Probability 1
 CEU Budapest, fall semester 2016
 Imre Péter Tóth
 Homework sheet 5 - due on 14.11.2013 - and exercises for practice

5.1 Durrett [1], Exercise 5.1.1
5.2 Durrett [1], Exercise 5.1.3
5.3 (homework) Durrett [1], Exercise 5.1.4
5.4 Durrett [1], Exercise 5.1.6
5.5 (homework) Let X and Y be independent standard Gaussian random variables. Let $U=$ $X+Y$ and $V=2 X-Y$. Calculate $\mathbb{E}(V \mid U)$. (Hint: Example 5.1.2 says that if W is independent of U, then $\mathbb{E}(W \mid U)=\mathbb{E} W$. If you choose $\lambda \in \mathbb{R}$ cleverly, then $W:=V-\lambda U$ will be independent of U. (Since U and W are jointly Gaussian, to show independence it's enough to check that $\operatorname{Cov}(U, W)=0$.) Then write $V=\lambda U+W$.)
5.6 Durrett [1], Exercise 5.1.8
5.7 Durrett [1], Exercise 5.1.9
5.8 (homework) Durrett [1], Exercise 5.1.10
5.9 (homework) Durrett [1], Exercise 5.1.11

References

[1] Durrett, R. Probability: Theory and Examples. 4th edition, Cambridge University Press (2010)

