Probability 1
CEU Budapest, fall semester 2016
Imre Péter Tóth
Homework sheet 2 - solutions
2.1 Continuity of the measure
(a) Prove the following:

Theorem 1 (Continuity of the measure)
i. If $(\Omega, \mathcal{F}, \mu)$ is a measure space and A_{1}, A_{2}, \ldots is an increasing sequence of measurable sets (i.e. $A_{i} \in \mathcal{F}$ and $A_{i} \subset A_{i+1}$ for all i), then $\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\lim _{i \rightarrow \infty} \mu\left(A_{i}\right)$ (and both sides of the equation make sense).
ii. If $(\Omega, \mathcal{F}, \mu)$ is a measure space, A_{1}, A_{2}, \ldots is a decreasing sequence of measurable sets (i.e. $A_{i} \in \mathcal{F}$ and $A_{i} \supset A_{i+1}$ for all i) and $\mu\left(A_{1}\right)<\infty$, then $\mu\left(\cap_{i=1}^{\infty} A_{i}\right)=\lim _{i \rightarrow \infty} \mu\left(A_{i}\right)$ (and both sides of the equation make sense).
(b) Show that in the second statement the condition $\mu\left(A_{1}\right)<\infty$ is needed, by constructing a counterexample for the statement when this condition does not hold.
2.2 Usefulness of the linearity of the expectation. A building has 10 floors, not including the ground floor. On the ground floor, 10 people get into the elevator, and every one of them chooses a destination at random, uniformly out of the 10 floors, independently of the others. Let X denote the number of floors on which the elevator stops - i.e. the number of floors that were chosen by at least one person. Calculate the expectation and the variance of X. (hint: First notice that the distribution of X is hard to calculate. Find a way to calculate the expectation and the variance without that.)
2.3 Calculate the characteristic function of
(a) The Bernoulli distribution $B(p)$ (see Homework sheet 1)
(b) The "pessimistic geometric distribution with parameter p " - that is, the distribution μ on $\{0,1,2 \ldots\}$ with weights $\mu(\{k\})=(1-p) p^{k}(k=0,1,2 \ldots)$.
(c) The "optimistic geometric distribution with parameter p " - that is, the distribution ν on $\{1,2,3, \ldots\}$ with weights $\nu(\{k\})=(1-p) p^{k-1}(k=1,2 \ldots)$.
(d) (homework) The Poisson distribution with parameter λ - that is, the distribution η on $\{0,1,2 \ldots\}$ with weights $\eta(\{k\})=e^{-\lambda} \frac{\lambda^{k}}{k!}(k=0,1,2 \ldots)$.

Solution:

$$
\psi_{P o i(\lambda)}(t)=\sum_{k=0}^{\infty} e^{i t k} e^{-\lambda} \frac{\lambda^{k}}{k!}=\sum_{k=0}^{\infty} e^{i t k} \eta(\{k\})=e^{-\lambda} \sum_{k=0}^{\infty} \frac{\left(\lambda e^{i t}\right)^{k}}{k!}=e^{-\lambda} e^{\lambda e^{i t}}=e^{\lambda\left(e^{i t}-1\right)}
$$

(e) (homework) The exponential distribution with parameter λ - that is, the distribution on \mathbb{R} with density (w.r.t. Lebesgue measure)

$$
f_{\lambda}(x)=\left\{\begin{array}{l}
\lambda e^{-\lambda x}, \text { if } x>0 \\
0, \text { if not }
\end{array}\right.
$$

Solution:

$$
\phi_{E x p}(\lambda)(t)=\int_{\mathbb{R}} e^{i t x} f_{\lambda}(x) \operatorname{dLeb}(x)=\int_{0}^{\infty} e^{i t x} \lambda e^{-\lambda x} \mathrm{~d} x=\lambda\left[\frac{e^{(i t-\lambda) x}}{i t-\lambda}\right]_{0}^{\infty}=\frac{\lambda}{\lambda-i t} .
$$

2.4 (homework) Calculate the characteristic function of the normal distribution $\mathcal{N}\left(m, \sigma^{2}\right)$. (Remember the definition from the old times: $\mathcal{N}\left(m, \sigma^{2}\right)$ is the distribution on \mathbb{R} with density (w.r.t. Lebesgue measure)

$$
f_{m, \sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-m)^{2}}{2 \sigma^{2}}} .
$$

You can save yourself some paperwork if you only do the calculation for $\mathcal{N}(0,1)$ and reduce the general case to this using the relation between different normal distributions. You can and should use the fact that

$$
\int_{-\infty}^{\infty} f_{m, \sigma^{2}}(x) \mathrm{d} x=1
$$

for every m and σ.
Solution: First we reduce the general case to the case of the standard normal distribution using the fact (known from old times, easy to check from the formulas) that if $X \sim \mathcal{N}(0,1)$ and $Y=m+\sigma X$, then $Y \sim \mathcal{N}\left(m, \sigma^{2}\right)$. As a result, the characteristic function for the normal distribution with expectation m and variance σ^{2} is

$$
\begin{equation*}
\psi_{\mathcal{N}\left(m, \sigma^{2}\right)}(t)=\mathbb{E}\left(e^{i t Y}\right)=\mathbb{E}\left(e^{i t m+i t \sigma X}\right)=e^{i t m} \mathbb{E}\left(e^{i(t \sigma) X}\right)=e^{i t m} \psi_{\mathcal{N}(0,1)}(\sigma t), \tag{1}
\end{equation*}
$$

where $\psi_{\mathcal{N}(0,1)}(t):=\mathbb{E}\left(e^{i t X}\right)$ is the characteristic function of the standard normal distribution. Now we go on to calculate

$$
\begin{aligned}
\psi_{\mathcal{N}(0,1)}(t) & =\mathbb{E}\left(e^{i t X}\right)=\int_{-\infty}^{\infty} e^{i t x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \mathrm{~d} x=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}-2 i t x}{2}} \mathrm{~d} x= \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(x-i t)^{2}-(i t)^{2}}{2}} \mathrm{~d} x=e^{-\frac{t^{2}}{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(x-i t)^{2}}{2}} \mathrm{~d} x
\end{aligned}
$$

We use the substitution $y:=x-i t$ to get

$$
\psi_{\mathcal{N}(0,1)}(t)=e^{-\frac{t^{2}}{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{y^{2}}{2}} \mathrm{~d} x=e^{-\frac{t^{2}}{2}}
$$

In the last step we used that the standard normal density function (just like every probability density function) integrates to 1 . Writing this back to (1), we get the final result

$$
\psi_{\mathcal{N}\left(m, \sigma^{2}\right)}(t)=e^{i t m} e^{-\frac{(\sigma t)^{2}}{2}}
$$

Remark: The substitution $y=x$-it is not completely trivial to make rigorous. In fact, with this substitution, while x runs over the real line, y will run over a line in the complex plane, namely the line γ of complex numbers with imaginary part -it, so leaving the boundaries as $-\infty$ and ∞ after the substitution is cheating. To make the argument precise, one has to show that the integral on γ is equal to the integral on the real line. This is a typical application of a standard, but strong tool of complex analysis, called the residue theorem. I will not go into that here, and I don't expect the students to do so either.
2.5 Dominated convergence and continuous differentiability of the characteristic function. The Lebesgue dominated convergence theorem is the following

Theorem 2 (dominated convergence) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and f_{1}, f_{2}, \ldots measurable real valued functions on Ω which converge to the limit function pointwise, μ-almost
everywehere. (That is, $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for every $x \in \Omega$, except possibly for a set of x-es with μ-measure zero.) Assume furthermore that the f_{n} admit a common integrable dominating function: there exists a $g: \Omega \rightarrow \mathbb{R}$ such that $\left|f_{n}(x)\right| \leq g(x)$ for every $x \in \Omega$ and $n \in \mathbb{N}$, and $\int_{\Omega} g \mathrm{~d} \mu<\infty$. Then (all the f_{n} and also f are integrable and)

$$
\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} \mathrm{~d} \mu=\int_{\Omega} f \mathrm{~d} \mu
$$

Use this theorem to prove the following

Theorem 3 (differentiability of the characteristic function) Let X be a real valued random variable, $\psi(t)=\mathbb{E}\left(e^{i t X}\right)$ its characteristic function and $n \in \mathbb{N}$. If the n-th moment of X exists and is finite (i.e. $\mathbb{E}\left(|X|^{n}\right)<\infty$), then ψ is n times continuously differentiable and

$$
\psi^{(k)}(0)=i^{k} \mathbb{E}\left(X^{k}\right), \quad k=0,1,2, \ldots, n .
$$

2.6 (homework) (Weak convergence and densities) Let f_{1}, f_{2}, \ldots and f be probability densities on \mathbb{R}. Let F_{1}, F_{2}, \ldots be the respective distribution functions, meaning that $F_{n}(x)=\int_{-\infty}^{x} f_{n}(y) \mathrm{d} y$ and $F(x)=\int_{-\infty}^{x} f(y) \mathrm{d} y$. Show that if $f_{n}(x) \rightarrow f(x)$ for every x as $n \rightarrow \infty$, then also $F_{n}(x) \rightarrow F(x)$ for every x as $n \rightarrow \infty$. (Hint: use the Fatou lemma.)
Solution: $F_{n}(x)=\int_{-\infty}^{x} f_{n}(x) \mathrm{d} x$ and $f_{n}(x) \rightarrow f(x)$ for every x, so the Fatou lemma says that

$$
F(x)=\int_{-\infty}^{x} f(x) \mathrm{d} x=\int_{-\infty}^{x} \liminf _{n \rightarrow \infty} f_{n}(x) \mathrm{d} x \leq \liminf _{n \rightarrow \infty} \int_{-\infty}^{x} f_{n}(x) \mathrm{d} x=\liminf _{n \rightarrow \infty} F_{n}(x) .
$$

Similarly,

$$
\begin{aligned}
1-F(x) & =\int_{x}^{\infty} f(x) \mathrm{d} x=\int_{x}^{\infty} \liminf _{n \rightarrow \infty} f_{n}(x) \mathrm{d} x \\
& \leq \liminf _{n \rightarrow \infty}^{\infty} \int_{x}^{\infty} f_{n}(x) \mathrm{d} x=\liminf _{n \rightarrow \infty}\left(1-F_{n}(x)\right)=1-\limsup _{n \rightarrow \infty} F_{n}(x)
\end{aligned}
$$

which implies $\lim \sup _{n \rightarrow \infty} F_{n}(x) \leq F(x)$, so $F_{n}(x) \rightarrow F(x)$ for every x, and we are done.

