Probability 1
CEU Budapest, fall semester 2016
Imre Péter Tóth
Midterm exam, 25.10.2013 - solutions
Working time: 120 minutes $\approx \infty$
Every question is worth 10 points. Maximum total score: 30.

1. Is there a sequence X_{n} of random variables on the same probability space such that
a.) $X_{n} \rightarrow 0$ almost surely, and $\mathbb{E} X_{n}^{2} \rightarrow \frac{1}{2}$?
b.) $X_{n} \rightarrow 0$ almost surely, and $\mathbb{E} \sin \left(X_{n}\right) \rightarrow \frac{1}{2}$?

If no, why not? If yes, give an example!

Solution:

a.) Yes. For example, let the probability space be $(\Omega, \mathcal{F}, \mathbb{P})=((0,1)$, Borel, Leb $)$ and let $X_{n}: \Omega \rightarrow \mathbb{R}$ be

$$
X_{n}(\omega)= \begin{cases}\sqrt{\frac{n}{2}} & \text { if } 0<x<\frac{1}{n} \\ 0 & \text { if not }\end{cases}
$$

Then $X_{n} \rightarrow 0$ for every $\omega \in(0,1)=\Omega$, but

$$
\mathbb{E} X_{n}^{2}=\int_{\Omega} X_{n}^{2} \mathrm{~d} \mathbb{P}=\int_{(0,1)} X_{n}^{2}(\omega) \mathrm{d} \omega=\int_{0}^{\frac{1}{n}} \frac{n}{2} \mathrm{~d} \omega=\frac{1}{2}
$$

for every n, so $\mathbb{E} X_{n}^{2} \rightarrow \frac{1}{2}$.
b.) No. $f(x)=\sin x$ is continuous and $-1 \leq f \leq 1$, so if $X_{n} \rightarrow 0$ almost surely, then $Y_{n}:=$ $f\left(X_{n}\right) \rightarrow Y:=f(0)=0$ almost surely, and the dominated convergence theorem (or the bounded convergence theorem) ensures that $\mathbb{E} Y_{n}=\int_{\Omega} Y_{n} \mathrm{~d} \mathbb{P} \rightarrow \int_{\Omega} Y \mathrm{~d} \mathbb{P}=\mathbb{E} Y=0$. (Alternative proof: If $X_{n} \rightarrow 0$ almost surely, then also $X_{n} \Rightarrow 0$ weakly, so $\mathbb{E} f\left(X_{n}\right) \rightarrow$ $\mathbb{E} f(0)=0$ for the bounded and continuous test function $f(x)=\sin x$.)
2. Let X_{1}, X_{2}, \ldots be independent, $X_{n} \sim B\left(p_{n}\right)$ with $p_{n} \in[0,1]$. Let $Y=\sum_{n=1}^{\infty} X_{n}$.
a.) Show that if $\sum_{n=1}^{\infty} p_{n}<\infty$, then $Y<\infty$ almost surely.
b.) Show that if $\sum_{n=1}^{\infty} p_{n}=\infty$, then $Y=\infty$ almost surely.

Solution: Let $A_{n}=\left\{X_{n}=1\right\}$. So $\mathbb{P}\left(A_{n}\right)=p_{n}$, and $Y=\infty$ if and only if A_{n} occurs for infinitely many values of n.
a.) If $\sum_{n=1}^{\infty} p_{n}<\infty$, then this has probability 0 by the first Borel-Cantelli lemma.
b.) If $\sum_{n=1}^{\infty} p_{n}=\infty$, then this has probability 1 by the first Borel-Cantelli lemma, since the A_{n} are independent, because the X_{n} are independent.
3. Let X_{1}, X_{2}, \ldots be random variables on the same probability space, $X_{n} \sim \operatorname{Exp}\left(\lambda_{n}\right)$ with $\lambda_{n}>0$. Show that if $\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}<\infty$, then $\sum_{n=1}^{\infty} X_{n}<\infty$ almost surely.
Solution: Let $Y_{N}=\sum_{n=1}^{N} X_{n}$. Since $X_{n} \geq 0$, the sequence Y_{N} is nonnegative and increasing, $Y:=\sum_{n=1}^{\infty} X_{n}=\lim _{N \rightarrow \infty} Y_{N}$ exists (but it's possibly infinite). The expectations are $\mathbb{E} X_{n}=\frac{1}{\lambda_{n}}$ and so $\mathbb{E} Y_{N}=\sum_{n=1}^{N} \frac{1}{\lambda_{n}}$. The monotone convergence theorem ensures that

$$
\mathbb{E} Y=\mathbb{E} \lim _{N \rightarrow \infty} Y_{N}=\lim _{N \rightarrow \infty} \mathbb{E} Y_{N}=\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}
$$

which is finite by assumption. But of course, if $\mathbb{E} Y<\infty$, then $Y<\infty$ almost surely.
4. A kind of molecule is trying to decompose into atoms the following way: At each time $t \in\{\delta, 2 \delta, 3 \delta, \ldots\}$ it tries to decompose, and it always succeeds with probabilty δ, which is very small - if it has not succeeded before. If it fails, it tries again next time, indepenedently of the past attempts. (We measure time in hours).
Let T_{δ} denote the random time when it successfully decomposes.
Find the weak limit of T_{δ} as $\delta \rightarrow 0$. (Find means: describe in your favourite way, or write down its name.)
Solution: Let $X_{\delta}=\frac{T_{\delta}}{\delta} \in \mathbb{N}$, so X_{δ} is the number of attempts needed to successfully decompose. Clearly X_{δ} has geometrical distribution with parameter δ, which means that $\mathbb{P}\left(X_{\delta}=k\right)=(1-\delta)^{k-1} \delta$ for $k=1,2, \ldots$ However, it is more fortunate to look at the tail of the distribution:

$$
\mathbb{P}\left(X_{\delta}>k\right)=\mathbb{P}(\text { the first } k \text { attempts fail })=(1-\delta)^{k} \quad \text { for } k=0,1,2, \ldots
$$

For possibly noninteger x this means

$$
\mathbb{P}\left(X_{\delta}>x\right)=\mathbb{P}\left(X_{\delta}>\lfloor x\rfloor\right)=(1-\delta)^{\lfloor x\rfloor} \quad \text { for } x \geq 0
$$

where $\lfloor x\rfloor$ means the lower integer part of x.
So the distribution function of X_{δ} is

$$
F_{X_{\delta}}(x)=\mathbb{P}\left(X_{\delta} \leq x\right)=1-\mathbb{P}\left(X_{\delta}>x\right)=\left\{\begin{array}{ll}
0 & \text { if } x<0 \\
1-(1-\delta)^{\lfloor x\rfloor} & \text { if } x \geq 0
\end{array} .\right.
$$

Since $T_{\delta}=\delta X_{\delta}$, its distribution function is

$$
\begin{aligned}
F_{T_{\delta}}(t) & =\mathbb{P}\left(T_{\delta} \leq t\right)=\mathbb{P}\left(\delta X_{\delta} \leq t\right)=\mathbb{P}\left(X_{\delta} \leq \frac{t}{\delta}\right)= \\
& =F_{X_{\delta}}\left(\frac{t}{\delta}\right)= \begin{cases}0 & \text { if } t<0 \\
1-(1-\delta)^{\left\lfloor\frac{t}{\delta}\right\rfloor} & \text { if } t \geq 0\end{cases}
\end{aligned}
$$

By elementary calculus, for $t>0$

$$
\lim _{\delta \rightarrow 0} F_{T_{\delta}}(t)=\lim _{\delta \rightarrow 0}\left[1-(1-\delta)^{\left\lfloor\frac{t}{\delta}\right\rfloor}\right]=1-\exp \left(\lim _{\delta \rightarrow 0}\left[-\delta\left\lfloor\frac{t}{\delta}\right\rfloor\right]\right)=1-e^{-t}
$$

so for every $t \in \mathbb{R}$

$$
F_{T_{\delta}}(t) \rightarrow F(t):= \begin{cases}0 & \text { if } t<0 \\ 1-e^{-t} & \text { if } t \geq 0\end{cases}
$$

as $\delta \rightarrow 0$. So we have shown $F_{T_{\delta}} \Rightarrow F$ where F is the distribution function of the exponential distribution with parameter 1 , so $T_{\delta} \stackrel{\delta \rightarrow 0}{\Rightarrow} \operatorname{Exp}(1)$.

