Probability 1 CEU Budapest, fall semester 2016 Imre Péter Tóth Midterm exam, 25.10.2013 – solutions Working time: 120 minutes $\approx \infty$ Every question is worth 10 points. Maximum total score: 30.

- 1. Is there a sequence X_n of random variables on the same probability space such that
 - a.) $X_n \to 0$ almost surely, and $\mathbb{E}X_n^2 \to \frac{1}{2}$?
 - b.) $X_n \to 0$ almost surely, and $\mathbb{E}\sin(X_n) \to \frac{1}{2}$?

If no, why not? If yes, give an example!

Solution:

a.) Yes. For example, let the probability space be $(\Omega, \mathcal{F}, \mathbb{P}) = ((0, 1), Borel, Leb)$ and let $X_n : \Omega \to \mathbb{R}$ be

$$X_n(\omega) = \begin{cases} \sqrt{\frac{n}{2}} & \text{if } 0 < x < \frac{1}{n} \\ 0 & \text{if not} \end{cases}$$

Then $X_n \to 0$ for every $\omega \in (0, 1) = \Omega$, but

$$\mathbb{E}X_n^2 = \int_{\Omega} X_n^2 \,\mathrm{d}\mathbb{P} = \int_{(0,1)} X_n^2(\omega) \,\mathrm{d}\omega = \int_0^{\frac{1}{n}} \frac{n}{2} \,\mathrm{d}\omega = \frac{1}{2}$$

for every n, so $\mathbb{E}X_n^2 \to \frac{1}{2}$.

- b.) No. $f(x) = \sin x$ is continuous and $-1 \le f \le 1$, so if $X_n \to 0$ almost surely, then $Y_n := f(X_n) \to Y := f(0) = 0$ almost surely, and the dominated convergence theorem (or the bounded convergence theorem) ensures that $\mathbb{E}Y_n = \int_{\Omega} Y_n \, d\mathbb{P} \to \int_{\Omega} Y \, d\mathbb{P} = \mathbb{E}Y = 0$. (Alternative proof: If $X_n \to 0$ almost surely, then also $X_n \Rightarrow 0$ weakly, so $\mathbb{E}f(X_n) \to \mathbb{E}f(0) = 0$ for the bounded and continuous test function $f(x) = \sin x$.)
- 2. Let X_1, X_2, \ldots be independent, $X_n \sim B(p_n)$ with $p_n \in [0, 1]$. Let $Y = \sum_{n=1}^{\infty} X_n$.
 - a.) Show that if $\sum_{n=1}^{\infty} p_n < \infty$, then $Y < \infty$ almost surely.
 - b.) Show that if $\sum_{n=1}^{\infty} p_n = \infty$, then $Y = \infty$ almost surely.

Solution: Let $A_n = \{X_n = 1\}$. So $\mathbb{P}(A_n) = p_n$, and $Y = \infty$ if and only if A_n occurs for infinitely many values of n.

- a.) If $\sum_{n=1}^{\infty} p_n < \infty$, then this has probability 0 by the first Borel-Cantelli lemma.
- b.) If $\sum_{n=1}^{\infty} p_n = \infty$, then this has probability 1 by the first Borel-Cantelli lemma, since the A_n are independent, because the X_n are independent.
- 3. Let X_1, X_2, \ldots be random variables on the same probability space, $X_n \sim Exp(\lambda_n)$ with $\lambda_n > 0$. Show that if $\sum_{n=1}^{\infty} \frac{1}{\lambda_n} < \infty$, then $\sum_{n=1}^{\infty} X_n < \infty$ almost surely.

Solution: Let $Y_N = \sum_{n=1}^N X_n$. Since $X_n \ge 0$, the sequence Y_N is nonnegative and increasing, $Y := \sum_{n=1}^{\infty} X_n = \lim_{N \to \infty} Y_N$ exists (but it's possibly infinite). The expectations are $\mathbb{E}X_n = \frac{1}{\lambda_n}$ and so $\mathbb{E}Y_N = \sum_{n=1}^N \frac{1}{\lambda_n}$. The monotone convergence theorem ensures that

$$\mathbb{E}Y = \mathbb{E}\lim_{N \to \infty} Y_N = \lim_{N \to \infty} \mathbb{E}Y_N = \sum_{n=1}^{\infty} \frac{1}{\lambda_n},$$

which is finite by assumption. But of course, if $\mathbb{E}Y < \infty$, then $Y < \infty$ almost surely.

4. A kind of molecule is trying to decompose into atoms the following way: At each time $t \in \{\delta, 2\delta, 3\delta, ...\}$ it tries to decompose, and it always succeeds with probability δ , which is very small – if it has not succeeded before. If it fails, it tries again next time, independently of the past attempts. (We measure time in hours).

Let T_{δ} denote the random time when it successfully decomposes.

Find the weak limit of T_{δ} as $\delta \to 0$. (Find means: describe in your favourite way, or write down its name.)

Solution: Let $X_{\delta} = \frac{T_{\delta}}{\delta} \in \mathbb{N}$, so X_{δ} is the number of attempts needed to successfully decompose. Clearly X_{δ} has geometrical distribution with parameter δ , which means that $\mathbb{P}(X_{\delta} = k) = (1 - \delta)^{k-1} \delta$ for $k = 1, 2, \ldots$ However, it is more fortunate to look at the tail of the distribution:

$$\mathbb{P}(X_{\delta} > k) = \mathbb{P}(\text{the first } k \text{ attempts fail}) = (1 - \delta)^k \text{ for } k = 0, 1, 2, \dots$$

For possibly noninteger x this means

$$\mathbb{P}(X_{\delta} > x) = \mathbb{P}(X_{\delta} > \lfloor x \rfloor) = (1 - \delta)^{\lfloor x \rfloor} \quad \text{for } x \ge 0,$$

where $\lfloor x \rfloor$ means the lower integer part of x.

So the distribution function of X_{δ} is

$$F_{X_{\delta}}(x) = \mathbb{P}(X_{\delta} \le x) = 1 - \mathbb{P}(X_{\delta} > x) = \begin{cases} 0 & \text{if } x < 0\\ 1 - (1 - \delta)^{\lfloor x \rfloor} & \text{if } x \ge 0 \end{cases}$$

Since $T_{\delta} = \delta X_{\delta}$, its distribution function is

$$F_{T_{\delta}}(t) = \mathbb{P}(T_{\delta} \le t) = \mathbb{P}(\delta X_{\delta} \le t) = \mathbb{P}\left(X_{\delta} \le \frac{t}{\delta}\right) = = F_{X_{\delta}}\left(\frac{t}{\delta}\right) = \begin{cases} 0 & \text{if } t < 0\\ 1 - (1 - \delta)^{\lfloor \frac{t}{\delta} \rfloor} & \text{if } t \ge 0 \end{cases}.$$

By elementary calculus, for t > 0

$$\lim_{\delta \to 0} F_{T_{\delta}}(t) = \lim_{\delta \to 0} \left[1 - (1 - \delta)^{\left\lfloor \frac{t}{\delta} \right\rfloor} \right] = 1 - \exp\left(\lim_{\delta \to 0} \left[-\delta \left\lfloor \frac{t}{\delta} \right\rfloor \right] \right) = 1 - e^{-t},$$

so for every $t \in \mathbb{R}$

$$F_{T_{\delta}}(t) \to F(t) := \begin{cases} 0 & \text{if } t < 0\\ 1 - e^{-t} & \text{if } t \ge 0 \end{cases}$$

as $\delta \to 0$. So we have shown $F_{T_{\delta}} \Rightarrow F$ where F is the distribution function of the exponential distribution with parameter 1, so $T_{\delta} \stackrel{\delta \to 0}{\Rightarrow} Exp(1)$.