Probability 1 CEU Budapest, fall semester 2016 Imre Péter Tóth Homework sheet 4 – due on 07.11.2013 – and exercises for practice

- 4.1 (homework) Poisson approximation of the binomial distribution. Fix $0 < \lambda \in \mathbb{R}$. Show that if X_n has binomial distribution with parameters (n, p) such that $np \to \lambda$ as $n \to \infty$, then X_n converges to $Poi(\lambda)$ weakly.
- 4.2 (homework) Let X be uniformly distributed on [-1; 1], and set $Y_n = nX$.
 - a.) Calculate the characteristic function ψ_n of Y_n .
 - b.) Calculate the pointwise limit $\lim_{n\to\infty}\psi_n(t)$, if it exists.
 - c.) Does (the distribution of) Y_n have a weak limit?
 - d.) How come?
- 4.3 Durrett [1], Exercise 3.3.1
- 4.4 Durrett [1], Exercise 3.3.3
- 4.5 Durrett [1], Exercise 3.3.9
- 4.6 (homework) Durrett [1], Exercise 3.3.10. Show also that independence is needed.
- 4.7 Durrett [1], Exercise 3.3.11
- 4.8 (homework) Durrett [1], Exercise 3.3.12
- 4.9 Durrett [1], Exercise 3.3.13
- 4.10 (homework) Let X_1, X_2, \ldots be i.i.d. random variables with density (w.r.t. Lebesgue measure) $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$. (So they have the Cauchy distribution.) Find the weak limit (as $n \to \infty$) of the average

$$\frac{X_1 + \dots + X_n}{n}$$

Warning: this is not hard, but also not as trivial as it may seem. Hint: a possible solution is using characteristic functions. Calculating the characteristic function of the Cauchy distribution is a little tricky, but you can look it up.

- 4.11 Durrett [1], Exercise 3.3.20
- 4.12 Durrett [1], Exercise 3.4.4
- 4.13 Durrett [1], Exercise 3.4.5
- 4.14 Durrett [1], Exercise 3.6.1
- 4.15 Durrett [1], Exercise 3.6.2

References

[1] Durrett, R. Probability: Theory and Examples. Cambridge University Press (2010)