Homework sheet 3 - due on 25.10.2016 - and exercises for practice

3.1 Exchangeability of integral and limit. Consider the sequences of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ and $g_{n}:[0,1] \rightarrow \mathbb{R}$ concerning their pointwise limits and the limits of their integrals. Do there exist integrable functions $f:[0,1] \rightarrow \mathbb{R}$ and $g:[0,1] \rightarrow \mathbb{R}$, such that $f_{n}(x) \rightarrow f(x)$ and $g_{n}(x) \rightarrow g(x)$ for Lebesgue almost every $x \in[0,1]$? What is $\lim _{n \rightarrow \infty}\left(\int_{0}^{1} f_{n}(x) d x\right)$ and $\lim _{n \rightarrow \infty}\left(\int_{0}^{1} g_{n}(x) d x\right)$? Are the conditions of the dominated and monotone convergence theorems and the Fatou lemma satisfied? If yes, what do these theorems ensure about these specific examples?
(a)

$$
f_{n}(x)= \begin{cases}n^{2} x & \text { if } 0 \leq x<1 / n \\ 2 n-n^{2} x & \text { if } 1 / n \leq x \leq 2 / n \\ 0 & \text { otherwise }\end{cases}
$$

(b) Write n as $n=2^{k}+l$, where $k=0,1,2 \ldots$ and $l=0,1, \ldots, 2^{k}-1$ (this can be done in a unique way for every n). Now let

$$
g_{n}(x)= \begin{cases}1 & \text { if } \frac{l}{2^{k}} \leq x<\frac{l+1}{2^{k}} \\ 0 & \text { otherwise }\end{cases}
$$

3.2 Exchangeability of integrals. Consider the following function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$:

$$
f(x)= \begin{cases}1 & \text { if } \quad 0<x, 0<y \text { and } 0 \leq x-y \leq 1 \\ -1 & \text { if } \quad 0<x, 0<y \text { and } 0<y-x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Calculate $\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} f(x, y) d x\right) d y$ and $\int_{-\infty}^{+\infty}\left(\int_{-\infty}^{+\infty} f(x, y) d y\right) d x$. What's the situation with the Fubini theorem?
3.3 (homework) For real numbers $a_{1}, a_{2}, a_{3}, \ldots$ define the infinite product $\prod_{k=1}^{\infty} a_{k}$ as

$$
\prod_{k=1}^{\infty} a_{k}:=\lim _{n \rightarrow \infty} \prod_{k=1}^{n} a_{k}
$$

whenever this limit exists.
Let $p_{1}, p_{2}, p_{3}, \ldots$ satisfy $0 \leq p_{k}<1$ for all k. Show that $\prod_{k=1}^{\infty}\left(1-p_{k}\right)>0$ if and only if $\sum_{k=1}^{\infty} p_{k}<\infty$. (Hint: estimate the logarithm of $(1-p)$ with p.)
3.4 Let X_{1}, X_{2}, \ldots be independent random variables such that

$$
\mathbb{P}\left(X_{n}=n^{2}-1\right)=\frac{1}{n^{2}}, \quad \mathbb{P}\left(X_{n}=-1\right)=1-\frac{1}{n^{2}}
$$

Show that $\mathbb{E} X_{n}=0$ for every n, but

$$
\lim _{n \rightarrow \infty} \frac{X_{1}+\ldots X_{n}}{n}=-1
$$

almost surely.
3.5 Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables. Prove that the following two statements are equivalent:
(i) $\mathbb{E}\left|X_{i}\right|<\infty$.
(ii) $\mathbb{P}\left(\left|X_{n}\right|>n\right.$ for infinitely many n-s $)=0$.
3.6 (homework) Prove that for any sequence X_{1}, X_{2}, \ldots of random variables (real valued, defined on the same probability space) there exists a sequence c_{1}, c_{2}, \ldots of numbers such that

$$
\frac{X_{n}}{c_{n}} \rightarrow 0 \text { almost surely. }
$$

3.7 Let the random variables $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ and X be defined on the same probability space. Prove that the following two statements are equivalent:
(i) $X_{n} \rightarrow X$ in probability as $n \rightarrow \infty$.
(ii) From every subsequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ a sub-subsequence $\left\{n_{k_{j}}\right\}_{j=1}^{\infty}$ can be chosen such that $X_{n_{k_{j}}} \rightarrow X$ almost surely as $j \rightarrow \infty$.
3.8 (homework) Let X_{1}, X_{2}, \ldots be independent such that X_{n} has $\operatorname{Bernoulli}\left(p_{n}\right)$ distribution. Determine what property the sequence p_{n} has to satisfy so that
(a) $X_{n} \rightarrow X$ in probability as $n \rightarrow \infty$
(b) $X_{n} \rightarrow X$ almost surely as $n \rightarrow \infty$.
3.9 Let X_{1}, X_{2}, \ldots be independent random variables. Show that $\mathbb{P}\left(\sup _{n} X_{n}<\infty\right)=1$ if and only if there is some $A \in \mathbb{R}$ for which $\sum_{n=1}^{\infty} \mathbb{P}\left(X_{n}>A\right)<\infty$.
3.10 Let X_{1}, X_{2}, \ldots be independent exponentially distributed random variables such that X_{n} has parameter λ_{n}. Let $S_{n}:=\sum_{i=1}^{n} X_{i}$. Show that if $\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}=\infty$, then $S_{n} \rightarrow \infty$ almost surely, but if $\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}<\infty$, then $S_{n} \rightarrow S$ almost surely, where S is some random variable which is almost surely finite.
3.11 Let X_{1}, X_{2}, \ldots be i.i.d. random variables with distribution $\operatorname{Bernoulli}(p)$ for some $p \in(0 ; 1)$ but $p \neq \frac{1}{2}$. Let $Y:=\sum_{n=1}^{\infty} 2^{-n} X_{n}$. (The sum is absolutely convergent.) Show that the distribution of Y is continuous, but singular w.r.t. Lebesgue measure.
3.12 (homework) Let the random variables $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ and X be defined on the same probability space and suppose that $X_{n} \rightarrow X$ in probability as $n \rightarrow \infty$.
(a) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, $Y_{n}=f\left(X_{n}\right)$ and $Y=f(X)$, show that $Y_{n} \rightarrow Y$ in probability as $n \rightarrow \infty$.
(b) Show that if the X_{n} are almost surely uniformly bounded [that is: there exists a constant $M<\infty$ such that $\left.\mathbb{P}\left(\forall n \in \mathbb{N}\left|X_{n}\right| \leq M\right)=1\right]$, then $\lim _{n \rightarrow \infty} \mathbb{E} X_{n}=\mathbb{E} X$.
(c) Show, through an example, that for the previous statement, tha condition of boundedness is needed.
3.13 Let the random variables $X_{1}, X_{2}, \ldots, Y_{1}, Y_{2}, \ldots, X$ and Y be defined on the same probability space and assume that $X_{n} \rightarrow X$ and $Y_{n} \rightarrow Y$ in probability. Show that
(a) $X_{n} Y_{n} \rightarrow X Y$ in probability.
(b) If almost surely $Y_{n} \neq 0$ and $Y \neq 0$, then $X_{n} / Y_{n} \rightarrow X / Y$ in probability.
3.14 (homework) Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \int_{0}^{1} \ldots \int_{0}^{1} \frac{x_{1}^{2}+x_{2}^{2}+\ldots x_{n}^{2}}{x_{1}+x_{2}+\ldots x_{n}} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \ldots \mathrm{~d} x_{n}=\frac{2}{3}
$$

3.15 Let $f:[0 ; 1] \rightarrow \mathbb{R}$ be a continuous function. Prove that
(a)

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \int_{0}^{1} \ldots \int_{0}^{1} f\left(\frac{x_{1}+x_{2}+\ldots x_{n}}{n}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \ldots \mathrm{~d} x_{n}=f\left(\frac{1}{2}\right) .
$$

(b)

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \int_{0}^{1} \ldots \int_{0}^{1} f\left(\left(x_{1} x_{2} \ldots x_{n}\right)^{1 / n}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2} \ldots \mathrm{~d} x_{n}=f\left(\frac{1}{e}\right) .
$$

3.16 Let the random variables $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ be defined on the same probability space and let $Y_{n}:=\sup _{m \geq n}\left|X_{m}\right|$. Prove that the following two statements are equivalent:
(i) $X_{n} \rightarrow 0$ almost surely as $n \rightarrow \infty$.
(ii) $Y_{n} \rightarrow 0$ in probability as $n \rightarrow \infty$.
3.17 Weak convergence and densities, again.
(a) Prove the following

Theorem 1 Let μ_{1}, μ_{2}, \ldots and μ be a sequence of probability distributions on \mathbb{R} which are absolutely continouos w.r.t. Lebesgue measure. Denote their densities by f_{1}, f_{2}, \ldots and f, respectively. Suppose that $f_{n}(x) \xrightarrow{n \rightarrow \infty} f(x)$ for every $x \in \mathbb{R}$. Then $\mu_{n} \Rightarrow \mu$ (weakly).
(Hint: denote the cumulative distribution functions by F_{1}, F_{2}, \ldots and F, respectively. Use the Fatou lemma to show that $F(x) \leq \liminf _{n \rightarrow \infty} F_{n}(x)$. For the other direction, consider $G(x):=1-F(x)$.
(b) Show examples of the following facts:
i. It can happen that the f_{n} converge pointwise to some f, but the sequence μ_{n} is not weakly convergent, because f is not a density.
ii. It can happen that the μ_{n} are absolutely continuous, $\mu_{n} \Rightarrow \mu$, but μ is not absolutely continuous.
iii. It can happen that the μ_{n} and also μ are absolutely continuous, $\mu_{n} \Rightarrow \mu$, but $f_{n}(x)$ does not converge to $f(x)$ for any x.
3.18 (homework) Let X_{1}, X_{2}, \ldots be independent and uniformly distributed on $[0,1]$. Let $M_{n}=$ $\max \left\{X_{1}, \ldots, X_{n}\right\}$ and let $Y_{n}=n\left(1-M_{n}\right)$. Find the weak limit of Y_{n}. (Hint: Calculate the distribution functions.)

