_1, \ldots, X_n is

$$f_n(x_1,\ldots,x_n) = \begin{cases} 1 & \text{if } 0 \le x_1,\ldots,x_n \le 1\\ 0 & \text{if not} \end{cases}.$$

 So

$$e_n := \int_0^1 \dots \int_0^1 \frac{x_1^2 + x_2^2 + \dots + x_n^2}{x_1 + x_2 + \dots + x_n} \, \mathrm{d}x_1 \dots \, \mathrm{d}x_n = \\ = \int_{\mathbb{R}^n} \frac{x_1^2 + x_2^2 + \dots + x_n^2}{x_1 + x_2 + \dots + x_n} f_n(x_1, \dots, x_n) \, \mathrm{d}x_1 \dots \, \mathrm{d}x_n = \\ = \mathbb{E} \frac{X_1^2 + X_2^2 + \dots + X_n^2}{X_1 + X_2 + \dots + X_n} = \mathbb{E} \frac{\frac{X_1^2 + X_2^2 + \dots + X_n^2}{n}}{\frac{X_1 + X_2 + \dots + X_n}{n}}.$$

Now the strong law of large numbers says that

$$\frac{X_1 + X_2 + \dots + X_n}{n} \to \mathbb{E}X = \frac{1}{2} \quad \text{and} \quad \frac{X_1^2 + X_2^2 + \dots + X_n^2}{n} \to \mathbb{E}X^2 = \frac{1}{3}$$

almost surely. this implies that

$$\frac{X_1^2 + X_2^2 + \dots + X_n^2}{X_1 + X_2 + \dots + X_n} \to \frac{1/3}{1/2} = \frac{2}{3}$$

almost surley, and thus also in probability. To get the convergence of the expectations, one way is to check that $\frac{X_1^2+X_2^2+\dots+X_n^2}{X_1+X_2+\dots+X_n}$ is bounded. Indeed, $0 \leq X_i^2 \leq X_i \leq 1$, so $0 \leq \frac{X_1^2+X_2^2+\dots+X_n^2}{X_1+X_2+\dots+X_n} \leq 1$ and Homework 12 gives that $e_n \to \mathbb{E}_3^2 = \frac{2}{3}$.

3.15 Let $f:[0;1] \to \mathbb{R}$ be a continuous function. Prove that

(a)

$$\lim_{n \to \infty} \int_0^1 \int_0^1 \dots \int_0^1 f\left(\frac{x_1 + x_2 + \dots + x_n}{n}\right) \, \mathrm{d}x_1 \, \mathrm{d}x_2 \dots \, \mathrm{d}x_n = f\left(\frac{1}{2}\right)$$

(b)

$$\lim_{n \to \infty} \int_0^1 \int_0^1 \dots \int_0^1 f\left((x_1 x_2 \dots x_n)^{1/n} \right) \, \mathrm{d}x_1 \, \mathrm{d}x_2 \dots \, \mathrm{d}x_n = f\left(\frac{1}{e}\right)$$

- 3.16 Let the random variables $X_1, X_2, \ldots, X_n, \ldots$ be defined on the same probability space and let $Y_n := \sup_{m>n} |X_m|$. Prove that the following two statements are equivalent:
 - (i) $X_n \to 0$ almost surely as $n \to \infty$.
 - (ii) $Y_n \to 0$ in probability as $n \to \infty$.
- 3.17 Weak convergence and densities, again.
 - (a) Prove the following

Theorem 1. Let μ_1, μ_2, \ldots and μ be a sequence of probability distributions on \mathbb{R} which are absolutely continuous w.r.t. Lebesgue measure. Denote their densities by f_1, f_2, \ldots and f, respectively. Suppose that $f_n(x) \xrightarrow{n \to \infty} f(x)$ for every $x \in \mathbb{R}$. Then $\mu_n \Rightarrow \mu$ (weakly).

(Hint: denote the cumulative distribution functions by F_1, F_2, \ldots and F, respectively. Use the Fatou lemma to show that $F(x) \leq \liminf_{n \to \infty} F_n(x)$. For the other direction, consider G(x) := 1 - F(x).

- (b) Show examples of the following facts:
 - i. It can happen that the f_n converge pointwise to some f, but the sequence μ_n is not weakly convergent, because f is not a density.

- ii. It can happen that the μ_n are absolutely continuous, $\mu_n \Rightarrow \mu$, but μ is not absolutely continuous.
- iii. It can happen that the μ_n and also μ are absolutely continuous, $\mu_n \Rightarrow \mu$, but $f_n(x)$ does not converge to f(x) for any x.
- 3.18 (homework) Let X_1, X_2, \ldots be independent and uniformly distributed on [0, 1]. Let $M_n = \max\{X_1, \ldots, X_n\}$ and let $Y_n = n(1 M_n)$. Find the weak limit of Y_n . (Hint: Calculate the distribution functions.)

Solution: Let F_X be the common distribution function of the X_i :

$$F_X(x) = \mathbb{P}(X_i \le x) = \begin{cases} 0 & \text{if } x \le 0\\ x & \text{if } 0 < x < 1 \\ 1 & \text{if } x \ge 1 \end{cases}$$

Now $M_n = \max\{X_1, \ldots, X_n\}$, so $M_n \leq x$ iff $X_i \leq x$ for all *i*. So the distribution function of M_n is

$$F_{M_n}(x) := \mathbb{P}(M_n \le x) = \mathbb{P}(X_1 \le x, \dots, X_n \le x) = \mathbb{P}(X_1 \le x) \cdots \mathbb{P}(X_n \le x) = = (F_X(x))^n = \begin{cases} 0 & \text{if } x \le 0 \\ x^n & \text{if } 0 < x < 1 \\ 1 & \text{if } x > 1 \end{cases}$$

We have used the independence of the X_i . Now the distribution function of Y_n is

$$F_{n}(y) := \mathbb{P}(Y_{n} \leq y) = \mathbb{P}(n(1 - M_{n}) \leq y) = \mathbb{P}\left(M_{n} \geq 1 - \frac{y}{n}\right) = 1 - F_{M_{n}}\left(1 - \frac{y}{n}\right) = \begin{cases} 0 & \text{if } y \leq 0\\ 1 - \left(1 - \frac{y}{n}\right)^{n} & \text{if } 0 < y < n \\ 1 & \text{if } y \geq n \end{cases}$$

Given any y > 0, as n grows, we will eventually have y < n, so the second case matters, and $F_n(y) \to \lim_{n\to\infty} 1 - \left(1 - \frac{y}{n}\right)^n = 1 - e^{-y}$. All in all, we got that

$$\lim_{n \to \infty} F_n(y) = F(y) := \begin{cases} 0 & \text{if } y \le 0\\ 1 - e^{-y} & \text{if } y > 0 \end{cases}$$

for every $y \in \mathbb{R}$, so $F_n \Rightarrow F$. This F is exactly the distribution function of the exponential distribution with parameter 1, so we have shown that $Y_n \Rightarrow Exp(1)$.