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1 Introduction

These lecture notes cover some of the topics discussed in the Math section of the lec-
ture “Mathematical Statistical Mechanics” given at the LMU München in the summer
semester 2011. I will try to update them regularly and if time permits I will try to
produce an almost complete set of lecture notes. The Math part of the lecture will
be self contained. Only some abstract measure theory will be assumed. However, this
part of the lecture contains only very little in terms of motivation and justification for
the models to be considered. Some of this will be discussed in the Physics part of the
lecture.

2 Probability

2.1 Probability measures

Probability models can be used in situations where there is some degree of uncertainty
about what happens. Such a situation will be called an experiment, and everything that
possibly can happen will be called an outcome or a sample. Usually the uncertainty
about the outcome of an experiment arises because the situation is too complicated
to be analyzed in detail or because we choose to ignore some of the more complicated
details to obtain a better understanding of what is going on.

Example: A very simple example of an experiment is to roll a die. In principle it
should be possible to deduce the outcome of this experiment from the laws of physics
provided that you have precise information about the “initial state” of the die (position,
velocity,...) the moment you roll it and the shape of the terrain in which you roll
it. But usually you either don’t have this information or even if you have it, you
may choose to ignore it, e.g. because the calculations involved are too complicated
or you are not interested in a single experiment anyway, but in what can be said if
the experiment is repeated many times with different initial states. In either case
a probabilistic model is more appropriate. Such a model should consist of a list of
possible outcomes (1,2,3,4,5,6) and their respective probabilities (1/6 for each outcome
if the die is assumed to be fair).

The basic structure for all sorts of probability models is the same, so the following
axiomatic definition has proven very useful:

Definition 2.1 A probability model is given by (Ω,F ,P). Here Ω 6= ∅ is called the
sample space, F is a σ-algebra on Ω and its elements are called events and P is a prob-
ability measure (=distribution= normalized measure) on the measurable space (Ω,F).

The elements of Ω are the possible outcomes of the experiment considered, and events
are sets of outcomes that we would like to assign probabilities.

We now briefly review the basic conepts of measure theory. We will omit the con-
struction of the integral w.r.t. an arbitrary measure and the statement of its basic
properties, and we will omit proofs in this and the next section.
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Definition 2.2 F ⊂ P(Ω) is called a σ-algebra on Ω 6= ∅ if

• Ω ∈ F

• ∀A ∈ F : Ac = Ω− A ∈ F

• ∀ countable I, Ai ∈ F(i ∈ I):
⋃
iAi ∈ F

Usually a σ-algebra is constucted from a class of “interesting sets”:

Definition 2.3 For S ⊂ P(Ω) we let σ(S) denote the smallest σ-algebra containing
S. S can be obtained as the intersection of all σ-algebras containing S. It is called
the σ-algebra generated by S. If Ω is a topological space and S is the set of open sets,
B(S) := σ(S) is called the Borel-σ-algebra on Ω.

In measure theory only those functions are of interest that are compatible with the
measurability structure.

Definition 2.4 A function f : (Ω,F)→ (Ω′,F ′) is called measurable if

• f−1A′ ∈ F for all A′ ∈ F ′.

Mostly we consider real valued functions. Basic examples of measurable functions
f : (Ω,F) → (R,B) are indicator (or characteristic) functions: For A ∈ F let 1A be
defined by

1A(ω) =

{
1 for ω ∈ A
0 for ω 6∈ A.

It will be convenient to consider general measures instead of just probability measures.

Definition 2.5 µ : F → [0,∞] is called a measure on a measurable space (Ω,F) if

• ∀ countable I, disjoint Ai ∈ F(i ∈ I): µ(
⋃
iAi) =

∑
i µ(Ai)

µ is called σ-finite if there there are countably many Ei ∈ F with
⋃
iEi = Ω and

µ(Ei) <∞. µ is called finite if µ(Ω) <∞ and µ is called normalized if µ(Ω) = 1.

The measures to be considered here will always be assumed to be σ-finite, and mostly we
will deal with probability measures, i.e normalized measures. A measure is determined
by its values µ(A) for all A ∈ F , but often it is sufficient to know the values for A ∈ S,
where S ⊂ F is a suitable subset of F .

Theorem 2.1 (Uniqueness theorem.) Let µ be a probability measure on (Ω,F) and
S ⊂ F such that S is ∩-stable (i.e. ∀A,B ∈ S : A∩B ∈ S) and a generator of F (i.e.
σ(S) = F). Then µ is uniquely determined by its values on S.

Proof: Measure Theory. �
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It is possible to define an integral w.r.t. a given measure µ on (Ω,F). There are several
common notations for the integral∫

fdµ =

∫
f(ω)dµ(ω) =

∫
f(ω)µ(dω) for f : Ω→ [0,∞] measurable.

The construction is the same as for the Lebesgue integral from the Lebesgue measure.
The properties of the integral are also similar to those of the Lebesgue integral. If f+, f−
denote the positive and negative part of a function f , i.e. f+, f− ≥ 0 s.t. f = f+− f−,
we can set ∫

fdµ :=

∫
f+dµ−

∫
f−dµ

unless both integrals on the RHS are ∞. If both are finite we call f integrable. Ln(µ)
denotes the space of all measurable functions f : Ω → [−∞,∞] such that fn is inte-
grable w.r.t. µ. Here n ∈ N.

The most basic examples of (σ-finite) measures are

• The counting measure χ. Here Ω is countable, F = P(Ω) and χ(A) := #(A) is
the number of elements of A. Integration w.r.t. χ is the same as summation.

• The Lebesgue measure λd (d ≥ 1). Here Ω = Rd, F = Bd = B(Rd) and λd(A)
describes the d-dimensional volume of a set A ∈ Bd. Integration w.r.t λd is the
same as d-dimensional Lebesgue-integration.

The most basic examples of distributions are derived from these by means of densities.

Definition 2.6 Let µ be a measure on (Ω,F) and let f : Ω → [0,∞] be measurable.
Then

ν(A) :=

∫
A

fdµ :=

∫
f1Adµ

defines a new measure on (Ω,F) and f is called its density. If f is normalized, i.e.∫
fdµ = 1, then ν is a probability measure.

f plays the role of a penalty function. Large/small values of f(x) increase/decrease the
probability of the outcome x ∈ Ω as compared to the one w.r.t. µ. If ν has a density,
this density is µ-a.s. uniquely determined. If a probability measure has a density w.r.t.
µ = χ, it is called discrete, and if it has a density w.r.t. λd, it is called continuous. The
most important examples of distributions of this type are the uniform distributions:

• If #(A) < ∞ and f = 1
#(A)

1A, the corresponding discrete distribution is called

the (discrete) uniform distribution on A.

• If λd(A) < ∞ and f = 1
λd(A)

1A, the corresponding continuous distribution is

called the (continuous) uniform distribution on A.

In both cases of the uniform distribution on A the outcomes x ∈ A are equally likely,
whereas outcomes x ∈ Ac are impossible.

Remark: Every measure µ on (Ω,F) with countable Ω and F = P(Ω) is discrete: To
obtain the density we simply set f(x) = µ({x}) for all x ∈ Ω.

Another possibility to generate measures is by taking products:
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Definition 2.7 Let I be an index set and for every i ∈ I let (Ωi,Fi, µi) be a measure
space. We set Ω =

∏
i Ωi and F = ⊗iFi := σ(

∏
iAi : Ai ∈ Fi) the product-σ-algebra.

A measure µ on (Ω,F) is called product measure iff

µ(
∏
i

Ai) =
∏
i

µi(Ai) ∀Ai ∈ Fi.

The product measure exists and is unique if either I is finite and every µi is σ-finite or
I is arbitrary and every µi is a probability measure, and then it is denoted by µ = ⊗iµi.

We note that the counting measure on a product set Ω =
∏

i Ωi is the product of the
counting measures on each Ωi, and similarly for the Lebesgue measure.

The other way round, we can also break down a given measure µ on a product space:

Definition 2.8 Let µ be a measure on a product space (Ω,F) as above. The marginal
distribution µi on (Ωi,Fi) is defined by µi(Ai) := µ(

∏
j Aj), where Aj := Ωj for j 6= i.

There is a correspoding product property for densities:

Lemma 2.1 Let ν be a measure with density f w.r.t. µ = ⊗iµi.

(a) The marginal νi has a density fi w.r.t. µi: fi(xi) =
∫
f(., xi)dµ

′ with µ′ = ⊗j 6=iµi.

(b) ν is a product measure iff f((xi)i) =
∏

i fi(xi) a.s..

Proof: Measure theory. �

2.2 Random variables

Often we are not interested in the precise outcome ω ∈ Ω of an experiment, but only
in a few properties of ω. Such a property can be modelled by a function X : Ω→ Ω′.

Definition 2.9 A measurable function X : (Ω,F) → (Ω′,F ′) is called a (Ω′-valued)
random variable (or observable) on the probability space (Ω,F ,P). The probability
measure P′ = P ◦X−1 on (Ω′,F ′) defined by

P′(A′) = P (X−1A′) = P (X ∈ A′)

is called the distribution of X.

If the distribution of X has a certain property, we say that X has this property, e.g. X
is continuous/discrete if P◦X−1 is. If we are only interested in the values of the random
variables X1, X2, ..., it is sufficient to know their joint distribution, i.e. the distribution
of X = (X1, X2, ...). (The underlying probability measure P and the precise definition
of the Xi as functions on Ω are then irrelevant.) The distribution of Xi is the i-th
marginal of the joint distribution. An important special case for the joint distribution
is that of independence:
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Definition 2.10 The random variables Xi, i ∈ I, are called independent if their joint
distribution is the product measure of their distributions, i.e.

P(Xi ∈ Ai∀i ∈ I) =
∏
i

P(Xi ∈ Ai) ∀Ai ∈ Fi.

The above Lemma implies that independence of random variables can be characterized
in terms of their densities.

Example: In order to specify a model for rolling a die many times you have two
possibilities. In each case we want Xi to denote the value of the i-th roll.

• Specify the probability space: Let Ω1 = {1, 2, 3, 4, 5, 6}, F1 = P(Ω1), P1 the
uniform distribution on Ω1. This defines a probability model for rolling a die
once. Let (Ω,F ,P) = ⊗i∈N(Ω1,F1,P1) be the corresponding product space and
Xi : Ω→ Ω1 the projection on the i-th component.

• Specify the joint distribution: Let Xi be independent random variables, uniformly
distributed on {1, 2, 3, 4, 5, 6}.

For a real-valued random variable, a number of characteristics are of special interest.

Definition 2.11 Let X be a real valued random variable. If the corresponding integrals
exist we define its

expectation E(X) =

∫
XdP

variance V(X) = E((X − E(X))2) = E(X2)− E(X)2

moment generating function ϕX(t) := E(eXt) =
∑
n

1

n!
E(Xn)tn, t ∈ R.

EP(X) = E(X) is the mean value of the random variable and V(X) can be interpreted
as the average (quadratic) deviation of X from its mean. The standard deviation
σX :=

√
V(X) is a measure for the fluctuation of X. The expectation E(Xn) is called

the n-th moment of X, and appears as a coefficient in the Taylor series of ϕX(t). For
the calculation of expectations the following is useful:

Theorem 2.2 (Transformation Theorem.) Let µ be a probability measure on (Ω,F),
X : Ω→ Ω′ be a random variable with distribution µ ◦X−1 =: ν and g : Ω′ → R. We
have

Eµ(g(X)) = Eν(g), i.e.

∫
g(X)dµ =

∫
gdν.

In particular we get E(g(X)) =
∫
g(x)f(x)µ(dx) if X has density f w.r.t. µ.

Proof: Measure theory. �
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2.3 Conditioning

In many applications we consider experiments such that the outcome of one experiment
depends on the outcome of another. We thus need to introduce the notion of a proba-
bility distribution depending on an outcome, or equivalently the notion of conditional
distribution of a random variable.

Definition 2.12 Let (Ωi,Fi) be measurable spaces. A kernel from Ω1 to Ω2 is a func-
tion p : (Ω1,F2)→ R such that

• ∀x1 ∈ Ω1 : p(x1, .) is a measure on (Ω2,F2)

• ∀A2 ∈ F2 : p(., A2) is F1-measurable.

p is called a probability kernel if in the first condition the measure is in fact a probability
measure. If µ1 is a measure on (Ω1,F1) and p is a kernel from Ω1 to Ω2, then we define
the measure µ = µ1 ⊗ p on the product space by

µ1 ⊗ p(A) :=

∫
µ1(dx1)

∫
p(x1, dx2)1A(x1, x2). (2.1)

We then say that µ admits a disintegration w.r.t. µ1 and that p is the conditional
measure of µ w.r.t. µ1.

Definition 2.13 Let Xi be Ωi-valued random variables and µ1 a probability measure
on Ω1 and p a probability kernel from Ω1 to Ω2. We say that p is the conditional
probability distribution of X2, given X1, if their joint distribution is of the form µ1⊗p.

µ1 is the first marginal of the joint distribution, and thus is uniquely determined,
whereas the conditional distribution p may not exist and not be unique. However,
the existence is guaranteed if (Ω2,F2) is a standard Borel space (which is a relatively
mild condition) and it is unique up to some suitable a.s.-considerations. If X1, X2 are
independent the conditional distribution of X2 given X1 is just the marginal of X2

(independent of the value of X1).

Naively, for the conditional distribution you just take an appropriate cross-section of
the distribution (for given x1), and then renormalize. This procedure is made precise
in the following important special case:

Lemma 2.2 Let (X1, X2) have joint density f w.r.t. µ = µ1 ⊗ µ2 and let f1 be the
density of X1. Then the conditional distribution of X2 given X1 has density

f2(x2|X1 = x1) :=
f(x1, x2)

f1(x1)
1{f1(x1)6=0}.

Proof: Homework. �

In probability theory conditioning turns out to be extremely useful. (2.1) says that
probabilities can be evaluated by first calculating the probability for a fixed value
X1 = x1, and after that averaging over all possibilities for x1. This disintegration
property remains valid for expectations and many other probabilistic concepts:
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Lemma 2.3 (Tower property for conditional expectation.) Let X1, X2 be random vari-
ables such that X1 has distribution µ1 and X2 has conditional distribution p for given
X1. Let g : Ω1 × Ω2 → R be measurable. Then

E(g(X1, X2)) = E1(E2(g(X1, X2))) =: E(E(g(X1, X2)|X1)).

Here E2 is the expectation w.r.t. to p(x1, .) for fixed value of X1 = x1 and E1 is the
expectation w.r.t. µ1.

Proof: Homework. �

2.4 Entropy

Entropy is supposed to quantify the amount of disorder within a complex system or
equivalently the amount of uncertainty in a situation with uncertain outcome. Since a
probability measure models such a situation, we would like to define its entropy. This
probabilistic view of entropy is due to Boltzmann, and we will present some of the
ideas that motivated his definition in the next chapter. Here we will give an axiomatic
approach, showing that in the very simple setting of a distribution on a finite set a few
very natural properties already determine how the entropy should be defined.

Theorem 2.3 (Shannon 1949.) Let P(fin) be the set of probability distributions on
finite state spaces. Suppose S : P(fin)→ R satisfies the following properties:

(a) If µ, µ′ are essentially the same distributions (i.e. ignoring the relabelling of states
and states with probability 0), then S(µ) = S(µ′).

(b) S is a continuous function of the density.

(c) The uniform distribution has maximal entropy, i.e. if µ is a non-uniform distri-
bution on a finite state space and ν is the uniform distribution on the same state
space, then S(µ) < S(ν).

(d) S satisfies the following additivity property under conditioning: For µ = µ1⊗p ∈
P(fin)

S(µ) = S(µ1) + Eµ1(S2(p)).

Here S2(p) is the entropy of p(x1, .) for a fixed value of x1 and Eµ1 is the expec-
tation w.r.t. µ1(dx1).

Then S(µ) = −k
∫
f log fdχ for some k > 0, where f is the density of µ w.r.t. χ.

Proof: We first determine S(νn), where νn is the uniform distribution on {1, ..., n}.
Since νnm is just a relabelling of νn ⊗ νm we have S(νnm) = S(νn) + S(νm) by (a) and
(d) and thus inductively S(νnm) = mS(νn). By (a) and (c) S(νn) is strictly increasing
in n. Thus

2l < nm < 2l+1 ⇒ lS(ν2) < mS(νn) < (l + 1)S(ν2).

For m→∞ and l = bm log2 nc we obtain S(νn) = log2 n · S(ν2), i.e.

S(νn) = k log n for some k > 0.
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We next consider an arbitrary distribution µ such that the density has rational values
only, say f(xi) = ai

n
for 1 ≤ i ≤ m, where

∑
i ai = n. We try to represent µ in

terms of uniform distributions by conditioning: Let µ1 = µ and p(i, .) = νai . Since
µ1⊗ p(i, j) = ai

n
1
ai

= 1
n

for all 1 ≤ i ≤ m, 1 ≤ j ≤ ai, µ1⊗ p is the uniform distribution
on a set with n elements. Using (a) and (d) we get S(νn) = S(µ) +

∑
i f(xi)S(νai), i.e.

S(µ) = k
∑
i

f(xi)(log n− log ai) = −k
∑
i

f(xi) log f(xi) = −k
∫
f log fdχ.

Now the result follows from (b) by rational approximation. �

Remark:

• Assumptions (a)-(d) are very natural. The interpretation of (d) is that the un-
certainty in picking (x1, x2) is the sum of the uncertainty in picking x1 and the
one in picking x2 for given x1.

• From a mathematical point of view, the value of k is of little importance. Math-
ematics convention thus is to set k = 1, whereas Physics convention is to set k
equal to Boltzmann’s constant kB (whose value depends on the choice of units of
temperature and energy). We will ruthlessly switch between these conventions.
Also in Mathematics a different sign convention is used sometimes, i.e. k = −1
so that in (b) maximal is replaced by minimal.

• In Mathematics it is more common to use the letter H instead of S.

• S(µ|µ1) := Eµ1(S2(p)) in (d) is called conditional entropy of µ w.r.t. µ1.

• In (c) the uniform distribution plays a special role. In many applications it is
more appropriate to fix an arbitrary reference distribution ν, and consider an
entropy that measures the disorder of a distribution µ w.r.t. ν. This entropy
then should be maximal for the reference measure.

Definition 2.14 Let ν be a measure and µ a distribution on the same space.

S(µ; ν) :=

−
∫
f log fdν if µ has a density f w.r.t. ν

−∞ otherwise

is called the relative entropy of µ w.r.t. ν or just the entropy of µ if the choice of
ν is obvious. If µ is discrete, we set S(µ) := S(µ;χ), and if µ is continuous we set
S(µ) := S(µ;λd).

If ν is not finite the integral in the above definition may not exist. The existence of
the integral in [−∞,∞) for finite ν follows as in part (a) of the next lemma, where we
show that the entropy indeed has properties similar to (a)-(d) from the above theorem.

Lemma 2.4 Let ν be a finite reference measure.

(a) S(µ; ν) is maximal iff µ = 1
ν(Ω)

ν, and the maximal value is log ν(Ω). If ν is a

probability measure, this implies that S(µ; ν) ≤ 0 with equality iff µ = ν.
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(b) S(.; ν) is concave (and strictly concave where it is finite).

(c) If ν = ν1 ⊗ pν and µ = µ1 ⊗ pµ, then S(µ; ν) = S(µ1; ν1) + Eµ1(S2(pµ; pν)).

Proof:
(a) We have

S(µ; ν)− log ν(Ω) = −
∫
f log fdν −

∫
log ν(Ω)dµ = −

∫
f(log f + log ν(Ω))dν

=

∫
f log

1

ν(Ω)f
dν ≤

∫
f(

1

ν(Ω)f
− 1)dν =

∫
1

ν(Ω)
dν −

∫
fdν = 1− 1 = 0.

We have used log x ≤ x − 1, where equality holds iff x = 1. Thus we have equality
above iff f = 0 or ν(Ω)f = 1 ν-a.s., i.e. iff µ = 1

ν(Ω)
ν.

(b),(c) Homework �

In statistical mechanics we frequently encounter the task of finding a probability distri-
bution µ describing a complicated system in equilibrium, where the only information
we have is that certain observables have certain given (average) values. This infor-
mation does not determine µ uniquely. So additionally one assumes the “Principle
of maximum entropy”. This is analogous to symmetry assumptions that are made in
many probabilistic models. For instance, suppose we have an experiment, where the
only given thing is the set of possible outcomes. If we don’t have further information
about the experiment, the usual symmetry assumption is that all possible outcomes
are equally likely. Thus we choose the distribution with maximal entropy so that we
have the least possible information about the system, i.e. the maximal disorder of the
system. In statistical mechanics this principle additionally is motivated by the second
law of thermodynamics, which states that entropy never decreases in a closed system.
So after a long time (long enough to reach equilibrium) it makes sense to assume that
the system has reached a state of maximum entropy. The following theorem describes
what kind of distributions with the given constraints have maximum entropy.

Theorem 2.4 (Maximum entropy principle.) Let X1, ...Xn be measurable functions
on (Ω,F , ν) and mi ∈ R. Let

P(m) := {µ probability measure on (Ω,F) : Eµ(Xi) = mi∀i}.

Suppose there are ti ∈ R such that µt ∈ P(m), where µt is the distribution with density

ρt =
1

Z t
e−

P
i tiXi w.r.t. ν, with Zt :=

∫
e−

P
i tiXidν <∞.

Then µt is the (unique) distribution with maximal entropy (w.r.t. ν) in P(m), and

S(µt; ν) =
∑
i

timi + logZt.

Proof: We have

S(µt; ν) =

∫
ρt

(∑
i

tiXi + logZt

)
dν =

∑
i

timi + logZt.
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The rest of the proof relies on the the concavity of ψ(x) = −x log x, which implies that

ψ(x)− ψ(y) ≥ (x− y)ψ′(x) ∀x, y > 0 with equality iff x = y.

This can either be seen from a picture or by setting fx(y) := LHS − RHS, and observing
that f ′x(y) = ψ′(x)−ψ′(y), which implies that fx takes its minimal value at y = x and
thus fx ≥ 0. Now let µ ∈ P(m) and assume w.l.o.g. that µ has a density ρ w.r.t. ν.

S(µt; ν)− S(µ; ν) =

∫
ψ(ρt)− ψ(ρ)dν ≥

∫
(ρt − ρ)ψ′(ρt)dν =

∫
(ρ− ρt)(1 + log ρt)dν

=

∫
(ρ− ρt)(1−

∑
i

tiXi − logZt)dν =
∑
i

timi −
∑
i

timi = 0

with equality iff ρt = ρ ν-a.s.. �

2.5 Limit laws

We now consider a sequence of distributions µn. Think of µn describing the same type
of phenomenon, indexed by a parameter n. We would like to investigate the behavior
of µn in the limit n→∞. Several issues might be interesting:

• What is the approximate size an of typical outcomes w.r.t. µn for n→∞?

• What are the fluctuations around an?

• What is the probability of outcomes far away from an on an exponential scale?

The answers to these questions can be given in the form of the following limit laws:

Definition 2.15 We say that distributions µn on a metric space (E, d) satisfy

(a) a (weak) Law of Large Number (LLN) with limit c ∈ E iff µn → c in probability,
i.e.

µn(Bε(c))→ 1 ∀ε > 0.

(b) a Central Limit Theorem (CLT) with limit distribution µ iff µn → µ in distribu-
tion, i.e. ∫

fdµn →
∫
fdµ ∀ bounded, continuous f : E → R.

(c) a Large Deviations Principle (LDP) with rates γn and rate function I iff

lim sup
n→∞

1

γn
log µn(C) ≤ − inf I(C) ∀ closed C ⊂ E

lim inf
n→∞

1

γn
log µn(U) ≥ − inf I(U) ∀ open U ⊂ E.

Here a rate function is any function I : E → [0,∞] with I 6≡ ∞ and compact
level sets I−1[0, c] (c ≥ 0).

12



Remark:

• It can be shown that the limits in (a) and (b) are uniquely determined, and so is
the rate in (c) up to a multiplicative constant.

• (a) says that for large n outcomes near c have probability close to 1.

• For E = R, the condition in (b) is equivalent to µn(A)→ µ(A) for all A ∈ B(E)
such that µ(∂A) = 0. It means that for large n probabilities of “nice” sets and
expectations of “nice” random variables are close.

• (c) gives that for large n certain events have exponentially small probability: If
A ∈ B(E) such that r = inf I(A) = inf I(Ao) 6= 0, we get µn(A) ≈ e−rγn .

• A sequence Xn of E-valued random variables is said to satisfy an LLN, CLT,
LDP if their distributions do.

• The above limit laws obey a socalled contraction principle: If h : E → E ′ is
a continuous function and distributions µn on E satisfy a LLN with limit c, a
CLT with limit µ or a LDP with rates γn, I, then µ′n := µn ◦ h−1 satisfy a LLN
with limit c′ = h(c), a CLT with limit µ′ = µ ◦ h−1 or a LDP with rates γn,
I ′(x) := inf I(h−1(x)).

Some classical limit laws (presented in lectures on probability theory) are the ones for
sums of iid (independent, identically distributed) random variables:

Theorem 2.5 Let Xi be independent, identically distributed (iid) real random variables
on a probability space (Ω,F ,P) and Sn = X1 + ...+Xn.

(a) If Xi ∈ L1 with m := E(Xi), then Sn
n

satisfy a LLN with limit m.

(b) If Xi ∈ L2 with m := E(Xi), v := V(Xi) > 0, then S∗n := Sn−nm√
n

satisfy a CLT

with limit N0,v (the normal distribution with variance v).

(c) If the moment generating function ϕ(t) = ϕXi(t) = E(eXit) exists for all t ∈ R,
then Sn

n
satisfy an LDP with rate γn = n and rate function I(x) that is the

Legendre Transform of Λ(t) = logϕ(t):

I(x) = Λ∗(x) := sup
t∈R

(tx− Λ(t)), x ∈ R.

Proof: For Xn that take only finitely many values, the proof is homework. For a proof
for general Xn we refer to a lecture in Probability theory. �

If the corresponding integrability assumptions are satisfied, this gives a lot of informa-
tion about the limit behavior of the empirical mean Sn

n
: The approximate size of Sn

n
is

m. Fluctuations around this value have the shape of a Gaussian function and are of
size

√
v/n. Finally for a > m, P(Sn

n
≥ a) ≈ e−nΛ∗(a).

In order to present some ideas that may be used to derive limit laws, we now turn
to an instructive example. Let S ⊂ R be a finite set and Xi be iid S-valued random

13



variables with distribution ν such that ν(s) > 0∀s ∈ S. The empirical measure ξn is
the measure on S with

ξn(s) =
1

n

n∑
i=1

1{Xi=s}.

The empirical measure ξn records how often we obtain each possible result when an
experiment with distribution ν is repeated independently n times. ξn takes values in

En :=
{(ks

n

)
s
∈ RS : ks ∈ {0, ..., n},

∑
s

ks = n
}
,

which we can consider a subset of the set E of all probability measures on (S,P(S)).
E is equipped with the metric d defined by

d(µ, µ′) =
∑
s

|µ(s)− µ′(s)|.

For µ ∈ En we consider the renormalized version

µ∗ =
√
n(µ− ν).

In the following we will investigate the limit behavior of the sequence ξn.

Lemma 2.5 Consider µ ∈ En in the above situation.

(a) Pν(ξn = µ) = cn
∏

s ν(s)nµ(s) = cne
n(S(µ;ν)−S(µ)), where cn = n!Q

s(nµ(s))!
.

(b) If µ maximizes the probability in (a), then µ has to be a 1
n

-discretization of ν:
|µ(s)− ν(s)| < 1

n
∀s ∈ S.

(c) (n+ 1)−#SenS(µ;ν) ≤ Pν(ξn = µ) ≤ enS(µ;ν).

(d) If µn ∈ En such that µn → µ we have 1
n

log Pν(ξn = µn)→ S(µ; ν).

(e) P(ξn = µn) ∼
√

2πnQ
s 2πnν(s)

e−
1
2

P
s(µ
∗
n(s))2/ν(s) for n→∞ uniformly for all sequences

µn ∈ En such that µ∗n(s) ∈ [−c, c], where c > 0 is fixed.

Proof: Let k(s) := nµ(s).
(a) Let An be the set of all sequences (si)i ∈ Sn containing the value s exactly k(s)
times. We note that #An = n!Q

s k(s)!
is the multinomial coefficient and

Pν(ξn = µ) = Pν
( ⋃

(si)i∈An

{X1 = s1, ..., Xn = sn}
)

=
∑

(si)i∈An

n∏
i=1

ν(si) = #An
∏
s∈S

ν(s)k(s).

The product can be rewritten using

S(µ; ν)− S(µ) =
∑
s

µ(s) log µ(s)−
∑
s

ν(s)
µ(s)

ν(s)
log

µ(s)

ν(s)
=
∑
s

µ(s) log ν(s).

14



(b) If µ does not have this property, there are s, t such that k(s) ≤ nν(s) − 1 and
k(t) ≥ nν(t) + 1 and we modify µ to get µ′ ∈ En such that k′(s) = k(s) + 1 and
k′(t) = k(t)− 1. By (a)

Pν(ξn = µ′)

Pν(ξn = µ)
=

k(s)!k(t)!

(k(s) + 1)!(k(t)− 1)!

ν(s)

ν(t)
=

k(t)

k(s) + 1

ν(s)

ν(t)
≥ nν(t) + 1

nν(s)

ν(s)

ν(t)
> 1,

so for µ we don’t get a maximal value.
(c) We use (a), but instead of estimating cn directly, we note that for ν = µ (a) gives
Pµ(ξn = µ) = cne

n(S(µ;µ)−S(µ)) = cne
−nS(µ), which implies

Pν(ξn = µ) = Pµ(ξn = µ)enS(µ;ν).

Now the result follows from Pµ(ξn = µ) ≤ 1 and from the fact that Pµ(ξn = µ′) is
maximal for µ′ = µ by (b), which implies Pµ(ξn = µ) ≥ 1

#En
≥ (n+ 1)−#S.

(d) This follows from (c) since we have S(µn; ν)→ S(µ, ν) and 1
n

log(n+ 1)−#S → 0.
(e) We first note that µn(s) = ν(s) + 1√

n
µ∗n(s) → ν(s) for n → ∞. Using Stirling’s

formula
n! ∼

√
2πn

(n
e

)n
we get the asymptotic size of cn:

cn ∼
√

2πn
(
n
e

)n∏
s

√
2πnµn(s)

(nµn(s)
e

)nµn(s)
∼

√
2πn∏

s 2πnν(s)
enS(µn)

since µn(s) → ν(s), the n
e

terms cancel and we can write µn(s)µn(s) = eµn(s) log µn(s).
Combining this with (a) we obtain

Pν(ξn = µn) ∼

√
2πn∏

s 2πnν(s)
enS(µn;ν).

Using µn(s)
ν(s)

= 1 + µ∗n(s)√
nν(s)

and ψ(x) = −(1 + x) log(1 + x) we can write

S(µn; ν) = −
∑
s

ν(s)
µn(s)

ν(s)
log

µn(s)

ν(s)
=
∑
s

ν(s)ψ
( µ∗n(s)√

nν(s)

)
By Taylor expansion ψ(x) = −x− 1

2
x2 +O(x3) and thus we get up to O( 1√

n
3 )

S(µn; ν) ≈ −
∑
s

ν(s)
µ∗n(s)√
nν(s)

− 1

2

∑
s

ν(s)
( µ∗n(s)√

nν(s)

)2

= − 1

2n

∑
s

µ∗n(s)2

ν(s)
.

This gives the desired asymptotics. �

Remark:

• Part (d) in the case that ν is the uniform distributon on S was one of the mo-
tivations for Boltzmann to define the entropy by the formula given in the last
section.
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• Part (e) is a local central limit theorem, providing precise uniform asymptotics for
probabilities. It is a generalization of the well known local central limit theorem
of deMoivre and Laplace (1738).

The above Lemma already implies an LDP, a LLN and a CLT for the empirical measure.

Theorem 2.6 (Sanov, 1957.) In the above setting, the ξn satisfy a LLN with limit ν
and an LDP with rate γn := n and rate function I := −S(.; ν).

Proof:
We first note that I = −S(.; ν) is ≥ 0, 6≡ ∞ and I is a continuous function on the
compact space E and thus has compact level sets. To prove the LDP we note that for
every C ⊂ E by the preceding lemma

Pν(ξn ∈ C) ≤
∑

µ∈C∩En

enS(µ;ν) ≤ #(En ∩ C)e−n inf I(En∩C) ≤ (n+ 1)#Se−n inf I(C).

From this we get the upper bound of the LDP for arbitrary C. For the lower bound
the preceding lemma gives

Pν(ξn ∈ U) ≥
∑

µ∈U∩En

(n+ 1)−#SenS(µ;ν) ≥ (n+ 1)−#Se−n inf I(U∩En).

For µ ∈ U there are µn ∈ En ∩ U, n ≥ n0 such that µn → µ. Thus inf I(U ∩ En) →
inf I(U) since I is continuous. From this the lower bound of the LDP follows.
The LLN can be obtained from the LDP: Let ε > 0 such that ∂Bε(ν) does not contain
any rational point (and note that only countably many ε do not have this property).
Then Pν(ξn ∈ ∂Bε(ν)) = 0 and thus the LDP applied to the closure and the interior of
Bε(ν))c gives

lim
n

1

n
log Pν(ξn /∈ Bε(ν)) = − inf I(Bε(ν)c) = supS(Bε(ν)c; ν),

where we also have used the continuity of I. To obtain the LLN, it suffices to show
that the supremum is < 0. This follows since S(µ; ν) takes its maximal value 0 iff
µ = ν /∈ Bε(ν)c and Bε(ν)c is compact. �

Theorem 2.7 In the above setting, the ξ∗n :=
√
n(ξn − ν) satisfy a CLT with limit

distribution γν. γν is a distribution on E∗ = {α ∈ RS :
∑

s α(s) = 0} with density

ρ(α) ∼

√
2π∏

s 2πν(s)
e−

1
2

P
s α(s)2/ν(s) w.r.t. λE∗ .

Let Zs ∼ N0,ν(s) be independent normal random variables with variance ν(s), s ∈ S.
Then γν is the distribution of (Xs)s conditioned on

∑
sXs = 0.

Proof: Let Q ⊂ RS be a cube. By the uniform convergence from (e) of the Lemma,

P(ξ∗n ∈ Q) =
∑

α∈En:α∗∈Q

P(ξn = α) ∼ 1
√
n

#S−1

∑
α∗∈E∗n∩Q

ρ(α∗)→
∫
E∗∩Q

ρ(α)λE∗(dα).

16



To justify the last step we observe that the sum considered is a Riemann sum; the
points of E∗n form a regular lattice and the density of points of E∗n in E∗ is 1√

n
#S−1 (the

density of points of the form
√
n( k

n
− ν) (k ∈ ZS) in RS is 1√

n
#S and the density of

sums of components of these vectors is 1√
n
). Thus we have shown

E(g(ξ∗n))→
∫
g(α)ρ(α)λE∗(dα)

for every g of the form 1Q. For arbitrary continuous bounded g we first choose a cube
Q such that

∫
E∗−Q ρ(α)λE∗(dα) < ε. Then P(ξ∗n /∈ Q)→ ε by the above, and on Q we

can approximate g uniformly by functions that are constant on small cubes. This gives
the CLT.
For the second characterization of γν we observe that

∑
sXs is again a normal random

variable with mean 0 and variance
∑

s ν(s) = 1. Thus each Xs has density ρs(t) =
1√

2πν(s)
e−

1
2
t2/ν(s) and

∑
sXs has density ρ′(t) = 1√

2π
e−

1
2
t2 . So the joint density of X

conditioned on
∑

sXs = 0 is
Q
s ρs(αs)

ρ′(0)
= ρ(α). �

2.6 Convergence to equilibrium: Markov chains

In this section we consider a very simple model for convergence to equilibrium in
discrete time (n = 0, 1, 2, ...), given by a sequence Xn describing the value of some
observable at time n. For example we might look at a container filled with gas and
denote Xn the number of atoms in the left half of the container at time n. Since Xn

does not give a complete description of the system at time n, the knowledge of the value
Xn = xn does not determine the value of Xn+1. We will assume that Xn+1 depends
only on the value of Xn and some random input (which is independent of n).

Definition 2.16 Let S be a countable set, µ a distribution on S and p a probability
kernel from S to S . The sequence of random variables Xn, n ≥ 0, is called a Markov
Chain with state space S, initial distribution µ and transition matrix p if µ is the
distribution of X0 and p(xn, .) is the distribution of Xn+1 given that X0 = x0, ..., Xn =
xn for all xi ∈ S.

By the subsection on conditioning the definition is equivalent to stating that the dis-
tribution of (X0, ..., Xn) is given by µ⊗ p⊗ ...⊗ p, i.e.

P((X0, ..., Xn) ∈ A) =
∑

(x0,...,xn)∈A

µ(x0)p(x0, x1)p(x1, x2)...p(xn−1, xn) ∀A ⊂ Sn+1.

If distributions are considered as row vectors µ ∈ RS and transition probabilities are
considered as matrices p ∈ RS×S, Markov chain calculations get particularly simple,
e.g. P(Xn = xn) =

∑
x0,...,xn−1

µ(x0)p(x0, x1)p(x1, x2)...p(xn−1, xn), i.e. the distribution
of Xn is given by the row vector µpn.

An equilibrium state is a state that doesn’t change over time, i.e. that is stationary:

Definition 2.17 A distribution ρ on S is called stationary if ρ = ρp.
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Under some natural assumptions, our model exhibits convergence to equilibrium; start-
ing with any distribution, after a long time the system will be close to equilibrium:

Theorem 2.8 (Ergodic Theorem for Markov Chains.) Let Xn be a Markov chain with
state space S, initial distribution µ and transition matrix p. Suppose that there is a
stationary distribution ρ and the chain has the irreducibility and aperiodicity property

∀x, y ∈ S ∃N ≥ 1 : pN(x, x) > 0, pN(y, x) > 0. (2.2)

Then the stationary distribution is unique and satisfies ρ(x) > 0 ∀x ∈ S, the distribu-
tion of Xn converges to ρ, i.e. µpn → ρ, and S(µpn; ρ) ↑ S(ρ; ρ) = 0 for n→∞.

Proof:
(a) ρ(x) > 0 for all x ∈ S: Homework.
(b) Monotonicity of the entropy. Let ν be an arbitrary initial distribution and N ≥ 1.
The joint distribution of (X0, XN) is ν ⊗ pN and has marginals ν and νpN . The
conditional distributions are

P (XN = y|X0 = x) =
ν(x)pN(x, y)

ν(x)
= pN(x, y) and

P (X0 = y|XN = x) =
ν(y)pN(y, x)

νpN(x)
=: p′ν,N(x, y).

By disintegration we get ν ⊗ pN = νpN ⊗ p′ν,N . By the properties of the entropy

S(ν ⊗ pN ; ρ⊗ pN) = S(ν; ρ) + Eν(S2(pN ; pN))

S(νpN ⊗ p′ν,N ; ρpN ⊗ p′ρ,N) = S(νpN ; ρpN) + EνpN (S2(p′ν,N ; p′ρ,N)).

The left hand sides are equal, ρpN = ρ by stationarity and S2(pN , pN) = 0, thus

S(ν; ρ) = S(νpN ; ρ) + EνpN (S2(p′ν,N ; p′ρ,N)) ≤ S(νpN ; ρ). (2.3)

This implies that S(µpn; ρ) ≤ S(µpm; ρ) for n ≤ m.

(c) Strict monotonicity of the entropy. Suppose we have equality for all N ≥ 1 in (2.3).
This means that the conditional entropy is 0 and thus p′ν,N(i, .) = p′ρ,N(i, .) for all i such
that νpN(i) > 0. Now let x ∈ S such that ν(x) > 0 and y ∈ S arbitrary. Choosing N
according to (2.2), we get

1 =
p′ν,N(x, y)

p′ρ,N(x, y)
=

ν(y)pN (y,x)
νpN (x)

ρ(y)pN (y,x)
ρpN (x)

=
ν(y)

ρ(y)

ρpN(x)

νpN(x)
and similarly 1 =

ν(x)

ρ(x)

ρpN(x)

νpN(x)
.

In particular this implies that ν(y) = ν(x) ρ(y)
ρ(x)

= cρ(y) and thus ν = ρ.

(d) Uniqueness of the stationary distribution. Suppose that ν is stationary, then
ν = νpN for all N and thus we have equality in (2.3). By (c) this implies ν = ρ.

(e) The sequence µpn is tight: ∀ε > 0 ∃ finite Kε ⊂ S ∀n : µpn(Kε) ≥ 1−ε. Homework.
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(f) Suppose that for some subsequence µpnk(x) → ν(x) converges, then ν(S) = 1.
For finite K ⊂ S we have ν(K) = limk→∞ µp

nk(K) ≤ 1, since limits and finite sums
interchange and µpnk is a probability measure for all k. Since ν(K)→ ν(S) for K ↑ S,
we have ν(S) ≤ 1. To show that ν(S) ≥ 1, let ε > 0 and choose Kε according to (e).
Then ν(S) ≥ ν(Kε) = limk→∞ µp

nk(Kε) ≥ 1− ε, and thus ν(S) ≥ 1.

(g) Convergence. Suppose µpn 6→ ρ, then by compactness of [0, 1]S there is a subse-
quence nk such that µpnk(x) → ν(x) ∈ [0, 1] for all x, where ν 6= ρ. By (f) ν is a
probability measure. By (c) there is an N > 0 such that

S(ν; ρ) < S(νpN ; ρ) = lim
k
S(µpnkpN ; ρ) ≤ lim

k
S(µpnk+N ; ρ) = S(ν; ρ),

where we have also used ν = limk µp
nk , the continuity of S(.; ρ) and the monotonicity

from (b) applied to nk +N ≤ nk+N . The above is a contradiction. �

Remark:

• By irreducibility it is possible to get from any state to any other state in a finite
number of steps. Otherwise there may be several components of S (each with its
own stationary distribution) that can’t be reached from each other.

• By aperiodicity a state x can be reached from other states in the same number
of steps. Otherwise it might happen that x only shows up in the even (or odd)
steps depending on the initial state. This might give a periodic behavior instead
of convergence.

• Not every Markov chain has a stationary distribution, but if S is finite there is
at least one.

• To find a stationary distribution, you have to solve the system of linear equations
ρ = ρp. Often it is possible, to guess what ρ might be.

• For a Markov chain started at x let Tx denote the time until the chain returns to x
for the first time, and Ny the number of visits to y until that time. In the context

of the ergodic theorem, it can be shown that ρ(y) = E(Ny)

E(Tx)
and ρ(x) = 1

E(Tx)
. In

particular E(Tx) <∞, i.e. x is “positive recurrent”.

Example: Ehrenfest’s urn model. We consider a container divided symmetrically by
a wall. There is a gas in the left part and a vacuum in the right part. For the number
of particles in the gas, N � 1010 is realistic. We are only interested in the number of
particles remaining in the left part after the wall is removed. As a toy model for the
resulting diffusive behavior we consider a Markov chain, where at every discrete time
step we choose a particle completely at random and with probability 1

2
we put it into

the other part of the container. (Otherwise we do nothing.) The chain has state space
S = {0, ..., N}, initial distribution µ = δN and a transition matrix given by

p(k, k) =
1

2
for k ∈ {0, ..., N}

p(k, k + 1) =
N − n
N

1

2
for k ∈ {0, ..., N − 1}

p(k, k − 1) =
n

N

1

2
for k ∈ {1, ..., N}
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and p(k, l) = 0 otherwise. In equilibrium every particle should be in the left part
with probability 1

2
, independently from the other particles. From the discussion in the

last section we thus guess that ρ(k) = N !
k!(N−k)!

1
2N

is stationary, and it is easy to verify

ρp = ρ. The irreducibility and aperiodicity condition (2.2) holds for the given N . Thus
the ergodic theorem applies. By the results of this and the last section we conclude for
the number Xn of particles in the left part:

• The distributino of Xn converges to ρ with increasing entropy.

• For large n, Xn
n
≈ 1

2
with normal fluctuations of size 1√

N
and the probability to

be bounded away from 1
2

exponentially small.

• It is possible that at some time all particles will again be in the left part, but
this is very unlikly with probability ρ(N) ≈ 1

2N
. The expected waiting time for

this to happen is E(TN) = 2N .

20



3 Ensemble theory

3.1 General setup

The aim in this section is to describe the equilibrium states of a complex system by
distributions. The input from Physics is:

• The set Ω of all possible states of the system. ω ∈ Ω is called microstate or
configuration. A microstate should give complete information about the system.

• The Hamiltonian H : Ω → R̄ := R ∪ {±∞}. H(ω) describes the energy of the
system when it is in state ω.

• A set of parameters (e.g. volume,...) so that for every choice of values for these
parameters we expect to get an equilibrium state.

• A set of observables (e.g. pressure,...) that determine the behavior of the sys-
tem on a macroscopic scale. A given set of values of these observables is called
macrostate of the system. A definition of an observable as a function on Ω is
called microscopic description of the observable. A definition of an observable as
a function of the parameters of the system, is called macroscopic description.

To specify a probabilistic model (= ensemble) for this situation we need to define

• a set of equilibrium distributions indexed by the given parameters

• macroscopic descriptions of all observables

• what should be the thermodynamic limit, i.e. scaling rules for the parameters

The model should have at least the following properties:

• The equilibrium distributions should be invariant under the dynamics.

• The microscopic description of the observables should be equivalent to the macro-
scopic description, at least in the thermodynamic limit.

If we have a model for thermodynamics in the usual sense, we also should check

• the second law of thermodynamics holds, at least in the thermodynamic limit
(orthodicity problem).

If we have more than one model for a given situation, we also should check that

• the models give the same predictions, at least in the the thermodynamic limit
(equivalence of ensembles). Obviously these predictions should also match the
results of experiments.

In the following we introduce a couple of classical ensembles: the microcanonical, the
canonical and the grand canonical ensemble (as introduced by Boltzmann and Gibbs).
We formulate each of these in the context of interacting particles, where each particle

21



has a mass mi, a position qi and a momentum pi and the Hamiltonian for the interaction
of N particles is of the form

H(p, q) =
∑
i

p2
i

2mi

+
∑
i<j

Φ(|qi − qj|),

where Φ : R+ := [0,∞)→ R is a given pair interaction. However, these ensembles can
be formulated in many contexts, e.g.

• more general interactions

• ignoring the momenta

• further internal properties of particles, e.g. magnetic spin, charge, ...

• fixing particle positions at vertices of a lattice

3.2 Microcanonical distribution

Here we fix the number of (indistinguishable) particles N , the energy E and the domain
Λ ⊂ Rd with volume V = λd(Λ). (Often the shape of Λ is fixed, e.g. a cubic shape, so
that Λ depends on V only.) An appropriate state space is

Ω = (Λ× Rd)N/ ∼ .

Here by / ∼ we identify configurations that differ only by the labelling of the particles.
This is necessary since the particles are indistinguishable. One way to do this, is to
define some order on Λ×Rd and to admit only N -tuples into Ω that are in increasing
order. We note that this identification procedure reduces the Lebesgue-volume of Ω by
a factor of 1

N !
. Without this identification, we run into the so-called “Gibbs paradox”

and have to introduce “correct Boltzmann” counting to resolve this paradox.

By Liouville’s Theorem λΩ, the Lebesgue-measure on Ω, is invariant under the Hamilto-
nian dynamics, but we would like to restrict this measure to ΩE = {ω ∈ Ω : H(ω) = E}.
One way to do this is by conditioning:

Definition 3.1 Suppose λΩ admits a disintegration w.r.t. the energy λΩ = λ⊗ p such
that p(E, .) is concentrated on ΩE. If µ′E := p(E, .) is a finite measure on ΩE we define
the microcanonical partition function by

ZE,N
Λ = Z(Λ, E,N) := µ′E(ΩE)

and the microcanonical distribution by the normalization of µ′E: µE,NΛ := 1

ZE,NΛ

µ′E.

We can rewrite the above definition in the form

λΩ(dω) = λ(dE)p(E, dω) = λ(dE)ZE,N
Λ µE,NΛ (dω).

Thus ZE,N
Λ is the density of the energy w.r.t. λ and µE,NΛ is the uniform distribution

on the state space conditioned on the total energy to be E.
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In order to motivate the above defintion by the maximum entropy principle we consider

1

δ
λΩ[E,E+δ]

(A) =
1

δ
λΩ(A ∩ {E ≤ H ≤ E + δ}) =

1

δ

∫ E+δ

E

p(e, A)de→ p(E,A) = µ′E(A)

for δ → 0, which holds under suitable continuity assumptions. Thus we can think of
µ′E as the limit of 1

δ
λΩ[E,E+δ]

and of µE as the limit of the uniform distributions on
Ω[E,E+δ]. In particular, since Lebesgue-measure is the “most uniform” measure in the
continuous setting, µE is the “most uniform” measure on ΩE and thus a natural choice
for the reference measure. By the properties of entropy, µE maximizes the entropy
w.r.t. µ′E, and we have

S(µE;µ′E) = −k
∫
dµ′E

1

µ′E(ΩE)
log

1

µ′E(ΩE)
= k log µ′E(ΩE) = k logZ(Λ, E,N).

Here by Physics convention we have inserted Boltzmann’s constant k into the definition
of relative entropy.

Definition 3.2 The entropy of the micronanical ensemble is defined to be

S(Λ, E,N) := k logZ(Λ, E,N).

Our definition of the microcanonical ensemble is rather abstract. If the energy levels
ΩE are surfaces in Ω everything can also expressed in terms of the surface measure σE.

Theorem 3.1 Suppose that H is differentiable such that ∇H 6= 0, then µ′E has density
1

‖∇H‖ w.r.t. surface measure σE, and in particular Z(Λ, E,N) =
∫

1
‖∇H(ω)‖σE(dω).

Here ‖.‖ is the Euclidean norm. We note that here σE denotes surface measure w.r.t.
the identification / ∼, i.e. surface measure with an additional factor 1

N !
.

Proof: Since∇H 6= 0, we can decompose Ω into open sets Ωi such that ∂ωiF (ω,E) 6= 0
for all ω ∈ Ωi. On Ωi we can locally solve H(ω) = E for ωi, i.e. there is a differentiable
function fi such that for ω′ = (ωj)j 6=i we have H(ωi, ω

′) = E iff ωi = fi(ω
′, E). For the

surface measure σE we have the representation

σE(dω) =
√

1 + ‖∇ω′fi(ω′, E)‖2dω′ =
‖∇H(fi(ω

′, E), ω′)‖
|∂ωiH(fi(ω′, E), ω′|

dω′.

The first equality is by definition of the surface masure and the second can be seen be
a picture, or by differentiating H(fi(ω

′, E), ω′) = E w.r.t. ω′, which gives

∂ωiH(fi(ω
′, E), ω′)∇ω′fi(ω

′, E) +∇ω′H(fi(ω
′, E), ω′) = 0,

and using ∇H = (∂wiH, ∂ω′H), which implies ‖∇H‖2 = |∂wiH|2 + ‖∂ω′H‖2. Combin-
ing the above transformation with the transformation theorem for Lebesgue measure
applied to ωi 7→ E = H(ωi, ω

′), we get for arbitrary measurable A ⊂ Ωi:∫
dω1A(ω) =

∫
dω′
∫
dωi1A(ωi, ω

′) =

∫
dω′
∫
dE

1

|∂ωiH(fi(ω′, E), ω′)|
1A(fi(ω

′, E), ω′)

=

∫
dE

∫
σE(dω)

1

‖∇H(ω)‖
1A(ω)
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By decomposition of A, the above is also true for arbitrary measurable A ⊂ Ω, which
gives the desired disintegration. �

After defining distributions corresponding to equilibrium states we can now give macro-
scopic descriptions of the most common observables and define the thermodynamic
limit. The second law of thermodynamics in the form dS = 1

T
dE + P

T
dV − µ

T
dN

motivates the definition of T, P, µ as partial derivatives of S(E, V,N):

Definition 3.3 In the microcanonical ensemble the energy E, the number of particles
N and the volume V are given as parameter values, and we define

T (E, V,N) (temperature) by
1

T
= ∂ES(E, V,N) =

∂S

∂E

∣∣∣
V,N

P (E, V,N) (pressure) by
P

T
= ∂V S(E, V,N) =

∂S

∂V

∣∣∣
E,N

µ(E, V,N) (chemical potential) by −µ
T

= ∂NS(E, V,N) =
∂S

∂N

∣∣∣
E,V

For the thermodynamic limit we fix an energy density u and a particle density ρ. We
then let N,E, V →∞ such that E

V
→ u and N

V
→ ρ.

We note that in the definition of µ we are a bit sloppy since we take a derivative
w.r.t. a discrete variable. Here ∂N can be interpreted to be a discrete derivative.
For the thermodynamic limit, we stress that we have chosen a specific domain (e.g.
cubic) for every value of V . Of course, we now can also introduce the various free
energies/thermodynamic potentials A,Φ, G,H in terms of the above observables, e.g.
A = E − TS.

For any given Hamiltonian, we can now investigate properties of the microcanonical
ensemble, e.g. the behavior of interesting random variables (such as the kinetic energy
per particle, the microcanonical pressure, the number of particles in a certain region,...)
or try to derive the equation of state.

Example: Let us consider the free gas in three dimensions with indistinguishable
particles. Here Φ = 0 so that

H =
∑
i

p2
i

2m
.

ΩE = (ΛN × S3N,R)/ ∼, where S3N,R is the surface of a 3N -dimensional sphere with
radius R =

√
2mE. On ΩE

‖∇H‖ = ‖(pi
m

)i‖ =
R

m
.

Thus µ′E has density
√

m
2E

w.r.t. σE = λNΛ ⊗ σS3N,R
, In particular µE is uniform on

(V N × S3N,R)/ ∼ and since the surface of an n-dimensional sphere with radius r is
given by

σ(n, r) := rn−1 2πn/2

Γ(n/2)
,
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the partition function is

Z(V,E,N) =
m

R
σE(ΩE) =

m

R
λ(ΛN/ ∼)σ(3N,R) =

m

R

V N

N !
R3N−1 2π3N/2

Γ(3N/2)

=
1

E

V N

N !Γ(3N/2)
(2πmE)3N/2 ∼ 1√

6πNE

(V e
N

)N(4πemE

3N

)3N/2

for N →∞ using Stirling. From the partition sum we immediately get the entropy

S(V,E,N) = k
(
− log(

√
6πNE) +N log

V e

N
+

3N

2
log

4πemE

3N

)
+ o(1).

Taking partial derivatives we obtain

1

kT
=

3N − 2

2E
,

P

kT
=
N

V
, − µ

kT
= log

Z(V,E,N)

Z(V,E,N − 1)
= log

V (2πmE)3/2Γ(3N−3
2

)

NΓ(3N
2

)
.

Thus the equation of state PV = NkT holds for all parameter values, and in the
thermodynamic limit we obtain

S

N
∼ k

(
log

V e

N
+

3

2
log

4πemE

3N

)
, T ∼ 2

3

E

kN
, µ ∼ −kT

(
log

V

N
+

3

2
log

4πmE

3N

)
.

In particular we see that N, V,E, S are extensive quantities (scaling with N in the
thermodynamic limit), whereas T, P, µ are intensive quantities (scaling as constants).

We also might be interested in the distribution of the position X and momentum Y of a
single particle. By definition of µE, X is uniformly distributed on V and independent
of Y , and the distribution of Y can be calculated as the marginal of the uniform
distribution on SR. We get the density

fY (p) =
1

σ(3N,R)
σ(3N − 3,

√
R2 − p2) =

(1− p2

R2 )(3N−4)/2

R3π3/2

Γ(3N/2)

Γ((3N − 3)/2)

In the thermodynamic limit (1 − p2

R2 )(3N−4)/2 ∼ e−
p2

2
3N

2mE (uniformly on compact sets)

and Γ(3N/2)

R3π3/2Γ((3N−3)/2)
∼ (3N/2)3/2

(2πmE)3/2 = ( 3N
4πmE

)3/2. Thus

fY (p) ∼ (
3N

4πmE
)3/2e−

p2

2
3N

2mE =
3∏
i=1

1√
2πv

e−
p2i
2v , where v =

2mE

3N
,

uniformly on compact sets. This implies that Y satisfies a CLT in the thermodynamic
limit. The limit distribution is called the Maxwell distribution: the three momentum
components are independent and normally distributed.

3.3 Canonical distribution

The microcanonical distribution is very natural, but since it is defined by condition-
ing, calculations get complicated. The canonical distribution is computationally much
easier. Here we fix the number of (indistinguishable) particles N , and the domain
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Λ ⊂ Rd with volume V = λd(Λ), but instead of the energy we fix the temperature. By
convention the parameter used is the inverse temperature

β :=
1

kT
.

As in the microcanonical case, the state space is

Ω = (Λ× Rd)N/ ∼ .

Again we stress that because of the identification / ∼, λΩ has an additional factor of 1
N !

as compared to the usual Lebesgue-measure. W.r.t. a canonical distribution the energy
is not fixed, but it is a random variable H; however we would like the expectation of
H to have a specific appropriate value E. By the principle of maximum entropy this
motivates to define the canonical distribution in terms of an exponential density of the
form e−βH , where β has to be chosen to produce the given value of E.

Definition 3.4 We define the canonical partition function by

Zβ,N
Λ = Z(Λ, β,N) :=

∫
Ω

e−βHdλΩ

and the canonical distribution µβ,nΛ to be the probability measure with density

ρβ,NΛ :=
1

Zβ,N
Λ

e−βH w.r.t. λΩ.

For this definition to be meaningful we have to assume that the partition function
has a finite value. By the above motivation the energy E should be defined to be the
expectation of H w.r.t. the corresponding distribution, and by the maximum entropy
theorem

S(µβ,nΛ ;λΩ) = k(βE + logZ(Λ, β,N)).

By the thermodynamics definition of the (Helmholtz) free energy A = E − TS we see
that we can identify A with − 1

β
logZ. This quantity plays a fundamental role in the

definition of the other thermodynamic variables: We note that

∂β logZβ,N
Λ =

∂βZ
β,N
Λ

Zβ,N
Λ

=
1

Zβ,N
Λ

∫
∂βe

−βHdλ = −
∫
Hdµβ,nΛ = −E

under suitable integrability conditions, and A = E − TS = −PV + µN implies that P
and µ can be obtained from A as corresponding partial derivatives.

Definition 3.5 In the canonical ensemble the temperature T = 1
kβ

, the number of
particles N and the volume V are given as parameter values, and we define

E(β, V,N) (energy) by E = −∂β logZ(β, V,N)

A(β, V,N) (free energy) by A = − 1

β
logZ(β, V,N)

P (β, V,N) (pressure) by − P = ∂VA(β, V,N) =
∂A

∂V

∣∣∣
β,N

µ(β, V,N) (chemical potential) by µ = ∂NA(β, V,N) =
∂A

∂N

∣∣∣
β,V

For the thermodynamic limit we fix a a particle density ρ. We then let N, V →∞ such
that N

V
→ ρ, while keeping β fixed.
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The calculations in the free gas example are muchg easier in the canonical ensemble.

Example: For doing computations for the canonical ensemble of the free gas, again
we have to start by computing the partition function

Z =

∫
e−βHdλ =

1

N !
V N

3N∏
i=1

e−β
ω2
i

2mdωi =
1

N !
V N(

2πm

β
)3N/2.

So

E =
3N

2β
and A =

1

β

(
logN !−N log V +

3N

2
log

β

2πm

)
,

and

P =
N

βV
and µ =

1

β

(
− log

V

N
+

3

2
log

β

2πm

)
.

Again A,E, S can be seen to be extensive and P, µ are intensive. The corresponding
limits are the same as for the microcanonical ensemble (equivalence of ensembles!)
and we get the same equation of state N = βV P . Directly from the definition of
the canonical ensemble we get that the positions and momenta of the particles are
independent of each other and the positions are uniformly distributed over Λ and the
momenta have Maxwell-distribution (even for finite N). In the canonical case H is a
random variable with expectation E(H) = E, and we might also be interested in the
fluctuations. Since H is a sum of iid random variables, the iid CLT implies that the
fluctuations are of the order

√
N . Another way to see this, is to observe that

∂2
β logZ = ∂β(

1

Z
∂βZ) =

1

Z
∂2
βZ −

1

Z2
(∂βZ)2 = E(H2)− E(H)2 = V(H)

and thus V(H) = −∂βE = 3N
2β2 . So the fluctuation of H is

√
3N
2β2 . In particular the

energy density H
N

has vanishing fluctuations in the thermodynamic limit, i.e. H
N
→ E

N
.

3.4 Grand canonical distribution

In the canonical distribution we already have abandoned the idea of fixed energy,
and we now want to do the same for the number of particles: For the grand canonical
distribution we fix the domain Λ ⊂ Rd with volume V = λd(Λ), the inverse temperature
β and the chemical potential µ, and we allow the energy and particle number to vary.
The state space now is

Ω =
⋃
n≥0

Ωn with Ωn = (Λ× Rd)n/ ∼ .

The elements of Ω are all finite unordered sets of tuples (x, p) with x ∈ Λ and p ∈ Rd.
The most natural choice of a reference measure λΩ is a measure such that its restriction
to Ωn is the reference measure from the previous section, i.e. λ =

∑
n λΩn . Let H(ω)

and N(ω) denote the energy and the number of particles of a configuration ω ∈ Ω. The
principle of maximum entropy motivates to define the grand canonical distribution in
terms of an exponential density of the form e−βH−β

′N , where the parameters β, β′

determine the expectation of the energy and number of particles.
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Definition 3.6 We define the grand canonical partition function by

Zβ,µ
Λ = Z(Λ, β, µ) :=

∫
Ω

e−βH+βµNdλΩ

and the canonical distribution µβ,µΛ to be the probability measure with density

ρβ,µΛ :=
1

Zβ,µ
Λ

e−βH+βµN w.r.t. λΩ.

For this definition to be meaningful we have to assume that the partition function has
a finite value. Instead of µ sometimes the activity parameter z is used, which is defined
as

z = eβµ.

Energy E and particle number N̄ should be defined to be the expectation E(H) and
E(N) w.r.t. the corresponding distribution, and by the maximal entropy theorem

S(µβ,µΛ ;λΩ) = k(βE − βµN̄ + logZ(Λ, β, µ)).

By the thermodynamics definition of the grand free energy G = E − TS − µN̄ we see
that we can identify G with − 1

β
logZ. Again logZ plays a fundamental role: E and N̄

can be expressed in terms of ∂β logZ and ∂µ logZ and the pressure P can be obtained
from G = E − TS − µN̄ = −PV .

Definition 3.7 In the canonical ensemble the temperature T , the chemical potential µ
and the volume V are given as parameter values, and we define

N̄(β, V, µ) (number of particles) by βN̄ = ∂µ logZ(β, V, µ)

E(β, V, µ) (energy) by − E + µN̄ = ∂β logZ(β, V,N)

G(β, V, µ) (grand free energy) by G = − 1

β
logZ(β, V,N)

P (β, V, µ) (pressure) by P = −G
V
.

For the thermodynamic limit we let V →∞ such that β, µ are kept fixed.

At least in the definition of the thermodynamic limit it can be seen that the grand
canonical ensemble is even easier than the canonical for computations.

Example: For the grand canonical ensemble of the free gas, we compute

Z =

∫
e−βH+βµNdλ =

∑
n

1

n!
eβµnV n

3n∏
i=1

e−β
ω2
i

2mdωi =
∑
n

1

n!
eβµnV n(

2πm

β
)3n/2,

which gives

logZ = V eβµ(
2πm

β
)3/2.

From this we obtain

N̄ = V eβµ(
2πm

β
)3/2, E = − 3

2β
V eβµ(

2πm

β
)3/2, G = − 1

β
V eβµ(

2πm

β
)3/2
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and thus P = 1
βV
V eβµ(2πm

β
)3/2, i.e. P = N̄

βV
. Again in the thermodynamic limit all

quantities have the appropriate scaling behavior. As in the canonical ensemble it can be
seen that both energy and particle number have fluctuations that are small compared
to their values in the thermodynamic limit. The distribution of N is called a Poisson
distribution with parameter α = logZ.

3.5 Stability

For the free gas we have seen that the entropy, energy and pressure are extensive
quantities, scaling with the system size, and the distribution of the position of particles
is rather homogeneous. Although this is the way we would like our system to behave,
this need not be the case in general. Some bad things that might happen are

• Coalescence catastrophe: This happens if the interaction is too attractive (either
the long range or the short range part) so that all particles lump together.

• Evaporation catastrophe: This happens if the interaction is too repulsive (mostly
the long range part), so that the particles try to maximize their mutual distance,
i.e. most particles will stick to the boundary of Λ.

There are various sorts of conditions on the interaction that are sufficient for preventing
the above catastrophes, usually called temperedness and stability conditions. Here we
consider the following ones:

Definition 3.8 Let Φ : R+ → R be an interaction.

(a) Φ is called tempered if there is an R > 0 such that Φ(r) ≤ 0 for r > R.

(b) Φ is called stable if there is a B > 0 such that

Φ(q) :=
∑

1≤i<j≤N

Φ(|qi − qj|) ≥ −NB ∀N ∈ N, qi ∈ Rd

As an important application of these conditions, we show the existence of the thermo-
dynamic limit for the free energy in the canonical ensemble. We have already seen that
(for every kind of interaction) the momenta are independent of the positions with a
Maxwell distribution, and else there is nothing interesting to say about the momenta,
so we will ignore them from now on and consider a Hamiltonian of the form

H(q) =
∑
i<j

Φ(|qi − qj|).

In the case of the free gas we now get

Z =

∫
e−βHdλΩ =

1

N !
V N and A =

1

β

(
logN !−N log V

)
∼ N

β
log

N

eV
.

In the thermodynamic limit N
V
→ ρ and thus A

V
→ afree(ρ, β) := 1

β
ρ(log ρ− 1). In the

presence of interaction it usually is not possible to calculate Z and thus A explicitly.
However, the free energy density exists and has some nice properties.
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Theorem 3.2 (Fisher, Ruelle, 1963) We consider the canonical ensemble for inter-
acting particles in Rd, ignoring the momenta. If the interaction Φ is tempered and
stable, then the free energy density a(ρ, β) exists in the thermodynamic limit. As a
function of ρ, a(., β) is convex and continuous and a(ρ, β) ∼ ρ log ρ

β
for ρ→ 0.

Proof: (For cubic domains.) Let ρ, β > 0. For simplicity we consider B := logZ =
−βA instead of A. We first consider a particular sequence of cubes with side lengths
lk = 2k containing Nk = 2dkρ particles. (For non-integer particle numbers we interpo-
late corresponding functions linearly.) We define Λk to be the cube with side length
lk −R and let Vk := λd(Λk) and Zk the corresponding partition sum. We note

Nk

Vk
=

Nk

(lk −R)d
=

2dkρ

(2k −R)d
→ ρ for k →∞.

Λk+1 can be decomposed into 2d copies Λk(i) of Λk that keep distance R from each other.

In Yk+1 we restrict our attention to the set of positional configurations Ωk+1 ⊂ Λ
Nk+1

k+1

with exactly Nk particles in each Λk(i). There are Nk+1!

Nk!2d
ways to choose particles for

these regions. Suppose now that particles q(i) := (qj)(i−1)Nk<j≤iNk are in Λk(i). By
temperedness Φ(q) ≤

∑
i Φ(q(i)) and we get

Zk+1 =
1

Nk+1!

∫
Λ
Nk+1
k+1

e−βΦ(q)dq ≥ 1

Nk+1!

∫
Ωk+1

e−βΦ(q)dq

≥ 1

Nk+1!

Nk+1!

Nk!2
d

∏
i

∫
Λk(i)Nk

e−βΦ(q(i))dq(i) =
( 1

Nk!

∫
Λ
Nk
k

e−βΦ(q)dq
)2d

= Z2d

k

and thus bk(ρ) := 1
2dk

logZk is increasing in k. By stability

Zk =
1

Nk!

∫
Λ
Nk
k

e−βΦ(q)dq ≤ 1

Nk!

∫
Λ
Nk
k

eβBNkdq ≤ 1

Nk!
V Nk
k eβBNk

and thus
bk(ρ)

ρ
≤ βB + log Vk −

1

Nk

log(Nk!) ≤ βB − log ρ+ 1,

where we have used Vk ≤ Nk
ρ

and Stirling’s formula in the form log n− 1
n

log n! ≤ 1. So
bk is increasing and bounded from above and thus convergent:

bk(ρ) ↑ b(ρ).

We next establish some properties of b. The upper bound from above immediately
carries over:

b(ρ) ≤ −ρ log ρ+ ρ(βB + 1).

We also have a lower bound for ρ → 0. For small particle density we decompose Λk

into md
k cubes of side length lk with (lk + R)mk = 2k so that they keep distance ≥ R.

Choosing mk = dρ1/d2ke we have md
k ≥ Nk, so we can put one particle in the first Nk

of these little cubes and no particles in the remaining cubes, which gives Zk ≥ (ldk)
Nk

as above, and thus

b(ρ) ≥ bk(ρ) ≥ Nkd

2dk
log lk = ρd log(

2k

mk

−R)→ ρd log(ρ−1/d −R) for k →∞.
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Combining the two bounds we get in particular b(ρ) ∼ −ρ log ρ for ρ → ∞. By a
homework problem b is midpoint concave. Midpoint concavity and boundedness on
an interval (0, ε] immediately give that b is continuous and convex. Because bk and b
are continuous and bk ↑ b, it finally follows that the convergence bk → b is uniform on
compact intervals. See the lemmas below for details.

Now let Λn, Nn, Vn, ln, bn denote the quantities for a given sequence of arbitrary cubes
and Λ′k, N

′
k, V

′
k , l
′
k, b
′
k those for the special sequence considered above. For fixed n� k

let mn,k be the maximal number of copies of Λn that fit into Λ′k in the above manner,

i.e. mn,k :=
⌊

l′k
ln+R

⌋d
, and fill each one with Nn particles. The particle density in Λ′k is

ρn,k =
mn,kNn

V ′k
→ Nn

(ln +R)d
for k →∞.

As above we have Y ′k(ρn,k) ≥ Yn(Nn,Λn)mn,k and thus

b′k(ρn,k) ≥
mn,k

V ′k
log Yn(Nn,Λn) =

mn,kVn
V ′k

bn

Letting k →∞ and using the uniform convergence from above we obtain

b′
( Nn

(ln +R)d

)
≥ Vn

(ln +R)d
bn and thus b′(ρ) ≥ lim sup

n
bn,

where we have used Nn
Vn
→ ρ and the continuity of b′. For the converse inequality we

fix n� k and let Mn,k be the maximal number of copies of Λ′k that fit into Λn in the
above manner, i.e. Mn,k := b ln

l′k+R
cd, and fill each one with N ′n,k := Nn

Mn,k
particles. The

particle density in each Λ′k is then

ρn,k =
Nn

Mn,kV ′k
→ (l′k +R)d

V ′k
ρ =: ρ′k for n→∞.

As above we have Yn(Nn,Λn) ≥ Y ′k(ρn,k)
Mn,k and thus

bn ≥
Mn,k

Vn
log Y ′k(ρn,k) =

Mn,kV
′
k

Vn
b′k(ρn,k),

so

lim inf
n

bn ≥
V ′k

(l′k +R)d
b′k(ρ

′
k) and thus lim inf

n
bn ≥ b′(ρ)

by continuity and the uniform convergence of the b′k. �

Lemma 3.1 Let f : (0,∞)→ R be midpoint concave, i.e. f(x1+x2

2
) ≥ 1

2
(f(x1)+f(x2))

for all x1, x2 > 0, and bounded on (0, ε], where ε > 0. Then f is bounded on any bounded
interval, continuous and concave.

Proof: Let c > 0 such that |f(x)| ≤ c for all 0 < x ≤ ε. Let ε < x ≤ 3
2
ε. We have

3c ≥ 2f(ε)− f(2ε− x) ≥ f(x) ≥ 1

2
(f(2ε) + f(2x− 2ε)) ≥ 1

2
(f(2ε)− c)
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by midpoint concavity. Thus f is bounded on (0, 3
2
ε). By induction f is bounded

on (0, (3
2
)kε) for every k, i.e. on every bounded interval. By midpoint concavity and

induction on n

f
(k1

2n
x1 +

k2

2n
x2

)
≥ k1

2n
f(x1) +

k2

2n
f(x2) ∀n ≥ 0 ∀k1, k2 ≥ 0 : k1 + k2 = 2n.

Let x, x′, x′′ > 0 such that f(x′′) ≥ f(x′). f is bounded near x by some c. For fixed n
choose x1, x2 such that x′ = 1

2n
x1 + (1− 1

2n
)x2 and x′′ = x2. If x′ and x′′ are sufficiently

close to x then x1 is also close to x. The above implies that

f(x′) ≥ 1

2n
f(x1) + (1− 1

2n
)f(x′′), i.e. f(x′′)− f(x′) ≤ 1

2n
2c.

Thus f is continuous in x. Approximating real numbers by numbers of the form k
2n

,
the above inequality implies that f is concave. �

Lemma 3.2 Let K ⊂ R be compact and fn, f : K → R be continuous such that fn ↑ f .
Show that fn → f uniformly.

Proof: Suppose otherwise, then there are ε > 0, xn ∈ K such that fn(xn) < f(xn)− ε.
By compactness we have a convergent subsequence, and by ignoring the other terms
we may assume that xn → x. By monotonicity fk(xn) ≤ fn(xn) < f(xn) − ε for all
k ≤ n. By continuity of fk, f this implies fk(x) ≤ f(x)− ε and we get a contradiction
letting k →∞. �

3.6 Boundary conditions

For many systems it can be observed that although most combinations of parame-
ter values describe a unique state of the system, there may be some combinations of
parameter values that do not determine the state of the system uniquely. A typical
example for this behavior is water, which (at a certain temperature) can both be in
a liquid state and in a solid (frozen) state. This phenomenon is called phase transi-
tion and the possible states of the system are called phases. So far we have ignored
this phenomenon: The ensemble distribution corresponding to given parameter values
describes only one phase. How do we get the other phases? Often it is sufficient to
enlarge the ensembles by considering boundary configurations. The idea is that there
are particles outside of the volume in some configuration typical for the phase. If these
are interacting with the particles inside the volume, this may force these particles also
into configurations typical for this phase. The idea of boundary configurations can be
made rigorous for all ensembles considered so far, but for the sake of definiteness we
will just present it for the grand canonical ensemble and for particles in Rd ignoring the
momentum. In the previous sections we have seen that corresponding configuration
space is the collection of all finite sets of points in a domain Λ. To be able to give
a more formal description of this space we need some notations and definitions. For
A ∈ Bd let

B<∞A := {E ∈ Bd : E ⊂ A, λd(E) <∞}
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denote the set of all subsets of A of finite volume. For E ⊂ Rd let

NE : Bd → {0, 1, 2, ...} ∪∞, NE(A) := #(E ∩ A),

the number of points a given set has in E. TheNE are called counting random variables.
Let

ΩA = {ω ⊂ A : NE(ω) <∞ ∀E ∈ B<∞A }.

ω ∈ ΩA is called locally finite: ω may consist of infinitely many points, but in any
bounded set there are only finitely many points, i.e. ω does not have accumulation
points. A natural σ-algebra on ΩA is given by

FA = σ({NE = k} : k ∈ N, E ∈ B<∞A ).

Now we can set up grand canonical distributions with boundary configurations. Let
Λ ∈ B<∞Rd be a domain. ΩΛ is the collection of all finite (unordered) sets of points in Λ.
This is equivalent to the description of the state space in the preceding sections: Since
ΩΛ consists of sets rather than ordered tuples of points, the identification ∼ is already
built into the sate space. The set of boundary configurations is given by ΩΛc . We
note that a configuration ω ∈ ΩΛ is always finite, whereas a boundary configuration
η ∈ ΩΛc may be infinite. The way the boundary condition enters the definition of the
distribution is via the Hamiltonian. Instead of considering H we now consider

HΛ(ω|η) :=
1

2

∑
q 6=q′∈ω

Φ(|q − q′|) +
∑

q∈ω,q′∈η

Φ(|q − q′|) for ω ∈ ΩΛ, η ∈ ΩΛc .

Thus we consider all interactions terms of particles in ω and particles in ω with the
boundary configuration η. (The factor 1

2
gets rid of double counting.) We note that

the second sum may be infinite, so we have to impose additional conditions on φ
(such as temperedness) to make sure HΛ(.|η) is well defined. Using this conditional
Hamiltonian instead of the usual one, we define grand canonical distributions with
boundary conditions:

Definition 3.9 Let Λ ∈ B<∞Rd , β, z > 0 and η ∈ ΩΛc. The grand canonical distribution

γβ,zΛ (.|η) is defined to be the probability measure on (ΩΛ,FΛ) with density

ρβ,zΛ (.|η) :=
1

Zβ,z
Λ (η)

e−βHΛ(.|η)zN w.r.t. λΩΛ
=
∑
n≥0

1

n!
λΛn ,

where the partition function Zβ,z
Λ (η) is the appropriate normalizing constant. For η ∈ Ω

we define γβ,zΛ (.|η) := γβ,zΛ (.|ηΛc)⊗ δηΛc
to get a probability measure on (Ω,F) that looks

like η outside of Λ. Here ηB := η ∩B is the corresponding restriction.

Here we have used the so called activity z = eβµ as a parameter instead of the chemical
potential µ. All other definitions carry over. In particular, in the thermodynamic limit
the boundary condition is also kept fixed.

Example: For the free gas there is no interaction between particles. Thus the bound-
ary condition does not have any influence on the grand canonical distribution.
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The type of boundary condition described above is sometimes called configurational
boundary condition. A special case is the one of a free boundary condition which cor-
responds to η = ∅. (This amounts to the same as not considering boundary conditions
at all.) Often also periodic boundary conditions are considered in the case that Λ has
a rectangular shape. Here Λ is considered a torus by identifying opposite faces of Λ or
equivalently Rd is decomposed into translates of Λ and η is defined to be the union of
all translates of ωΛ.

3.7 Infinite volume distributions

All ensembles considered so far give distributions for fixed volume, and only in the
thermodynamic limit this volume is taken to infinity. Since we are only interested in
what happens in the thermodynamic limit anyway, it would be much more convenient
to have a model, where the distributions are defined for infinite volume right away.
There is a general procedure to do this for all ensembles considered above, but for the
sake of definiteness we will only treat the case of the grand canonical ensemble as set
up in the previous section. Thus our state space is

Ω := ΩRd = {ω ⊂ Rd : NE(ω) <∞ ∀E ∈ B<∞Rd }.

We now could define a reference measure on Ω similar to the Poisson measure and try
to use the maximum entropy principle. The problem is that in general N(ω) =∞ and
H(ω) is not well defined since it is an infinite sum with infinitely many positive and
negative terms. However, we already have a distribution γβ,zΛ (.|η) on ΩΛ, which can be
used to define a distribution µ on Ω implicitly: We demand that the samples obtained
from µ that look like η outside of Λ are distributed according to γβ,zΛ (.|η) inside Λ.
This is a disintegration property according to the decomposition Ω = ΩΛc × ΩΛ of the
configuration space that can be written in the form

µ = µΛc ⊗ γβ,zΛ , i.e. µ(dω, dη) = µΛc(dη)γβ,zΛ (dω|η) = µ(dη)γβ,zΛ (dω|ηΛc)

where µΛc is the corresponding marginal of µ and γβ,zΛ is considered a probability kernel
from ΩΛc to ΩΛ. Since γβ,zΛ can also be considered a probability kernel from Ω to Ω
(when defined with boundary condition η ∈ Ω), we can also write this in the form

µ = µ⊗ γβ,zΛ , i.e. µ(dω) = µ(dη)γβ,zΛ (dω|η).

Here we have used that the last measure only produces samples such that ωΛc = ηΛc .

Definition 3.10 Let β, z > 0. A distribution µ on (Ω,F) is called a Gibbs measure
with parameters β, z iff µ = µ⊗ γβ,zΛ for every Λ ∈ B<∞Rd , i.e. iff

µ(D) =

∫
µ(dη)γβ,zΛ (D|η) ∀Λ ∈ B<∞Rd , D ∈ F . (3.1)

Let Gβ,z denote the set of all such Gibbs measures. If #(Gβ,z) > 1, we say that there is
a (first-order) phase transition for the parameter values β, z.
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We note that (3.1) holds for γβ,zΛ′ (.|η′) instead of µ, where Λ′ ⊃ Λ:

Lemma 3.3 (Consistency property.) For β, z > 0, we have γβ,zΛ′ = γβ,zΛ′ ⊗ γ
β,z
Λ for all

Λ ⊂ Λ′ ∈ B<∞Rd , i.e.

γβ,zΛ′ (D|η′) =

∫
γβ,zΛ′ (dη|η′)γβ,zΛ (D|η) ∀Λ ⊂ Λ′ ∈ B<∞Rd , D ∈ F , η

′ ∈ Ω.

Proof: Homework. �

We note that instead of testing (3.1) for all D,Λ it is sufficient to consider special D,Λ:

Lemma 3.4 If (3.1) holds for all D from a ∩-stable generator of F and for a specific
sequence Λn ∈ B<∞Rd such that Λn ↑ Rd, then it holds for all Λ ∈ B<∞Rd , D ∈ F .

Proof: Both sides of (3.1) define probability measures in D. If they agree on a ∩-
stable generator of F , then they agree on F by the uniqueness theorem. For the second
part let Λ ∈ B<∞Rd and choose an n such that Λn ⊃ Λ. If µ = µ⊗ γβ,zΛn

, then

µ = µ⊗ γβ,zΛn
= µ⊗ (γβ,zΛn

⊗ γβ,zΛ ) = (µ⊗ γβ,zΛn
)⊗ γβ,zΛ = µ⊗ γβ,zΛ

by the above lemma. �

Remark:

• (3.1) is called DLR-condition in honor of Dobrushin, Lanford, Ruelle.

• The definition of Gβ,z is very much implicit. Usually it is very difficult to get an
explicit description of Gβ,z or to determine whether there is a phase transition.

• A useful ∩-stable generator of F conists of all sets of the form D × ΩΛc , where
D ∈ FΛ and Λ ∈ B<∞Rd such that Λ ⊃ Λ0 ∈ B<∞Rd .

• The set of Gibbs measures is convex:

∀µi ∈ Gβ,z, αi ≥ 0 with
∑
i

αi = 1 :
∑
i

αiµi ∈ Gβ,z.

Let Ex(Gβ,z) denote the set of extremal elements of the convex set Gβ,z. These
extremal Gibbs measures are also called pure states or pure phases and correspond
to what is called phases in physics. All other Gibbs measures are statistical
mixtures of these: The Theorem of Krein-Milman guarantees that every Gibbs
measure can be written as a convex combination of elements of Ex(Gβ,z).

Example: Free gas. Let Λ ∈ B<∞Rd , β, z > 0, η ∈ ΩΛc , Φ = 0. Here γβ,zΛ (.|η) in
fact does not depend on β and η: γzΛ is defined to have density ρzΛ = 1

ZzΛ
zN w.r.t.

Lebesgue-Poisson measure λΩΛ
. We have

Zz
Λ =

∫
zNdλΩΛ

=
∑
n

1

n!

∫
Λn
zndx1...dxn =

∑
n

1

n!
znλ(Λ)n = ezλ(Λ),
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and thus the density is simply
ρzΛ = e−zλ(Λ)zN .

To extend γzΛ to infinite sets Λ let Ci be the decomposition of Rd into unit cubes. We
set

νA,z := ⊗iγzA∩Ci for arbitrary A ∈ Bd.

Below we will show that Gβ,z = {νRd,z} after presenting some important properties of
the distributions νA,z.

Lemma 3.5 If A =
⋃
iAi is a decomposition of A, then νA,z = ⊗iνAi,z, and for

A ∈ B<∞Rd we have νA,z = γzA.

Proof: Homework. �

Theorem 3.3 Let β, z > 0. For the free gas we have Gβ,z = {νRd,z}.

Proof: First we note that for any Λ ∈ B<∞Rd we have νRd,z = νΛc,z⊗νΛ,z = (νRd,z)Λc⊗γzΛ
by the above lemma, i.e. νRd,z ∈ Gβ,z. On the other hand let µ ∈ Gβ,z. For D ∈ FΛ

with finite Λ we have

µ(D×ΩΛc) = µΛc⊗γzΛ(D×ΩΛc) = µΛc(ΩΛc)γ
z
Λ(D) = γzΛ(D) = νΛ,z(D) = νRd,z(D×ΩΛc).

By the uniqueness theorem this implies that µ = νRd,z. �

In Mathematics νA,z is known as the Poisson-measure. It plays in important role for
many applications.

Lemma 3.6 Let z > 0 and A ∈ Bd. νA,z is the Poisson-measure (or distribution of
the Poisson process) on A with intensity z, i.e. νA,z is the unique probability measure
on (ΩA,FA) such that

• For every E ∈ B<∞A NE is a Poisson random variable with parameter zλd(E),
i.e.

νA,z(NE = k) = e−zλ
d(E) (zλd(E))k

k!
.

• For disjoint Ei ∈ B<∞A , the random variables NEi are independent.

Proof: Homework. �

For calculations, using the two defining properties of the Poisson measure usually is
easier than working with the explicit construction in terms of the grand canonical
distributions.

36



4 Ising model

4.1 Definition of the Ising model

In this section we introduce and investigate the Ising model, a toy model for ferro-
magnetism that was introduced by Wilhelm Lenz in 1920 and investigated by his
student Ernst Ising. It is a prototype model for statistical mechanics. A lot of things
can be computed explicitly, and many of the techniques used there carry over to other
models. In fact in dimension one and two the free energy can be computed using
algebraic methods (“Onsager solution”). Here we will use probabilistic and geometric
ideas instead.

For the Ising model we consider particles with fixed positions, where the positions form
a regular lattice, say Zd. We will also assume that only particles at adjacent positions
will interact, so we consider the set of edges (or bonds)

E = E(Zd) = {{i, j} : i, j ∈ Zd, |i− j| = 1}.

(Zd, E(Zd)) forms a graph, and we will denote edges by ij := {i, j}, and write i ∼ j
if ij ∈ E(Zd). For a subset Λ ⊂ Zd we also consider the corresponding edge set
EΛ = {ij ∈ E : i, j ∈ Λ}. A domain will be any finite subset of Zd, and we will set
Z = Zd := {Λ ⊂ Zd : Λ finite}. Sometimes for a given domain Λ ⊂ Zd it is convenient
to consider its boundary and closure

∂Λ := {i ∈ Λc : ∃j ∈ Λ : i ∼ j} and Λ̄ = Λ ∪ ∂Λ.

Each particle has an internal property, a so called (magnetic) spin that takes the values
{−1, 1} (or {−,+} or {↓, ↑}). A suitable configuration space is Ω = {−1, 1}Zd with
product σ-algebra F . In a configuration σ = (σi)i∈Zd ∈ Ω, σi denotes the spin of
the particle with position i ∈ Zd. For Λ ⊂ Zd let ΩΛ := {−1, 1}Λ denote the spin
configuration of particles in Λ. For σ ∈ Ω and Λ ⊂ Zd let σΛ = (σi)i∈Λ ∈ ΩΛ denote
the restriction to Λ, and for σ ∈ ΩΛ and σ′ ∈ ΩΛ′ where Λ ∩ Λ′ = ∅ let σσ′ ∈ ΩΛ∪Λ′

denote the concatenation of σ and σ′. Let Si : Ω → {−1, 1} denote the projection on
the i-th component, i.e. Si is supposed to describe the spin of the particle at position
i ∈ Zd, and let SΛ = (Si)i∈Λ denote the projection on Λ ⊂ Zd. This notation is useful
for describing events, e.g. the event that the particles in Λ have given spins σ ∈ ΩΛ is

{ω ∈ Ω : ωΛ = σ} = {SΛ = σ}.

A single particle can be described by (i, σi) ∈ Zd×{−1, 1}, so the two-particle interac-
tion can be given in terms of a function Φ : (Zd × {−1, 1})2 → R̄. For the Ising model
we set

Φ((i, σi), (j, σj)) = −σiσj1{i∼j}.
Thus only adjacent particles interact, and the interaction only depends on whether
their spins are aligned or not. Aligned spins are preferred in terms of lower energy.
The Hamiltonian H is the sum of all interaction terms, i.e.

H(σ) =
1

2

∑
i,j∈Λ

Φ((i, σi), (j, σj)) =
∑
ij∈EΛ

Φ((i, σi), (j, σj)) for σ ∈ ΩΛ.
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In order to define a (grand) canonical model we fix a finite domain Λ ∈ Zd, the inverse
temperature β > 0 and a boundary configuration η ∈ ΩΛc . The grand canonical
distribution γβΛ is defined to be the probability measure on (ΩΛ,FΛ) with density

ρβΛ =
1

Zβ
Λ(η)

e−βH(.|η) w.r.t. χΩΛ
.

Here χΩΛ
is the counting measure on ΩΛ and for σ ∈ ΩΛ we set

H(σ|η) =
∑
ij∈EΛ

Φ((i, σi), (j, σj)) +
∑

i∈Λ,j∈Λc

Φ((i, σi), (j, ηj)) =
∑
ij∈EΛ̄

Φ((i, (ση)i), (j, (ση)j)).

Since this sum is finite, H is well defined. Also Zβ
Λ(η) =

∑
σ∈ΩΛ

e−βH(σ|η) is finite and

positive, which implies in particular that γβΛ is well defined. For η ∈ Ω we consider
γβΛ(.|η) as a measure on (Ω,F), as before. We are mainly interested in the set of infinite
volume Gibbs measures Gβ for our model. Here µ ∈ Gβ iff

µ(D) =

∫
µ(dη)γβΛ(D|η) ∀Λ ∈ Zd, D ∈ F .

Our main goal for the next sections is to investigate whether this system exhibits a
phase transition.

We note that the Ising model is a very special case of a more general class of models,
so called lattice models. Some possible generalizations are the following:

• Consider a lattice different from Zd.

• Consider a more general pair interaction Φ.

• Consider more general spin values.

• Consider additional one-particle-interaction terms (e.g. modelling an external
magnetic field h) so that H =

∑
ij Φ((i, σi), (j, σj)) +

∑
i h(i, σi).

Some models that have been investigated are the following:

• Generalized Ising model: E = {−1, 1}, Φ((i, σi), (j, σj)) = −Jijσiσj for some
Jij ∈ R. Here any pair of particles may interact and the coupling constants
Jij give the value of the interaction. If Jij ≥ 0 the interaction is called fer-
romagnetic (equal spins are preferred), and if Jij ≤ 0 the interaction is called
anti-ferromagnetic (different spins are preferred).

• n-vector or O(n)-model: E = Sn−1 ⊂ Rn, Φ((i, σi), (j, σj)) = −σi · σj1{i∼j}. For
special choices of n we get the Ising model (n = 1), the XY -model (n = 2) and
the Heisenberg model (n = 3).

• Potts model: E = {1, ..., q}, Φ((i, σi), (j, σj)) = −1{σi=σj ,i∼j}.

• Gaussian model: E = R, Φ((i, σi), (j, σj)) = (σi − σj)21{i∼j}.
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4.2 Symmetries

For investigating whether a certain model has a phase transition, it is often useful to
look at the symmetries of the model. We will define symmetries in the context of the
Ising model. Basically a symmetry is supposed to be any transformation of particles
that leaves the energy and the reference measure invariant.

Definition 4.1 A transformation τ : Zd × {−1, 1} → Zd × {−1, 1} is a symmetry if

• τ is bijective and the transformation of the position does not depend on the spin,
i.e. there is a bijective map τ∗ : Zd → Zd such that τ(i,±1) = (τ∗(i),±1).

• Φ is τ -invariant, i.e. Φ(τ(i, σi), τ(j, σj)) = Φ((i, σi), (j, σj)) ∀(i, σi), (j, σj).

By abuse of notation we identify τ and τ∗. By transforming every single particle, we can
apply τ to a configuration of particles, and thus get τ : ΩΛ → ΩτΛ or τ : Ω → Ω. We
note that because of the bijectivity, the reference measure is automatically invariant
under a symmetry: χΩΛ

◦ τ−1 = χΩτΛ
. Since τ doesn’t change energy and reference

measure, it is easy to see how τ affects the grand canonical distributions and the Gibbs
measures.

Theorem 4.1 If τ is a symmetry, then γβΛ(.|η) ◦ τ−1 = γβτΛ(.|τη) for every Λ ∈ Z,
β > 0, η ∈ ΩΛc, and µ ◦ τ−1 ∈ Gβ for every µ ∈ Gβ.

Proof: Let Λ ∈ Z, β > 0 and η ∈ ΩΛc . For all ω ∈ ΩΛ we have HτΛ(τω|τη) = HΛ(ω|η)
since the Hamiltonian is a sum of interaction terms that are invariant under τ . Thus
for every D ∈ FΛ

Zβ
Λ(η)γβΛ(τ−1D|η) =

∑
ω∈τ−1D

e−βHΛ(ω|η) =
∑
ω′∈D

e−βHΛ(τ−1ω′|η)

=
∑
ω′∈D

e−βHτΛ(ω′|τη) = Zβ
τΛ(τη)γβτΛ(D|τη).

For D = ΩτΛ this implies Zβ
Λ(η) = Zβ

τΛ(τη), and thus γβΛ(τ−1D|η) = γβτΛ(D|τη). Now
let µ ∈ Gβ and D ∈ F , then the measure transformation theorem gives∫

µ ◦ τ−1(dη)γβΛ(D|η) =

∫
µ(dη′)γβΛ(D|τη′)

=

∫
µ(dη′)γβτ−1Λ(τ−1D|η′) = µ(τ−1D) = µ ◦ τ−1(D),

since µ is a Gibbs measure. We thus have shown that µ◦τ−1 satisfies the DLR-condition
and so µ ◦ τ−1 ∈ Gβ,z. �

It may be somewhat surprising that a symmetry τ doesn’t necessarily leave each Gibbs
measure invariant. The reason for this is that τ changes the boundary configuration,
which may have an influence on spins near the origin even if Λ is huge.
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Definition 4.2 A Gibbs measure µ ∈ Gβ,z is said to break a symmetry τ , if µ 6= µ◦τ−1.

The above theorem immediately implies that whenever a symmetry is broken, there
is a phase transition, since we have µ 6= µ ◦ τ−1 ∈ Gβ,z and thus #(Gβ,z) ≥ 2. Since
we are interested in a possible phase transition of the ising model, let us look at its
symmetries. Here a lattice automorphism is a bijective transformation τ : Zd → Zd

such that i ∼ j ⇔ τ(i) ∼ τ(j). Examples of lattice automorphisms are translations
by lattice vectors, reflections in the coordinate axes, and rotations by multiples of π/2.
The spin-flip transformation is defined by

τ : {−1, 1} → {−1, 1}, τ(σ) := −σ.

Lemma 4.1 For the Ising model every lattice automorphism and the spin-flip are a
symmetries.

Proof: A lattice automorphism τ defines a 1-particle transformation by τ(i, σi) :=
(τ(i), σi), which is bijective and doesn’t change the given Φ and thus is a symmetry. The
spin-flip transformation τ defines a 1-particle transformation by τ(i, σi) := (i, τ(σi)),
which is bijective and doesn’t change the given Φ and thus is a symmetry. �

What kind of phase transition can be expected for a ferromagnet? For low temperature
a ferromagnet shows spontaneous magnetization, i.e. most of the spins are aligned. For
high temperature this phenomenon does not occur. If this behavior is reflected in our
model, for low temperature there should be a Gibbs measure µ where the majority of
spins are +1. In this case the spin-flip symmetry is broken, since then µ ◦ τ−1 has a
majority of −1 spins and thus µ ◦ τ−1 6= µ.

4.3 Ground states

Another concept related to phase transitions is that of ground states. Suppose that
η ∈ Ω and ω, ω′ ∈ Ω with ωΛc = ω′Λc = ηΛc such that HΛ(ωΛ|ηΛc) < HΛ(ω′Λ|ηΛc), then

γβΛ({ω′}|η)

γβΛ({ω}|η)
= e−β(HΛ(ω′Λ|ηΛc )−HΛ(ωΛ|ηΛc )) → 0 for β →∞.

So for “β = ∞” the grand canonical distribution γβΛ(.|η) can be thought of being
concentrated on the configurations ω ∈ Ω such that and HΛ(ωΛ|ηΛc) is minimal. In the
infinite volume limit we thus get measures concentrated on configurations ω ∈ Ω such
that for every Λ the Hamiltonian is minimal under changes of ω inside of Λ. These
configurations are so called ground states.

Definition 4.3 A configuration ω ∈ Ω is called a ground state if HΛ(ωΛ|ωΛc) ≤
HΛ(ω′|ωΛc) for all Λ ∈ Z and ω′ ∈ ΩΛ. A ground state is called isolated if the above
inequality is strict whenever ω′ 6= ωΛ.

We note that the above energy minimality condition is an analogue for the DLR-
condition in the case “β = ∞”. Thus the ground states may be considered the equi-
librium states for “β = ∞”. In the Ising model we have at least two isolated ground
states corresponding to the expected breaking of the spin-flip symmetry.
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Lemma 4.2 The configurations σ+, σ− ∈ Ω defined by σ+
i := 1, σ−i := −1 ∀i ∈ Zd

are isolated ground states.

Proof: Let Λ ∈ Z and let n be the number of bonds in EΛ̄. We have

HΛ(σ+
Λ |σ

+
Λc) =

∑
ij∈EΛ̄

Φ((i,+1), (j,+1)) = −n,

whereas for any ω′ 6= σ+
Λ there is at least one bond where the spins are not aligned,

thus at least one of the values of Φ changes from −1 to +1, i.e. HΛ(ω′|σ+
Λc) ≥ −n+ 2.

So σ+ is an isolated ground state, and by a similar argument so is σ−. �

Obviously σ+ and σ− are related to each other by a spin flip, and it is not hard to
see that in general for every ground state σ and every symmetry τ τ(σ) is again a
ground states. Since σ+ 6= σ− = τ(σ+) we say that the spin flip symmetry is broken for
these ground states. It may be somewhat surprising that σ+ and σ− are not the only
ground states. σ+ and σ− are certainly the only global minima of the energy, however
ground states are defined in terms of local minima (where spins may only be changed
in a bounded set Λ). An example for an additional (non-isolated) ground state in one
dimension is σ ∈ Ω defined by σi := 1 if i ≥ 0 and σi := −1 if i > 0.

Our motivation to consider ground states was that ground states correspond to Gibbs
measures at “β = ∞”, and it is tempting to assume that for large but finite β there
should be Gibbs measures that look like small perturbations of corresponding ground
states. Arguing along these lines the breaking of a symmetry at “β =∞” should imply
the breaking of this symmetry at large but finite β, and multiple ground states should
imply a phase transition for large but finite β. However, we will see that this is not
necessarily the case. Still, looking at the ground states at least gives some candidates
for possible symmetries to be broken and it gives some ideas on how the corresponding
Gibbs measures should look like. In the example of the Ising model, for sufficiently
large β we thus might hope to find a Gibbs measure µ+ that is a small perturbation
of σ+, i.e. that is concentrated on configurations that look like a huge sea of + with
some small islands of −.

4.4 Existence and uniqueness of Gibbs measures

In this section we will see that the Ising model always has at least one infinite volume
Gibbs measure, and for large temperature this Gibbs measure is unique. The proof
that there is a Gibbs measure uses several facts from functional analysis and topology.

Let kiN, i ∈ Zd, be an enumeration of Zd. On Ω := {−1, 1}Zd we consider the product
topology defined by the metric d(ω, ω′) =

∑
i 2
−ki1{ωi 6=ω′i}. Ω is compact by Tychonoff’s

theorem. We consider the Banach space C(Ω) of continuous functions on Ω with the
supremum norm ‖.‖.
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Definition 4.4 f : Ω→ R is called local if it only depends on the spins in Λ, i.e.

f(ση) = f(ση′) ∀σ ∈ ΩΛ, η, η
′ ∈ ΩΛc ,

where Λ is finite. f is called quasilocal if there are local fk : Ω→ R with ‖fk− f‖ → 0.

Lemma 4.3 For f : Ω→ R we have the equivalence

f ∈ C(Ω) ⇔ ∀ε > 0∃ finite Λ : sup
σ∈ΩΛ,η,η′∈ΩΛc

|f(ση)− f(ση′)| < ε ⇔ f quasilocal.

Proof: Homework. �

The dual space C(Ω)∗ is the collection of continuous linear maps form C(Ω) to R.
On C(Ω)∗ we consider the operator norm ‖.‖ and the weak-*-topology. By definition
Tn → T in the weak-*-topology iff Tn(f) → T (f) for all f ∈ C(Ω). Let M(Ω) denote
the set of all probability measures on Ω. For every µ ∈ M(Ω) we define Tµ ∈ C(Ω)∗

by Tµ(f) = Eµ(f), and we will identify Tµ = µ. With this identification, µn → µ w.r.t.
the weak-*-topology is the same as µn → µ in distribution.

Lemma 4.4 M(Ω) is compact w.r.t. the weak-*-topology.

Proof: The Banach-Alaoglu Theorem states that the closed unit ball B∗ in C(Ω)∗

w.r.t. ‖.‖ is compact w.r.t. the weak-*-topology. With the above identification we
have M(Ω) ⊂ B∗, so it suffices to show that M(Ω) is a closed subset of B∗. Let
µn ∈ M(Ω) such that µn → T ∈ B∗ w.r.t. the weak-*-topology. For every f ∈ C(Ω)
such that f ≥ 0 we have T (f) ≥ 0 (since µn(f) = Eµn(f) ≥ 0) and we have T (1) = 1
(since µn(1) = Eµn(1) = 1). The Riesz-Markov Theorem implies that T = Tµ for some
µ ∈M(Ω). �

Theorem 4.2 (Existence Theorem: Dobrushin ’68.) Let β > 0, Λn ↑ Rd and ηn ∈ Ω.
Let γn = γβΛn(.|ηn). Then there is a Gibbs measure µ ∈ Gβ such that a subsequence γnk
converges to µ in distribution. In particular we have Gβ 6= ∅.

Proof: By the preceding lemma we have a convergent subsequence with some limit
µ ∈ M(Ω), and it suffices to check that µ satisfies the DLR-condition for finite Λ and
D = {SΛ′ = σ}, where σ ∈ ΩΛ′ and Λ′ is finite. If n is sufficiently large we have∫

γn(dω)1D(ω) =

∫
γn(dω)γβΛ(D|ω),

using the consistency condition. Both 1D and γβΛ(D|.) are local functions (f(ω) =
γβΛ(D|ω) only depends on ω(Λ′−Λ)∪∂Λ) and thus continuous. Convergence in distribution
implies the convergence of the integrals on both sides, and so∫

µ(dη)1D(η) =

∫
µ(dη)γβΛ(D|η).

Thus we have verified the DLR-condition for µ. �
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Theorem 4.3 (Uniqueness Theorem: Dobrushin ’68.) #(Gβ) ≤ 1 for 0 < β < 1
2d

.

Proof: Here we give the outline of the proof. All details that require further explana-
tion are relegated to the lemmas below. For k ∈ Zd we set

Φk(f)(η) =

∫
γβ{k}(dω|η)f(ω) = γβk (+|η)f(η+

k ) + γβk (−|η)f(η−k ),

where η±k is η with the spin at k replaced by ±1, and γβk (±|η) = γβ{k}({±1}|η). The

map Φk : C(Ω)→ C(Ω) is linear with operator norm ‖Φk‖ = 1. Next we define

T : C(Ω)→ C(Ω), T := lim
n→∞

Tn, where Tn = Φ1 ◦ ... ◦ Φn

for some given enumeration of Zd, where the limit is defined pointwise. Every µ ∈ Gβ
satisfies µ(f) = µ(T (f)) for all f ∈ C(Ω), and we have

inf f ≤ inf T (f) ≤ supT (f) ≤ sup f ∀f ∈ C(Ω).

We set
∆(f) :=

∑
k

∆k(f), where ∆k(f) = sup
ω
|f(ω+

k )− f(ω−k )|.

∆k(f) describes the maximal oscillation of f when changing the spin at k. We have

sup f − inf f ≤ ∆(f) ∀f ∈ C(Ω) and

∆(T (f)) ≤ (2dβ)∆(f) ∀f ∈ C∆(Ω) := {f ∈ C(Ω) : ∆(f) <∞}.

Combining these estimates we get

supT n(f)− inf T n(f) ≤ ∆(T n(f)) ≤ (2dβ)n∆(f)→ 0,

and thus T n(f) converges for n→∞ to some constant c(f) ∈ R. Thus we get

µ(f) = µ(T n(f))→ c(f), i.e. µ(f) = c(f) ∀µ ∈ Gβ.

This gives the desired uniqueness of the Gibbs measure. �

Lemma 4.5 Φk(f) ∈ C(Ω) for all f ∈ C(Ω), and Φk is linear with ‖Φk‖ = 1.

Proof: Since η 7→ η±k is continuous and η 7→ γβk (±|η) is local, we have Φk(f) ∈
C(Ω). The linearity of Φk is obvious and we have ‖Φk(f)‖ ≤ supη(γ

β
k (+|η)‖f‖ +

γβk (−|η)‖f‖) = ‖f‖ for all f ∈ C(Ω) with equality for constant functions. �

Lemma 4.6 For every f ∈ C(Ω) Tn(f) converges in supremum norm.
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Proof: First assume that f is local, i.e. f only depends on the spins from a finite
set Λ. For all k /∈ Λ we have f(η) = f(η+

k ) = f(η−k ) and thus Φk(f) = f . If n is
sufficiently large the enumeration {1, ..., n} contains all k ∈ Λ, so the above implies
that Tm(f) = Tn(f) for all m ≥ n, so the limit exists. If f is continuous and thus
quasilocal, we have local functions fk such that

‖Tn(f − fk)‖ ≤ ‖Φ1‖...‖Φn‖‖f − fk‖ = ‖f − fk‖ → 0.

This implies for all N

sup
m,n≥N

‖Tm(f)− Tn(f)‖ ≤ sup
m,n≥N

‖Tm(fk)− Tn(fk)‖+ 2‖f − fk‖

using the linearity of Tn. Letting N →∞ the first term on the RHS vanishes, and then
letting k →∞ we see that Tn(f) is a Cauchy sequence and thus converges. �

Lemma 4.7 For every f ∈ C(Ω) we have

inf f ≤ inf T (f) ≤ supT (f) ≤ sup f and µ(f) = µ(T (f))∀µ ∈ Gβ.

Proof: We first show the assertions for Φk instead of T . We have inf Φk(f) ≥
infη(γ

β
k (+|η) inf f + γβk (+|η) inf f) = inf f and similarly for the supremum. The DLR-

condition gives µ(Φk(f)) = µ ⊗ γβk (f) = µ(f). By induction we get the assertions for
Tn. Letting n→∞ we get the assertions for T . �

Lemma 4.8 For every f ∈ C(Ω) we have sup f − inf f ≤ ∆(f).

Proof: By compactness we have ω, ω′ ∈ Ω such that

sup f − inf f = f(ω)− f(ω′) ≤ |f(ω)− f(ωΛω
′
Λc)|+ |f(ωΛω

′
Λc)− f(ω′)|

for every finite Λ. Flipping the spins in Λ one spin at a time we see that the second
term on the RHS is bounded by

∑
k∈Λ ∆k(f) ≤ ∆(f). By continuity of f and Lemma

4.3 the first term vanishes for Λ ↑ Zd. �

Lemma 4.9 For k 6= j ∈ Zd and f ∈ C∆(Ω) we have

∆kΦk(f) = 0 and ∆jΦk(f) ≤ ∆j(f) + β∆k(f)1{k∼j}.

Proof: The first assertion is obvious, since Φk(f) does not depend on the spin at k.
For the second assertion, in case of ηj = −1, ηk = −1 we get

|Φk(f)(η+
j )− Φk(f)(η−j )|

=
∣∣∣γβk (+|η+

j )f(η++
kj ) + γβk (−|η+

j )f(η−+
kj )− γβk (+|η−j )f(η+−

kj )− γβk (−|η−j )f(η−−kj )
∣∣∣

≤
∣∣∣γβk (+|η+

j )f(η) + γβk (−|η+
j )f(η)− γβk (+|η−j )f(η)− γβk (−|η−j )f(η)

∣∣∣
+
∣∣γβk (+|η+

j )
(
f(η++

kj )−f(η+
k )+f(η+

k )−f(η)
)

+γβk (−|η+
j )
(
f(η+

j )−f(η)
)
−γβk (+|η−j )

(
f(η+

k )−f(η)
)∣∣

≤ |f(η)− f(η)|+ (γβk (+|η+
j ) + γβk (−|η+

j ))∆j(f) +
∣∣(γβk (+|η+

j )−γβk (+|η−j )
)(
f(η+

k )−f(η)
)∣∣

≤ ∆j(f) +
∣∣γβk (+|η+

j )− γβk (+|η−j )
∣∣∆k(f),
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and similarly in the other cases. Since γβk (+|η+
j )− γβk (+|η−j ) = γβk (−|η−j )− γβk (−|η+

j ),
we get

∆jΦk(f) ≤ sup
η

∣∣∣γβk (+|η+
j )− γβk (+|η−j )

∣∣∣∆k(f) + ∆j(f).

Now it suffices to estimate g(η) := |γβk (+|η+
j ) − γβk (+|η−j )| from above. We note that

g(η) = 0 unless k ∼ j, and γβk (+|η) only depends on how many of the spins at the 2d
sites adjacent to k are +. If m of these spins are + we have

γβk (+|η) =
eβ(m−(2d−m))

eβ(m−(2d−m)) + eβ((2d−m)−m)
=

1

1 + e4β(d−m)
=: h(m),

and thus
sup
η
g(η) = max

0≤m≤2d−1
|h(m+ 1)− h(m)| ≤ max

x∈[0,2d]
|h′(x)|

using the mean value theorem. We have h′(x) = 4βe4β(d−x)

(1+e4β(d−x))2 = 4β y
(1+y)2 , which gets

maximal for y = 1. Thus supη g(η) ≤ β. �

Lemma 4.10 Let 2dβ ≤ 1. For all n ≥ 1 and f ∈ C∆(Ω) we have

∆(Tn(f)) ≤ 2dβ
∑
j≤n

∆j(f) +
∑
j>n

∆j(f).

Proof: Indcution on n. For n = 0 we have equality. For the inductive step we have

∆(Tn+1(f)) = ∆(Tn(Φn+1f)) ≤ 2dβ
∑
j≤n

∆j(Φn+1f) +
∑
j>n

∆j(Φn+1f)

≤ 2dβ
∑
j≤n

(∆j(f) + β∆n+1(f)1{j∼n+1}) +
∑
j>n+1

(∆j(f) + β∆n+1(f)1{j∼n+1})

≤ 2dβ
∑
j≤n

∆j(f) +
∑
j>n+1

∆j(f) +
∑
j∼n+1

β∆n+1(f)

using the previous lemma. Since n+ 1 has 2d neighbors we are done. �

Lemma 4.11 Let 2dβ ≤ 1. For all f ∈ C∆(Ω) we have ∆(T (f)) ≤ 2dβ∆(f).

Proof: We first show that for gn → g we have ∆(g) ≤ limn ∆(gn). We have

|g(ω+
k )− g(ω−k )| ≤ |gn(ω+

k )− gn(ω−k )|+ 2‖gn − g‖

and taking the supremum over all ω and summing over k we get

m∑
k=1

∆k(g) ≤
m∑
k=1

∆k(gn) + 2m‖gn − g‖ ≤ ∆(gn) + 2m‖gn − g‖.

Letting n → ∞ and then m → ∞ we get ∆(g) ≤ limn ∆(gn). Applying this to
gn = Tn(f) the previous lemma gives ∆(T (f)) ≤ 2dβ∆(f). �
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4.5 Ising model in one dimension

In one dimension everything can be described explicitly by means of Markov chains.

Lemma 4.12 Let β > 0, Λ = {0, ..., n}. Let γβΛ denote the grand canonical distribution
(without boundary configuration), then for every σ ∈ {−1, 1}Λ

γβΛ({σ}) =
1

Zβ
Λ

e−βHΛ(σ) =
1

2

n−1∏
i=0

p(σi, σi+1),

where p(1, 1) = p(−1,−1) = cβe
β, p(1,−1) = p(−1, 1) = cβe

−β and cβ = 1
eβ+e−β

.

Proof: By the definition of the interaction

e−βHΛ(σ) =
n−1∏
i=0

eβσiσi+1 = c(n, β)
n−1∏
i=0

p(σi, σi+1),

and by normalization the above equality follows. �

Definition 4.5 Let β > 0 and cβ = 1
eβ+e−β

. The Markov chain with state space

{−1, 1}, initial distribution (1
2
, 1

2
) and transition matrix p =

(
cβe

β cβe
−β

cβe
−β cβe

β

)
is called the

Ising chain on N.

We note that (1
2
, 1

2
)p = (1

2
, 1

2
), i.e. the initial distribution is stationary. Our aim is to

extend the Ising chain X = (Xn)n∈N to all times n ∈ Z. In the following we consider
special forms of domains Λk := {−k, ..., k}.

Definition 4.6 Let β > 0. There is a sequence of {−1, 1}-valued random variables
Y = (Yn)n∈Z such that for every k > 0 and every σ ∈ {−1, 1}Λk we have

P(YΛk = σ) =
1

2

k−1∏
i=−k

p(σi, σi+1).

Y is called the stationary Ising chain on Z. Its distribution is uniquely determined by
the above condition.

Proof: (Uniqueness and existence.) The distribution of Y is a probability measure
on (Ω,F), where Ω = {−1, 1}Z and F is the corresponding product-σ-algebra. The
sets of the type {SΛk = σ} form a ∩-stable generator of F . Since the given condition
specifies the probabilities for these sets, the uniqueness theorem gives the uniqueness
of such a distribution. For the existence let X and X ′ be two stationary Ising chains
on N such that X0 = X ′0 and the transitions of X are independent of the transitions
of X ′. We set Yn := Xn and Y−n = X ′n for n ≥ 0.

P(YΛk = σ) = P(Y0 = σ0, Xn = σn∀n ≤ k,X ′m = σ−m∀m ≤ k)

=
1

2
Pσ0(Xn = σn∀n ≤ k)Pσ0(X ′m = σ−m∀m ≤ k) =

1

2

k∏
i=1

p(σi−1, σi)
k∏
i=1

p(σ−i+1, σ−i).

Since p(σ−i+1, σ−i) = p(σ−i, σ−i+1) this gives the desired property. �
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By the above lemma, the grand canonical distribution in finite volume (without b.c.)
is equal to the distribution of the Ising chain restricted to this volume. In the following
we will see that this carries over in a very natural way to finite volume equilibrium
distributions (with b.c.) and infinite volume equilibrium distributions.

Lemma 4.13 Let k < m, Λm
k := Λm−Λk, η ∈ ΩΛmk

and let γβΛk(.|η) be the correspond-

ing grand canonical distribution. Let Y be the Ising chain on Z. Then γβΛk(.|η) is the
distribution of (Yn)n∈Λk given that Yn = ηn for all n ∈ Λm

k .

Proof: By the definition of the conditional distribution we get for all σ ∈ {−1, 1}Λk

P(YΛk = σ|YΛmk
= η) =

P(YΛm = ση)

P(YΛmk
= η)

= c
1

Zβ
Λm

e−βHΛm (ση)

= c′e
−β(HΛm

k
(η)+HΛk

(σ|η))
= c′′e−βHΛk

(σ|η) = γβΛk(σ|η),

where c, c′, c′′ denote constants that do not depend on σ (but only on η, β, k,m). By
normalization c′′ equals the partition function, which gives the last equality. �

Theorem 4.4 For the 1-dimensional Ising model we have Gβ = {µβ}, where µβ is the
distribution of the Ising chain on Z. In particular there is no phase transition and the
spinflip-symmetry is not broken, i.e. there is no spontaneous magnetization.

Proof: We first show that µβ is a Gibbs measure. It suffices to show the DLR-condition
(3.1) for Λ = Λn and Dσ = {SΛm = σ}, where σ ∈ {−1, 1}Λm and m > n:

µβ ⊗ γβΛn(Dσ) =

∫
µβ(dη)γβΛn(Dσ|η) =

∫
µβ(dη)1{ηi=σi∀i∈Λmn }γ

β
Λn

({σΛn}|ηΛcn)

= P(YΛmn = σΛmn )P(YΛn = σ|YΛmn = σΛmn ) = P(YΛm = σ) = µβ(Dσ).

To show that µβ is the only Gibbs measure, let µ ∈ Gβ, let k > 0 and σ ∈ {−1, 1}Λk .
Let n ≥ k. The DLR-condition (3.1) implies that

µ(Dσ) = µ⊗ γβΛn−1
(Dσ) =

∫
µ(dη)

∫
γβΛn−1

(Dσ|ηΛcn−1
) =

∫
µ(dη)P(YΛk = σ|Y±n = η±n),

where we have used the above lemma. We note that the last probability equals

P(Y−n = η−n, YΛk = σ, Yn = ηn)

P(Y−n = η−n, Yn = ηn)
=

1
2
pn−k(η−n, σ−k)

∏k−1
i=−k p(σi, σi+1)pn−k(σk, ηn)

1
2
p2n(η−n, ηn)

.

The ergodic theorem for Markov chains implies that pn(i, j) → 1
2

for n → ∞ and

arbitrary i, j ∈ {−1, 1}. Thus the above fraction converges to
1
2

1
2

Qk−1
i=−k p(σi,σi+1) 1

2
1
2

1
2

. So

µ(Dσ) =

∫
µ(dη)

1

2

k−1∏
i=−k

p(σi, σi+1) =
1

2

k−1∏
i=−k

p(σi, σi+1) = P(YΛ = σ) = µβ(Dσ),

which implies µ = µβ. �
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4.6 Phase transition for the Ising model

So far we don’t know whether the Ising model has a phase transition in some dimension.
We know that this is not the case in dimension d = 1 and for larger d when the
temperature is sufficiently high. In this section we will see that for d ≥ 2 the spinflip
symmetry is broken for low temperature, and thus we get a phase transition.

To show this phase transition we consider interfaces between regions with spin + and
regions with spin −. A large interface requires a lot of energy and thus should have
small probability. However, the absence of long interfaces implies that almost all of
the spins are the same, i.e. we have a sea of + with small islands of − (or the other
way round). In the following we will make these ideas rigorous using an idea of Robert
Peierls that goes back to 1936.

Definition 4.7 We consider the graph (Zd, E(Zd)). Let V1, V2 ⊂ Zd form a disjoint
decomposition of Zd into two connected components such that V1 is finite. The finite
set of bonds B = {x1x2 : x1 ∈ V1, x2 ∈ V2} is called a surface, V1 =: int(B) is called its
interior and V2 =: ext(B) its exterior.

If every bond b of a surface B is replaced by a (d − 1)-dimensional cube b∗ that is
perpendicular to b and has the same midpoint, then the collection of all such surface
elements b∗ indeed forms a d − 1-dimensional surface in Rd. (Try to visualize this for
d = 2 and d = 3.)

Definition 4.8 For a given surface B, let I−(B) denote the set of all configurations
ω ∈ Ω such that ωi = −1 for all i ∈ ∂ext(B) and ωi = +1 for all i ∈ ∂int(B). If
ω ∈ I−(B) we call B a −-interface for ω. Similarly we define I+(B) and a +-interface.

We note that a −-interface is a surface so that spins adjacent to the surface in the
interior are − and adjacent to the surface in the exterior are +. The following lemma
shows that every −-spin inside a domain with +-boundary configuration is surrounded
by a −-interface.

Lemma 4.14 Let ω ∈ Ω and a ∈ Λ ⊂ Zd with finite Λ. If ωa = −1 and ωi = 1 for all
i ∈ Λc, then there is a surface B such that ω ∈ I−(B), a ∈ int(B) and Λc ⊂ ext(B).

Proof: Let Λ′1 denote the set of all x ∈ Zd such that there is a path a = x0, x1, ...xn = x
with ωxi = −1 for all i. Zd−Λ′1 can have several connected components. Let Λ2 be the
one containing Λc. Let Λ1 := Zd − Λ2 and B = {xy : x ∈ Λ1, y ∈ Λ2}. B is a surface
with interior Λ1 and exterior Λ2: By definition Λ1 and Λ2 form a disjoint decomposition
of Zd into two connected sets and Λ1 ⊂ Λ is finite. To see that ω ∈ I−(B), we note
that the points of Λ1 adjacent to points of Λ2 are all in Λ. Thus for each xy ∈ B with
x ∈ Λ1 and y ∈ Λ2 we have in fact x ∈ Λ and y /∈ Λ. Thus by definition ωx = −1 and
ωy = 1. �

The following lemma contains the energy estimate, which is the heart of the Peierls
argument.
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Lemma 4.15 Let β > 0, η ∈ Ω and Λ ⊂ Zd be finite, and let B be a surface contained
in Λ. We have

γβΛ(I−(B)|η) ≤ e−2β#(B).

Proof: We define a bijective one-particle transformation τ that flips the spins in the
interior of B:

τ(i, σi) = (i, σi) if i ∈ ext(B) and = (i,−σi) if i ∈ int(B).

For ω ∈ I−(B) we compare the energies of ω and τ(ω): For every bond b = xy such
that xy ⊂ int(B) or xy ⊂ ext(B) we have ωxωy = τωxτωy, since either both spins are
flipped or none. For every bond b = xy ∈ B we have ωxωy = −1 and τωxτωy = 1 since
exactly one of the spins is flipped. This implies

HΛ(ω|η) = HΛ(τω|η) + 2#(B),

and thus

γβΛ(ω|η) =
1

Zβ
Λ(η)

e−βHΛ(ω|η) =
1

Zβ
Λ(η)

e−βHΛ(τω|η)e−2β#(B) = e−2β#(B)γβΛ(τω|η).

Summing over all ω ∈ I−(B) and using the bijectivity of τ we get

γβΛ(I−(B)|η) ≤ e−2β#(B)γβΛ(τI−(B)|η) ≤ e−2β#(B).

�

The last ingredient of the proof is an estimate of the number of surfaces.

Lemma 4.16 The number of surfaces B of size k such that 0 ∈ int(B) is bounded
from above by k−2

18
3k.

Proof: For a given surface B we move along a fixed coordinate axis until we leave
int(B) for the first time. The corresponding bond in B will be denoted by b0. We also
have a corresponding bond b′0 in the opposite direction. We note that d(b0, b

′
0) ≤ k−2

2

since the remaining k − 2 surface elements have to connect b∗0 and b′∗0 , covering this
distance at least twice. Thus we have at most k−2

2
possible choices for b0. We now

build a surface with the given properties by first choosing b0, and then start building
the surface from b∗0. Let b∗ be a surface element of the surface constructed so far that
has a boundary element c∗, where an additional surface element can be added. There
are at most 3 ways to attach this additional surface element to c∗. (c∗ has dimension
d− 2, so there are 2 · 2 = 4 surface elements that share this boundary element, one of
which is the original b∗.) The last surface element falls into place automatically. Thus
the number of surfaces B is bounded from above by

k − 2

2
· 3 · ... · 3 · 1 =

k − 2

2
3k−2.

�
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Theorem 4.5 (Phase transition for d ≥ 2.) For d ≥ 2 and for β ≥ log 2 there are
at least two Gibbs measures µβ+, µ

β
− ∈ Gβ such that µβ+(Si = 1) > 1

2
for every i ∈ Zd.

Furthermore for finite Λ ∈ Zd we have µβ+(SΛ = σ+
Λ )→ 1 for β →∞.

Proof: Let Λn ↑ Zd be a sequence of finite domains. By the existence theorem the
sequence γn := γβΛn(.|σ+) has a subsequential limit µβ+. If n is sufficiently large we have
i ∈ Λn−1 and if Si = −1 and we have + spins outside of Λn there is a −-interface B
separating i from Λn. Let Bk the set of all such surfaces of length k, then

γn(Si = −1) ≤ γn

(⋃
k

⋃
B∈Bk

I−(B)
)
≤
∑
k

∑
B∈Bk

γn(I−(B)) ≤
∑
k≥2

k − 2

18
3ke−2βk.

Introducing α = 3e−2β ≤ 3
4

and substituting l = k − 2 we obtain

γn(Si = −1) ≤ α3

18

∑
l≥0

lαl−1 := c(α) <
1

18

α2

(1− α)2
≤ 1

2
.

Here we have used ∑
l≥0

lαl−1 =
d

dα

∑
l≥0

αl =
d

dα

1

1− α
=

1

(1− α)2
.

and the fact that α2

(1−α)2 = 1
( 1
α
−1)2 is increasing in α and = 9 for α = 3

4
. Since 1{Si=−1}

is local and thus continuous we obtain

µβ+(Si = −1) = lim
k→∞

γnk(Si = −1) ≤ c(α) <
1

2
.

Similarly we get for finite Λ

µβ+(SΛ 6= σ+
Λ ) ≤

∑
i∈Λ

µβ+(Si = −1) ≤ #(Λ)c(α)→ 0,

since for β → ∞ we have α → 0 and thus c(α) → 0. Finally we note that for µβ+ the

spinflip symmetry is broken, since for µβ− := µβ+◦τ−1 we have µβ−(Si = 1) = µβ+(Si = −1)

= 1− µβ+(Si = 1) < 1
2
. �

Actually much more is known for the Ising model. In the following we collect some of
these facts:

• For d = 1 there is a unique Gibbs measure for every β, and we have an explicit
description in terms of the stationary Ising chain on Z.

• For d ≥ 2 there is a critical βc ∈ (0,∞) such that

– For β < βc there is a unique Gibbs measure µβ.

– for β > βc there is more than one Gibbs measure, thus we have a phase
transition.
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We have γβΛn(.|σ+) → µβ+ and γβΛn(.|σ−) → µβ− (without choosing subsequences)
for any sequences Λn ↑ Zd. The limit measures do not depend on the choice of
the sequence Λn. µβ+, µ

β
− are extremal Gibbs measures and µβ+ = µβ− iff β < βc.

• For d = 2 it is known that βc = 1
2

log(1 +
√

2). For β > βc

– µβ+, µ
β
− are the only extremal Gibbs measures, so the set of all Gibbs mea-

sures is Gβ = {α+µ
β
+ + α−µ

β
− : α+, α− ≥ 0 such that α+ + α− = 1}. In

particular the spinflip symmetry is the only broken symmetry, so µβ+ is in-
variant under translations and rotations.

– The average magnetization w.r.t. µβ+ is given by Eβ
+(Si) = (1−(sinh 2β)−4)

1
8

Furthermore for d = 2 and β = βc the random shape of the interface between +
and − regions can be described explicitly. If the mesh size of the lattice converges
to 0, the random shape converges to a random process called SLE3.

• For d ≥ 3 the translational and rotational symmetry is also broken. For low
temperature there are Gibbs measures corresponding to the ground state σ which
is positive in one half space and negative in the other half space.
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