
Probability 1

CEU Budapest, fall semester 2016

Imre Péter Tóth
Midterm exam, 25.10.2013 – solutions

Working time: 120 minutes ≈ ∞
Every question is worth 10 points. Maximum total score: 30.

1. Is there a sequence Xn of random variables on the same probability space such that

a.) Xn → 0 almost surely, and EX2
n → 1

2
?

b.) Xn → 0 almost surely, and E sin(Xn) →
1
2
?

If no, why not? If yes, give an example!

Solution:

a.) Yes. For example, let the probability space be (Ω,F ,P) = ((0, 1), Borel, Leb) and let
Xn : Ω → R be

Xn(ω) =

{

√

n
2

if 0 < x < 1
n

0 if not
.

Then Xn → 0 for every ω ∈ (0, 1) = Ω, but

EX2
n =

∫

Ω

X2
n dP =

∫

(0,1)

X2
n(ω) dω =

∫ 1

n

0

n

2
dω =

1

2

for every n, so EX2
n → 1

2
.

b.) No. f(x) = sin x is continuous and −1 ≤ f ≤ 1, so if Xn → 0 almost surely, then Yn :=
f(Xn) → Y := f(0) = 0 almost surely, and the dominated convergence theorem (or
the bounded convergence theorem) ensures that EYn =

∫

Ω
Yn dP →

∫

Ω
Y dP = EY = 0.

(Alternative proof: If Xn → 0 almost surely, then also Xn ⇒ 0 weakly, so Ef(Xn) →
Ef(0) = 0 for the bounded and continuous test function f(x) = sin x.)

2. Let X1, X2, . . . be independent, Xn ∼ B(pn) with pn ∈ [0, 1]. Let Y =
∑∞

n=1Xn.

a.) Show that if
∑∞

n=1 pn < ∞, then Y < ∞ almost surely.

b.) Show that if
∑∞

n=1 pn = ∞, then Y = ∞ almost surely.

Solution: Let An = {Xn = 1}. So P(An) = pn, and Y = ∞ if and only if An occurs for
infinitely many values of n.

a.) If
∑∞

n=1 pn < ∞, then this has probability 0 by the first Borel-Cantelli lemma.

b.) If
∑∞

n=1 pn = ∞, then this has probability 1 by the first Borel-Cantelli lemma, since
the An are independent, because the Xn are independent.

3. Let X1, X2, . . . be random variables on the same probability space, Xn ∼ Exp(λn) with
λn > 0. Show that if

∑∞
n=1

1
λn

< ∞, then
∑∞

n=1Xn < ∞ almost surely.

Solution: Let YN =
∑N

n=1Xn. Since Xn ≥ 0, the sequence YN is nonnegative and in-
creasing, Y :=

∑∞
n=1Xn = limN→∞ YN exists (but it’s possibly infinite). The expectations

are EXn = 1
λn

and so EYN =
∑N

n=1
1
λn
. The monotone convergence theorem ensures that

EY = E lim
N→∞

YN = lim
N→∞

EYN =

∞
∑

n=1

1

λn

,

which is finite by assumption. But of course, if EY < ∞, then Y < ∞ almost surely.
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4. A kind of molecule is trying to decompose into atoms the following way: At each time
t ∈ {δ, 2δ, 3δ, . . . } it tries to decompose, and it always succeeds with probabilty δ, which is
very small – if it has not succeeded before. If it fails, it tries again next time, indepenedently
of the past attempts. (We measure time in hours).

Let Tδ denote the random time when it successfully decomposes.

Find the weak limit of Tδ as δ → 0. (Find means: describe in your favourite way, or write
down its name.)

Solution: Let Xδ = Tδ

δ
∈ N, so Xδ is the number of attempts needed to successfully

decompose. Clearly Xδ has geometrical distribution with parameter δ, which means that
P(Xδ = k) = (1− δ)k−1δ for k = 1, 2, . . . . However, it is more fortunate to look at the tail
of the distribution:

P(Xδ > k) = P(the first k attempts fail) = (1− δ)k for k = 0, 1, 2, . . . .

For possibly noninteger x this means

P(Xδ > x) = P(Xδ > ⌊x⌋) = (1− δ)⌊x⌋ for x ≥ 0,

where ⌊x⌋ means the lower integer part of x.

So the distribution function of Xδ is

FXδ
(x) = P(Xδ ≤ x) = 1− P(Xδ > x) =

{

0 if x < 0

1− (1− δ)⌊x⌋ if x ≥ 0
.

Since Tδ = δXδ, its distribution function is

FTδ
(t) = P(Tδ ≤ t) = P(δXδ ≤ t) = P

(

Xδ ≤
t

δ

)

=

= FXδ

(

t

δ

)

=

{

0 if t < 0

1− (1− δ)⌊
t

δ⌋ if t ≥ 0
.

By elementary calculus, for t > 0

lim
δ→0

FTδ
(t) = lim

δ→0

[

1− (1− δ)⌊
t

δ⌋
]

= 1− exp

(

lim
δ→0

[

−δ

⌊

t

δ

⌋])

= 1− e−t,

so for every t ∈ R

FTδ
(t) → F (t) :=

{

0 if t < 0

1− e−t if t ≥ 0

as δ → 0. So we have shown FTδ
⇒ F where F is the distribution function of the

exponential distribution with parameter 1, so Tδ
δ→0
⇒ Exp(1).
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