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Imre Péter Tóth
Homework sheet 2 – solutions

2.1 Continuity of the measure

(a) Prove the following:

Theorem 1 (Continuity of the measure)

i. If (Ω,F , µ) is a measure space and A1, A2, . . . is an increasing sequence of measurable
sets (i.e. Ai ∈ F and Ai ⊂ Ai+1 for all i), then µ(∪∞

i=1Ai) = limi→∞ µ(Ai) (and both
sides of the equation make sense).

ii. If (Ω,F , µ) is a measure space, A1, A2, . . . is a decreasing sequence of measurable sets
(i.e. Ai ∈ F and Ai ⊃ Ai+1 for all i) and µ(A1) <∞, then µ(∩∞

i=1Ai) = limi→∞ µ(Ai)
(and both sides of the equation make sense).

(b) Show that in the second statement the condition µ(A1) <∞ is needed, by constructing a
counterexample for the statement when this condition does not hold.

2.2 Usefulness of the linearity of the expectation. A building has 10 floors, not including the ground
floor. On the ground floor, 10 people get into the elevator, and every one of them chooses a
destination at random, uniformly out of the 10 floors, independently of the others. Let X
denote the number of floors on which the elevator stops – i.e. the number of floors that were
chosen by at least one person. Calculate the expectation and the variance of X . (hint: First
notice that the distribution of X is hard to calculate. Find a way to calculate the expectation
and the variance without that.)

2.3 Calculate the characteristic function of

(a) The Bernoulli distribution B(p) (see Homework sheet 1)

(b) The “pessimistic geometric distribution with parameter p” – that is, the distribution µ on
{0, 1, 2 . . .} with weights µ({k}) = (1− p)pk (k = 0, 1, 2 . . . ).

(c) The “optimistic geometric distribution with parameter p” – that is, the distribution ν on
{1, 2, 3, . . .} with weights ν({k}) = (1− p)pk−1 (k = 1, 2 . . . ).

(d) (homework) The Poisson distribution with parameter λ – that is, the distribution η on

{0, 1, 2 . . .} with weights η({k}) = e−λ λk

k!
(k = 0, 1, 2 . . . ).

Solution:

ψPoi(λ)(t) =

∞
∑

k=0

eitke−λλ
k

k!
=

∞
∑

k=0

eitkη({k}) = e−λ

∞
∑

k=0

(λeit)k

k!
= e−λeλe

it

= eλ(e
it−1).

(e) (homework) The exponential distribution with parameter λ – that is, the distribution
on R with density (w.r.t. Lebesgue measure)

fλ(x) =

{

λe−λx, if x > 0

0, if not
.

Solution:

φExp(λ)(t) =

∫

R

eitxfλ(x) dLeb(x) =

∫ ∞

0

eitxλe−λx dx = λ

[

e(it−λ)x

it− λ

]∞

0

=
λ

λ− it
.
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2.4 (homework) Calculate the characteristic function of the normal distribution N (m, σ2). (Re-
member the definition from the old times: N (m, σ2) is the distribution on R with density
(w.r.t. Lebesgue measure)

fm,σ2(x) =
1√
2πσ

e−
(x−m)2

2σ2 .

You can save yourself some paperwork if you only do the calculation for N (0, 1) and reduce
the general case to this using the relation between different normal distributions. You can and
should use the fact that

∫ ∞

−∞

fm,σ2(x) dx = 1

for every m and σ.

Solution: First we reduce the general case to the case of the standard normal distribution
using the fact (known from old times, easy to check from the formulas) that if X ∼ N (0, 1)
and Y = m+ σX , then Y ∼ N (m, σ2). As a result, the characteristic function for the normal
distribution with expectation m and variance σ2 is

ψN (m,σ2)(t) = E(eitY ) = E(eitm+itσX ) = eitmE(ei(tσ)X ) = eitmψN (0,1)(σt), (1)

where ψN (0,1)(t) := E(eitX) is the characteristic function of the standard normal distribution.

Now we go on to calculate

ψN (0,1)(t) = E(eitX) =

∫ ∞

−∞

eitx
1√
2π
e−

x2

2 dx =

∫ ∞

−∞

1√
2π
e−

x2−2itx
2 dx =

=

∫ ∞

−∞

1√
2π
e−

(x−it)2−(it)2

2 dx = e−
t2

2

∫ ∞

−∞

1√
2π
e−

(x−it)2

2 dx.

We use the substitution y := x− it to get

ψN (0,1)(t) = e−
t2

2

∫ ∞

−∞

1√
2π
e−

y2

2 dx = e−
t2

2 .

In the last step we used that the standard normal density function (just like every probability
density function) integrates to 1. Writing this back to (1), we get the final result

ψN (m,σ2)(t) = eitme−
(σt)2

2 .

Remark: The substitution y = x − it is not completely trivial to make rigorous. In fact, with
this substitution, while x runs over the real line, y will run over a line in the complex plane,
namely the line γ of complex numbers with imaginary part −it, so leaving the boundaries as
−∞ and ∞ after the substitution is cheating. To make the argument precise, one has to show
that the integral on γ is equal to the integral on the real line. This is a typical application of
a standard, but strong tool of complex analysis, called the residue theorem. I will not go into
that here, and I don’t expect the students to do so either.

2.5 Dominated convergence and continuous differentiability of the characteristic function.
The Lebesgue dominated convergence theorem is the following

Theorem 2 (dominated convergence) Let (Ω,F , µ) be a measure space and f1, f2, . . . mea-
surable real valued functions on Ω which converge to the limit function pointwise, µ-almost
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everywehere. (That is, limn→∞ fn(x) = f(x) for every x ∈ Ω, except possibly for a set of x-es
with µ-measure zero.) Assume furthermore that the fn admit a common integrable dominating
function: there exists a g : Ω → R such that |fn(x)| ≤ g(x) for every x ∈ Ω and n ∈ N, and
∫

Ω
g dµ <∞. Then (all the fn and also f are integrable and)

lim
n→∞

∫

Ω

fn dµ =

∫

Ω

f dµ.

Use this theorem to prove the following

Theorem 3 (differentiability of the characteristic function) Let X be a real valued ran-
dom variable, ψ(t) = E(eitX) its characteristic function and n ∈ N. If the n-th moment of X
exists and is finite (i.e. E(|X|n) <∞), then ψ is n times continuously differentiable and

ψ(k)(0) = ikE(Xk), k = 0, 1, 2, . . . , n.

2.6 (homework) (Weak convergence and densities) Let f1, f2, . . . and f be probability densities on
R. Let F1, F2, . . . be the respective distribution functions, meaning that Fn(x) =

∫ x

−∞
fn(y) dy

and F (x) =
∫ x

−∞
f(y) dy. Show that if fn(x) → f(x) for every x as n → ∞, then also

Fn(x) → F (x) for every x as n→ ∞. (Hint: use the Fatou lemma.)

Solution: Fn(x) =
∫ x

−∞
fn(x) dx and fn(x) → f(x) for every x, so the Fatou lemma says that

F (x) =

∫ x

−∞

f(x) dx =

∫ x

−∞

lim inf
n→∞

fn(x) dx ≤ lim inf
n→∞

∫ x

−∞

fn(x) dx = lim inf
n→∞

Fn(x).

Similarly,

1− F (x) =

∫ ∞

x

f(x) dx =

∫ ∞

x

lim inf
n→∞

fn(x) dx

≤ lim inf
n→∞

∫ ∞

x

fn(x) dx = lim inf
n→∞

(1− Fn(x)) = 1− lim sup
n→∞

Fn(x),

which implies lim supn→∞ Fn(x) ≤ F (x), so Fn(x) → F (x) for every x, and we are done.
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