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1.1 Define a σ-algebra as follows:

Definition 1 For a nonempty set Ω, a family F of subsets of ω (i.e. F ⊂ 2Ω, where 2Ω :=
{A : A ⊂ Ω} is the power set of Ω) is called a σ-algebra over Ω if

(i) ∅ ∈ F

(ii) if A ∈ F , then AC := Ω \ A ∈ F (that is, F is closed under complement taking)

(iii) if A1, A2, · · · ∈ F , then (∪∞

i=1Ai) ∈ F (that is, F is closed under countable union).

Show from this definition that a σ-algebra is closed under countable intersection, and under
finite union and intersection.

Solution:

If B1, B2, · · · ∈ F then Ai := Ω \ Ai ∈ F as well, for i = 1, 2, . . . due to (1ii), and thus
C := (∪∞

i=1Ai) ∈ F by (1iii). Finally, Ω \ C ∈ F by (1ii), but Ω \ C = ∩∞

i=1Bi by the basics of
set algebra, so we have shown that F is closed under countable intersection. For finite union,
notice that if A1, A2, . . . , An ∈ F , then we can choose An+1 = An+2 = · · · = ∅ ∈ F by (1i),
to get (∪n

i=1Ai) = (∪∞

i=1Ai) ∈ F by (1iii). So F is shown to be closed under finite union.
Closedness under finite intersection can be seen similarly.

1.2 (a) We toss a biased coin, on which the probability of heads is some 0 ≤ p ≤ 1. Define the
random variable ξ as the indicator function of tossing heads, that is

ξ :=

{

0, if tails

1, if heads
.

i. Describe the distribution of ξ (called the Bernoulli distribution with parameter p) in
the “classical” way, listing possible values and their probabilities,

ii. and also by describing the distirbution as a measure on R, giving the weight P(ξ ∈ B)
of every Borel subset B of R.

iii. Calculate the expectation of ξ.

(b) We toss the previous biased coin n times, and denote by X the number of heads tossed.

i. Describe the distribution of X (called the Binomial distribution with parameters
(n, p)) by listing possible values and their probabilities.

ii. Calculate the expectation of X by integration (actually summation in this case) using
its distribution,

iii. and also by noticing that X = ξ1 + ξ2 + · · ·+ ξn, where ξi is the indicator of the i-th
toss being heads, and using linearity of the expectation.

Solution:

(a) i. The possible values are 0 and 1, their probabilities are P(ξ = 0) = 1 − p and P(ξ =
1) = p.
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ii. µ(B) = P(ξ ∈ B) =



















1, if 0 ∈ B and 1 ∈ B,

1− p, if 0 ∈ B but 1 /∈ B,

p, if 1 ∈ B but 0 /∈ B,

0, if 0 /∈ B and 1 /∈ B.

iii. Eξ = 0 · P(ξ = 0) + 1 · P(ξ = 1) = 0 · (1− p) + 1 · p = p.

(b) i. The possible values are 0, 1, 2, . . . , n, their probabilities are

P(X = k) =

(

n

k

)

pk(1− p)n−k, k = 0, 1, 2, . . . , n.

ii. If we denote the distribution of X by µ, then

EX =

∫

R

x dµ(x) =

n
∑

k=0

k · µ({k}) =
n

∑

k=0

k · P(X = k) =

n
∑

k=0

k

(

n

k

)

pk(1− p)n−k.

To calculate this sum, one of the many ways is to consider the two-variable function

f(u, v) :=

n
∑

k=0

k

(

n

k

)

ukvn−k.

Then what we want to know is EX = f(p, 1 − p), but of course we are even more
happy if we can calculate f(u, v) for every (u, v). Now we notice that

f(u, v) = u
∂

∂u
g(u, v) where g(u, v) =

n
∑

k=0

(

n

k

)

ukvn−k.

This is now easy: by the binomial theorem g(u, v) = (u+ v)n, so

f(u, v) = u
∂

∂u
(u+ v)n = nu(u+ v)n−1,

and
EX = f(p, 1− p) = np(p+ 1− p)n = np.

iii. This is much easier:

EX = E(

n
∑

i=1

ξi) =

n
∑

i=1

Eξi =

n
∑

i=1

p = np.

1.3 The Fatou lemma is the following

Theorem 1 Let (Ω,F , µ) be a measure space and f1, f2, . . . a sequence of measureabale func-
tions fn : Ω → R, which are nonneagtive, e.g. fn(x) ≥ 0 for every n = 1, 2, . . . and every
x ∈ Ω. Then

∫

Ω

lim inf
n→∞

fn(x) dµ(x) ≤ lim inf
n→∞

∫

Ω

fn(x) dµ(x)

(and both sides make sense).
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Show that the inequality in the opposite direction is in general false, by choosing Ω = R, µ as
the Lebesgue measure on R, and constructing a sequence of nonnegative fn : R → R for which
fn(x)

n→∞

−−−→ 0 for every x ∈ R, but
∫

R
fn(x) dx ≥ 1 for all n.

Solution: The standard counterexample is

fn(x) :=

{

1, if n ≤ x ≤ n + 1,

0, if not.

The phenomenon behind the counteraxample – as often – is that exchangeability of integral
and limit can fail if mass “escapes to infinity”.

1.4 The ternary number 0.a1a2a3 . . . is the analogue of the usual decimal fraction, but writing
numbers in base 3. That is, for any sequence a1, a2, a3, . . . with an ∈ {0, 1, 2}, by definition

0.a1a2a3 · · · :=
∞
∑

n=1

an
3n

.

Now let us construct the ternary fraction form of a random real number X via a sequence of
fair coin tosses, such that we rule out the digit 1. That is,

an :=

{

0, if the n-th toss is tails,

2, if the n-th toss is heads
,

and setting X = 0.a1a2a3 . . . (ternary). In this way, X is a “uniformly” chosen random point
of the famous middle-third Cantor set C defined as

C :=

{

∞
∑

n=1

an
3n

, an ∈ {0, 2} (n = 1, 2, . . . )

}

.

Show that

(a) The distribution of X gives zero weight to every point – that is, P(X = x) = 0 for every
x ∈ R. (As a consequence, the cumulative distribution function of X is continuous.)

(b) The distribution of X is not absolutely continuous w.r.t the Lebesgue measure on R.

Solution:

(a) Similarly to a decimal expansion, the ternary expansion of a real number x ∈ [0, 1] is
essentially unique: every x can be written in the form x = 0.a1a2a3 . . . in only one,
or possibly two ways. (There are actually two ways for some rational numbers, since
e.g. 0.10222222̇ = 0.11000000̇.) However, every individual sequence a1, a2, a3, . . . has
probability 1

2
· 1

2
· 1

2
· · · · = 0, so every x is given weight at most twice zero which is still

zero.

(b) The distribution of X cannot be absolutely continuous w.r.t. Lebesgue measure, since it
gives positive measure to C (P(X ∈ C) = 1), which has Lebesgue measure zero (Leb(C) =
0). To see that the Lebesgue measure of C is indeed zero, notice that the set in the n-t
level of the construction of C,

Cn :=

{

∞
∑

k=1

ak
3k

, ak ∈ {0, 2} for k = 1, 2, . . . , n but ak ∈ {0, 1, 2} for k ≥ n+ 1

}

,
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has Lebesgue measure

Leb(Cn) =

(

2

3

)n

.

Now C ⊂ Cn for every n ∈ N, so

Leb(C) ≤ Leb(Cn) =

(

2

3

)n

for every n,

which implies that Leb(C) = 0.

(Actually, this means not only that the distribution µ of X is not absolutely continuous
w.r.t. Lebesgue measure, but that the two measures are singular w.r.t each other, which
means that R can be decomposed into two disjoint subsets (namely C and R \ C,) such
that one is “unseen” by one measure (Leb(C) = 0), while the other is “unseen” by the
other measure (µ(R \ C) = 0).)
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