$\begin{array}{c} \mbox{Probability 1} \\ \mbox{CEU Budapest, fall semester 2016} \\ \mbox{Imre Péter Tóth} \\ \mbox{Midterm exam, 25.10.2016} \\ \mbox{Working time: 120 minutes} \approx \infty \\ \mbox{Every question is worth 10 points. Maximum total score: 30.} \end{array}$

- 1. Is there a sequence X_n of random variables on the same probability space such that
 - a.) $X_n \to 0$ almost surely, and $\mathbb{E}X_n^2 \to \frac{1}{2}$?
 - b.) $X_n \to 0$ almost surely, and $\mathbb{E}\sin(X_n) \to \frac{1}{2}$?

If no, why not? If yes, give an example!

- 2. Let X_1, X_2, \ldots be independent, $X_n \sim B(p_n)$ with $p_n \in [0, 1]$. Let $Y = \sum_{n=1}^{\infty} X_n$.
 - a.) Show that if $\sum_{n=1}^{\infty} p_n < \infty$, then $Y < \infty$ almost surely.
 - b.) Show that if $\sum_{n=1}^{\infty} p_n = \infty$, then $Y = \infty$ almost surely.
- 3. Let X_1, X_2, \ldots be random variables on the same probability space, $X_n \sim Exp(\lambda_n)$ with $\lambda_n > 0$. Show that if $\sum_{n=1}^{\infty} \frac{1}{\lambda_n} < \infty$, then $\sum_{n=1}^{\infty} X_n < \infty$ almost surely.
- 4. A kind of molecule is trying to decompose into atoms the following way: At each time $t \in \{\delta, 2\delta, 3\delta, ...\}$ it tries to decompose, and it always succeeds with probability δ , which is very small if it has not succeeded before. If it fails, it tries again next time, independently of the past attempts. (We measure time in hours).

Let T_{δ} denote the random time when it successfully decomposes.

Find the weak limit of T_{δ} as $\delta \to 0$. (Find Means: describe in your favourite way, or write down its name.)