Probability 1 CEU Budapest, fall semester 2016 Imre Péter Tóth Homework sheet 3 – due on 25.10.2016 – and exercises for practice

3.1 Exchangeability of integral and limit. Consider the sequences of functions $f_n : [0,1] \to \mathbb{R}$ and $g_n : [0,1] \to \mathbb{R}$ concerning their pointwise limits and the limits of their integrals. Do there exist integrable functions $f : [0,1] \to \mathbb{R}$ and $g : [0,1] \to \mathbb{R}$, such that $f_n(x) \to f(x)$ and $g_n(x) \to g(x)$ for Lebesgue almost every $x \in [0,1]$? What is $\lim_{n \to \infty} \left(\int_0^1 f_n(x) dx \right)$ and $\lim_{n \to \infty} \left(\int_0^1 g_n(x) dx \right)$? Are the conditions of the dominated and monotone convergence theorems and the Fatou lemma satisfied? If yes, what do these theorems ensure about these specific examples?

(a)

$$f_n(x) = \begin{cases} n^2 x & \text{if } 0 \le x < 1/n, \\ 2n - n^2 x & \text{if } 1/n \le x \le 2/n, \\ 0 & \text{otherwise.} \end{cases}$$

(b) Write n as $n = 2^k + l$, where k = 0, 1, 2... and $l = 0, 1, ..., 2^k - 1$ (this can be done in a unique way for every n). Now let

$$g_n(x) = \begin{cases} 1 & \text{if } \frac{l}{2^k} \le x < \frac{l+1}{2^k}, \\ 0 & \text{otherwise.} \end{cases}$$

3.2 Exchangeability of integrals. Consider the following function $f : \mathbb{R}^2 \to \mathbb{R}$:

$$f(x) = \begin{cases} 1 & \text{if } 0 < x, \ 0 < y \text{ and } 0 \le x - y \le 1, \\ -1 & \text{if } 0 < x, \ 0 < y \text{ and } 0 < y - x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Calculate $\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x,y) dx \right) dy$ and $\int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(x,y) dy \right) dx$. What's the situation with the Fubini theorem?

3.3 (homework) For real numbers a_1, a_2, a_3, \ldots define the infinite product $\prod_{k=1}^{\infty} a_k$ as

$$\prod_{k=1}^{\infty} a_k := \lim_{n \to \infty} \prod_{k=1}^n a_k,$$

whenever this limit exists.

Let p_1, p_2, p_3, \ldots satisfy $0 \le p_k < 1$ for all k. Show that $\prod_{k=1}^{\infty} (1-p_k) > 0$ if and only if $\sum_{k=1}^{\infty} p_k < \infty$. (*Hint: estimate the logarithm of* (1-p) with p.)

3.4 Let X_1, X_2, \ldots be independent random variables such that

$$\mathbb{P}(X_n = n^2 - 1) = \frac{1}{n^2}, \quad \mathbb{P}(X_n = -1) = 1 - \frac{1}{n^2}.$$

Show that $\mathbb{E}X_n = 0$ for every *n*, but

$$\lim_{n \to \infty} \frac{X_1 + \dots + X_n}{n} = -1$$

almost surely.

- 3.5 Let X_1, X_2, \ldots, X_n be i.i.d. random variables. Prove that the following two statements are equivalent:
 - (i) $\mathbb{E}|X_i| < \infty$.
 - (ii) $\mathbb{P}(|X_n| > n \text{ for infinitely many } n-s) = 0.$
- 3.6 (homework) Prove that for any sequence X_1, X_2, \ldots of random variables (real valued, defined on the same probability space) there exists a sequence c_1, c_2, \ldots of numbers such that

$$\frac{X_n}{c_n} \to 0 \text{ almost surely.}$$

- 3.7 Let the random variables $X_1, X_2, \ldots, X_n, \ldots$ and X be defined on the same probability space. Prove that the following two statements are equivalent:
 - (i) $X_n \to X$ in probability as $n \to \infty$.
 - (ii) From every subsequence $\{n_k\}_{k=1}^{\infty}$ a sub-subsequence $\{n_{k_j}\}_{j=1}^{\infty}$ can be chosen such that $X_{n_{k_j}} \to X$ almost surely as $j \to \infty$.
- 3.8 (homework) Let X_1, X_2, \ldots be independent such that X_n has $Bernoulli(p_n)$ distribution. Determine what property the sequence p_n has to satisfy so that
 - (a) $X_n \to X$ in probability as $n \to \infty$
 - (b) $X_n \to X$ almost surely as $n \to \infty$.
- 3.9 Let X_1, X_2, \ldots be independent random variables. Show that $\mathbb{P}(\sup_n X_n < \infty) = 1$ if and only if there is some $A \in \mathbb{R}$ for which $\sum_{n=1}^{\infty} \mathbb{P}(X_n > A) < \infty$.
- 3.10 Let X_1, X_2, \ldots be independent exponentially distributed random variables such that X_n has parameter λ_n . Let $S_n := \sum_{i=1}^n X_i$. Show that if $\sum_{n=1}^{\infty} \frac{1}{\lambda_n} = \infty$, then $S_n \to \infty$ almost surely, but if $\sum_{n=1}^{\infty} \frac{1}{\lambda_n} < \infty$, then $S_n \to S$ almost surely, where S is some random variable which is almost surely finite.
- 3.11 Let X_1, X_2, \ldots be i.i.d. random variables with distribution Bernoulli(p) for some $p \in (0; 1)$ but $p \neq \frac{1}{2}$. Let $Y := \sum_{n=1}^{\infty} 2^{-n} X_n$. (The sum is absolutely convergent.) Show that the distribution of Y is continuous, but singular w.r.t. Lebesgue measure.
- 3.12 (homework) Let the random variables $X_1, X_2, \ldots, X_n, \ldots$ and X be defined on the same probability space and suppose that $X_n \to X$ in probability as $n \to \infty$.
 - (a) If $f : \mathbb{R} \to \mathbb{R}$ is a continuous function, $Y_n = f(X_n)$ and Y = f(X), show that $Y_n \to Y$ in probability as $n \to \infty$.
 - (b) Show that if the X_n are almost surely uniformly bounded [that is: there exists a constant $M < \infty$ such that $\mathbb{P}(\forall n \in \mathbb{N} | X_n | \leq M) = 1$], then $\lim_{n \to \infty} \mathbb{E}X_n = \mathbb{E}X$.

- (c) Show, through an example, that for the previous statement, the condition of boundedness is needed.
- 3.13 Let the random variables $X_1, X_2, \ldots, Y_1, Y_2, \ldots, X$ and Y be defined on the same probability space and assume that $X_n \to X$ and $Y_n \to Y$ in probability. Show that
 - (a) $X_n Y_n \to XY$ in probability.
 - (b) If almost surely $Y_n \neq 0$ and $Y \neq 0$, then $X_n/Y_n \rightarrow X/Y$ in probability.

3.14 (homework) Prove that

$$\lim_{n \to \infty} \int_0^1 \int_0^1 \dots \int_0^1 \frac{x_1^2 + x_2^2 + \dots + x_n^2}{x_1 + x_2 + \dots + x_n} \, \mathrm{d}x_1 \, \mathrm{d}x_2 \dots \, \mathrm{d}x_n = \frac{2}{3}.$$

3.15 Let $f:[0;1] \to \mathbb{R}$ be a continuous function. Prove that

(a)

$$\lim_{n \to \infty} \int_0^1 \int_0^1 \dots \int_0^1 f\left(\frac{x_1 + x_2 + \dots + x_n}{n}\right) dx_1 dx_2 \dots dx_n = f\left(\frac{1}{2}\right).$$
(b)

$$\lim_{n \to \infty} \int_0^1 \int_0^1 \dots \int_0^1 f\left((x_1 x_2 \dots + x_n)^{1/n}\right) dx_1 dx_2 \dots dx_n = f\left(\frac{1}{e}\right).$$

- 3.16 Let the random variables $X_1, X_2, \ldots, X_n, \ldots$ be defined on the same probability space and let $Y_n := \sup_{m>n} |X_m|$. Prove that the following two statements are equivalent:
 - (i) $X_n \to 0$ almost surely as $n \to \infty$.
 - (ii) $Y_n \to 0$ in probability as $n \to \infty$.
- 3.17 Weak convergence and densities, again.
 - (a) Prove the following

Theorem 1 Let μ_1, μ_2, \ldots and μ be a sequence of probability distributions on \mathbb{R} which are absolutely continuous w.r.t. Lebesgue measure. Denote their densities by f_1, f_2, \ldots and f, respectively. Suppose that $f_n(x) \xrightarrow{n \to \infty} f(x)$ for every $x \in \mathbb{R}$. Then $\mu_n \Rightarrow \mu$ (weakly).

(Hint: denote the cumulative distribution functions by F_1, F_2, \ldots and F, respectively. Use the Fatou lemma to show that $F(x) \leq \liminf_{n \to \infty} F_n(x)$. For the other direction, consider G(x) := 1 - F(x).

- (b) Show examples of the following facts:
 - i. It can happen that the f_n converge pointwise to some f, but the sequence μ_n is not weakly convergent, because f is not a density.
 - ii. It can happen that the μ_n are absolutely continuous, $\mu_n \Rightarrow \mu$, but μ is not absolutely continuous.
 - iii. It can happen that the μ_n and also μ are absolutely continuous, $\mu_n \Rightarrow \mu$, but $f_n(x)$ does not converge to f(x) for any x.
- 3.18 (homework) Let X_1, X_2, \ldots be independent and uniformly distributed on [0, 1]. Let $M_n = \max\{X_1, \ldots, X_n\}$ and let $Y_n = n(1 M_n)$. Find the weak limit of Y_n . (Hint: Calculate the distribution functions.)