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Imre Péter Tóth
Final exam, 06.12.2016 – solutions

Working time: 150 minutes
Every question is worth 10 points. Maximum total score: 40 points.

1. (after correcting an error) We toss a fair coin infinitely many times and set Xi = 1 if
the ith toss is heads, and Xi = 0, if not. Now let

Yi =

{

XiXi+1, if i is odd

Xi−1 +Xi if i is even
.

Let Sn = Y1 + · · ·+ Yn. Find and prove the weak limit of
Sn−

5

8
n

√
n

.

Solution: The Yi are neither independent, nor identically distributed, so the central limit
theorem can not be applied directly. However, if we add them up pairwise, defining

Z1 := Y1 + Y2, Z2 := Y3 + Y4, Z3 := Y5 + Y6, . . . ,

then Z1, Z2, Z3, . . . are mutually independent and identically distributed, so the central
limit theorem applies. To understand the distribution of Zi, maybe the easiest is to calcu-
late al possible values explicitly:

X1 X2 Y1 Y2 Z1

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 2 3

Since Xi ∼ B(1
2
) and they are independent, we have

k 0 1 3
P(Z1 = k) 1

4
1
2

1
4

This gives EZ1 =
1
4
·0+ 1

2
·1+ 1

4
·3 = 5

4
, EZ2

1 = 1
4
·02+ 1

2
·12+ 1

4
·32 = 11

4
, V arZ1 =

11
4
−
(

5
4

)2
= 19

16
.

If we define
S̃k := Z1 + Z2 + · · ·+ Zk,

then we can describe Sn = X1 + · · · + Xn at least when n is even: S2k = S̃k. Now the
central limit theorem says that

S̃k − 5
4
k√

k
⇒ N

(

0,
19

16

)

,

so for n = 2k we get

Sn − 5
8
n√

n
=
S2k − 5

8
· 2k√

2k
=
S̃k − 5

4
k√

2
√
k

⇒ 1√
2
N

(

0,
19

16

)

= N
(

0,
19

32

)

.

Now if m = n+ 1 = 2k + 1 is odd, then Sm − Sn = Xm always has the same distribution,
so it cannot spoil the weak convergence:

Sm − 5
8
m√

m
=

Sn+1 − 5
8
(n+ 1)√

n + 1
=

√
n√

n+ 1

(

Sn − 5
8
n√

n
+
Xm − 5

8√
n

)

⇒

⇒ 1 ·
(

N
(

0,
19

32

)

+ 0

)

= N
(

0,
19

32

)

.



2. Let Xn ∼ Bin(n, 1
n
). Show that Xn is weakly convergent and describe the limit.

Solution: This is a special case of Homework 4.1. The solution copied from there: Let
pn = 1

n
and set qn = 1− pn, so Xn has characteristic function

ψXn
(t) =

(

qn + pne
it
)n

=

[

(

1 +
eit − 1

1/pn

)1/pn
]npn

.

The base of the power converges to exp(eit−1) as pn → 0 by standard elementary calculus,
while the exponent is to npn = 1 =: λ, so

ψXn
(t) → eλ(e

it−1),

which is exactly the characteristic function of the Poi(λ) distribution with λ = 1, so the
continuity theorem ensures that Xn converges to Poi(λ) weakly.

Alternative solution: For every fixed k ∈ {0, 1, 2, . . . }

P(Xn = k) =

(

n

k

)(

1

n

)k (

1− 1

n

)n−k

=

=
n(n− 1) · · · (n + k + 1)

k!

1

nk

(

1− 1

n

)n (

1− 1

n

)−k

=

=
1

k!

n(n− 1) · · · (n + k + 1)

nk

(

1− 1

n

)−k (

1− 1

n

)n

→

→ 1

k!
· 1 · 1 · e−1 = e−1 1

k

k!
= P(Poi(1) = k).

By Exercise 3.2.11 from Durrett [1], this means that Xn ∼ Poi(1).

3. A frog performs a discrete time “lazy” and “sticky” symmetric random walk on the set
{−10,−9, . . . , 9, 10}, stating from 0, with time-dependent jump probabilities: At time 0
the frog is in 0. If it reaches −10 or 10, then it stays there forever. If it has not reached
−10 or 10, then in the ith time step it jumps one step down with probability pi

2
, it jumps

one step up with probability pi
2
, and stays where it was with the remaining probability

qi = 1− pi, independently of what happened before.

Is it possible to choose the sequence pi so that the frog performs infinitely many jumps?

And what if pi can depend on the entire past of the frog’s trajectory?

Solution: No, It is not possible. No matter what strategy the frog follows, its position is a
bounded martingale, so it has to be convergent almost surely by the matringale convergence
theorem. Since the values are discrete, this means that is has to be almost surely eventually
constant, meaning finitely many jumps.

4. Define the notion of conditional expectation with respect to a σ-algebra for integrable
random variables, and show that it always exists.

Solution:

Definition: Let (Ω,F ,P) be a probability space, let X : Ω → R be a random variable with
E|X| < ∞ and let G ⊂ F be a sub-σ-algebra. The random variable Y : Ω → R is said to
be the conditional expectation of X with respect to G if

a.) Y is G-measurable,

b.)
∫

A
Y dP =

∫

A
X dP for all A ∈ G.
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Notation: Y = E(X|G).
Proof of existence: First for X ≥ 0. Consider the measurable space (Ω,G), and on this
space consider the set functions µ, ν : G → R

+ defined for A ∈ G as

µ(A) := P(A) =

∫

A

1 dP

ν(A) :=

∫

A

X dP.

It is easy to check thet these are finite measures and ν is absolutely continuous with respect
to µ. So the Radon-Nikodym theorem says that there exists a Radon-Nikodym derivative
f : Ω → R, which, by definiton, has the properties that

a.) f is G-measurable,

b.) ν(A) =
∫

A
f dµ for all A ∈ G.

Comparing these with the definition of the conditional expectation, we see that Y := f
will do.

In the general case whenX may be negative, we writeX = X+−X− and apply the previous
construction for X+ and X− separately, to get some Y + and Y +. Then Y := Y + − Y −

will do.

5. Coupon collector problem. Bob keeps drawing cards from a pile of n different cards, with
replacement, meaning that every card drawn is chosen uniformly and independently of the
others. Let Y n

k be the number of draws he needs in order to see at least k different cards,
and let Un = Y n

n be the number of draws until all cards are seen.

(a) What is the distribution of (Y n
k+1−Y n

k ), that is, the number of draws he needs to find
yet another new card if he has already seen k?

(b) Calculate the expectation and variance of Un.

(c) Find the limit distribution of Un

n logn
.

Solution:

(a) τnk := Y n
k+1 − Y n

k ∼ Geom
(

n−k
n

)

for k = 0, 1, . . . , n− 1, because n− k out of n cards
are unseen, so the success probability is pk := n−k

n
.

(b) Un =
∑n−1

k=0 τ
n
k and the τnk are independent, so we just need to add the expectations

and variances. These moments of the geometric distribution can be calculated in
many ways (e.g. using the definition, or the characteristic function, or the generating
function), and the result is

E(Geom(p)) =
1

p
, V ar(Geom(p)) =

1− p

p2
.

So

EUn =
n−1
∑

k=0

Eτnk =
n−1
∑

k=0

n

n− k

j=n−k
= n

n
∑

j=1

1

j
= n

(

1 +
1

2
+

1

3
+ · · ·+ 1

n

)

V arUn =

n−1
∑

k=0

V arτnk =

n−1
∑

k=0

nk

(n− k)2
j=n−k
= n

n
∑

j=1

n− j

j2
=

= n

(

n− 1

12
+
n− 2

22
+
n− 3

32
+ · · ·+ 1

(n− 1)2
+

0

n2

)
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(c) If we approximate the sum in EUn with an integral, we get

lim
n→∞

EUn

n log n
= 1. (1)

On the other hand

V arUn = n
n

∑

j=1

n− j

j2
≤ n2

∞
∑

j=1

1

j2
= Cn2,

where C :=
∑∞

j=1
1
j2
<∞. (Actually limn→∞

V arUn

n2 = C = π2

6
.) This means that

√

V arUn ≪ EUn,

so
Un

EUn
⇒ 1

because E
Un

EUn

= 1 and V ar Un

EUn

→ 0. Together with (1) this gives

Un

n log n
⇒ 1.
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