Probability 1
CEU Budapest, fall semester 2016
Imre Péter Tóth
Homework sheet 6 - due on 21.11.2013 - and exercises for practice
6.1 Durrett [1], Exercise 5.2.1
6.2 (homework) Durrett [1], Exercise 5.2.3
6.3 (homework) Durrett [1], Exercise 5.2.4
6.4 Let $0 \leq p \leq 1$ and $q=1-p$. Let X_{1}, X_{2}, \ldots be i.i.d. with $\mathbb{P}\left(X_{i}=-1\right)=q$ and $\mathbb{P}\left(X_{i}=1\right)=p$. For $n=0,1, \ldots$ let $S_{n}=X_{1}+\cdots+X_{n}$. So S_{n} is a simple asymmetric random walk starting from $S_{0}=0$. (Symmetric if $p=\frac{1}{2}$.) Show that $M_{n}:=S_{n}-n(p-q)$ is a martingale (w.r.t. the natural filtration).
6.5 (homework) Let $0 \leq p \leq 1$ and $q=1-p$. Let X_{1}, X_{2}, \ldots be i.i.d. with $\mathbb{P}\left(X_{i}=-1\right)=q$ and $\mathbb{P}\left(X_{i}=1\right)=p$. For $n=0,1, \ldots$ let $S_{n}=X_{1}+\cdots+X_{n}$. So S_{n} is a simple asymmetric random walk starting from $S_{0}=0$. (Symmetric if $p=\frac{1}{2}$.)
a.) Show that $M_{n}:=\left(\frac{q}{p}\right)^{S_{n}}$ is a martingale (w.r.t. the natural filtration).
b.) Let $H \subset \mathbb{N}$ and let τ be the random time when the random walk first reaches H, so

$$
\tau=\inf \left\{n \mid S_{n} \in H\right\}
$$

Show that $M_{\tau \wedge n}$ is also a martingale.
6.6 SORRY, the first version of this exercise was totally wrong! Let X_{1}, X_{2}, \ldots be i.i.d. with $\mathbb{P}\left(X_{i}=-1\right)=\mathbb{P}\left(X_{i}=1\right)=\frac{1}{2}$. For $n=0,1, \ldots$ let $S_{n}=X_{1}+\cdots+X_{n}$. So S_{n} is a simple symmetric random walk starting from $S_{0}=0$. Show that $S_{n}^{2}-n$ is a martingale (w.r.t. the natural filtration). This is a special case of Durrett [1], Exercise 5.2.6. You can also solve that - it' not any harder.
6.7 (homework) (Pólya's urn) In an urn there is initially (at time $n=0$) a black and a white ball. At each time step $n=1,2, \ldots$

- we draw a ball from the urn, uniformly at random,
- we look at its colour,
- we put it back, and we add another ball of the same colour.
(So we add exactly one ball in each step.) Let X_{n} be the number of white balls in the urn after n steps, and let $M_{n}=\frac{X_{n}}{n+2}$ be the proportion of white balls after n steps.
a.) Show that X_{n} is uniform on $\{1,2, \ldots, n+1\}$. (Hint: a possible solution is by induction.)
b.) Show that M_{n} is almost surely convergent.
c.) What is the distribution of $M_{\infty}:=\lim _{n \rightarrow \infty} M_{n}$?
6.8 Durrett [1], Exercise 5.2.7
6.9 Durrett [1], Exercise 5.2.9
6.10 Durrett [1], Exercise 5.2.13

References

[1] Durrett, R. Probability: Theory and Examples. 4th edition, Cambridge University Press (2010)

