Probability 1 CEU Budapest, fall semester 2016 Imre Péter Tóth

Homework sheet 6 - due on 21.11.2013 - and exercises for practice

- 6.1 Durrett [1], Exercise 5.2.1
- 6.2 (homework) Durrett [1], Exercise 5.2.3
- 6.3 (homework) Durrett [1], Exercise 5.2.4
- 6.4 Let $0 \le p \le 1$ and q = 1 p. Let X_1, X_2, \ldots be i.i.d. with $\mathbb{P}(X_i = -1) = q$ and $\mathbb{P}(X_i = 1) = p$. For $n = 0, 1, \ldots$ let $S_n = X_1 + \cdots + X_n$. So S_n is a simple asymmetric random walk starting from $S_0 = 0$. (Symmetric if $p = \frac{1}{2}$.) Show that $M_n := S_n - n(p - q)$ is a martingale (w.r.t. the natural filtration).
- 6.5 (homework) Let $0 \le p \le 1$ and q = 1 p. Let X_1, X_2, \ldots be i.i.d. with $\mathbb{P}(X_i = -1) = q$ and $\mathbb{P}(X_i = 1) = p$. For $n = 0, 1, \ldots$ let $S_n = X_1 + \cdots + X_n$. So S_n is a simple asymmetric random walk starting from $S_0 = 0$. (Symmetric if $p = \frac{1}{2}$.)
 - a.) Show that $M_n := \left(\frac{q}{p}\right)^{S_n}$ is a martingale (w.r.t. the natural filtration).
 - b.) Let $H \subset \mathbb{N}$ and let τ be the random time when the random walk first reaches H, so

$$\tau = \inf\{n \mid S_n \in H\}.$$

Show that $M_{\tau \wedge n}$ is also a martingale.

- 6.6 SORRY, the first version of this exercise was totally wrong! Let X_1, X_2, \ldots be i.i.d. with $\mathbb{P}(X_i = -1) = \mathbb{P}(X_i = 1) = \frac{1}{2}$. For $n = 0, 1, \ldots$ let $S_n = X_1 + \cdots + X_n$. So S_n is a simple symmetric random walk starting from $S_0 = 0$. Show that $S_n^2 - n$ is a martingale (w.r.t. the natural filtration). This is a special case of Durrett [1], Exercise 5.2.6. You can also solve that -it' not any harder.
- 6.7 (homework) (*Pólya's urn*) In an urn there is initially (at time n = 0) a black and a white ball. At each time step n = 1, 2, ...
 - we draw a ball from the urn, uniformly at random,
 - we look at its colour,
 - we put it back, and we add another ball of the same colour.

(So we add exactly one ball in each step.) Let X_n be the number of white balls in the urn after n steps, and let $M_n = \frac{X_n}{n+2}$ be the proportion of white balls after n steps.

- a.) Show that X_n is uniform on $\{1, 2, ..., n+1\}$. (*Hint: a possible solution is by induction.*)
- b.) Show that M_n is almost surely convergent.
- c.) What is the distribution of $M_{\infty} := \lim_{n \to \infty} M_n$?
- 6.8 Durrett [1], Exercise 5.2.7
- 6.9 Durrett [1], Exercise 5.2.9
- 6.10 Durrett [1], Exercise 5.2.13

References

[1] Durrett, R. Probability: Theory and Examples. 4th edition, Cambridge University Press (2010)