Mathematical methods of statistical physics Homework

Exercise 1. Let (Ω, \mathcal{F}) be a measure space and X an index set. Let $T : \Omega \to X$, and

$$A_x = \{ \omega \in \Omega \mid T(\omega) = x \}.$$

Let k be a kernel from X to Ω such that for every $x \in X$, $k(x, \cdot)$ is concentrated on A_x . Let μ be a measure on Ω and π be a measure on X such that $\mu = \pi * k$. Prove that k is a probability kernel if and only if $\pi = T_*\mu$.

Exercise 2. Let $\Omega = \mathbb{R}^2$, $\mu = \text{Leb}_{\mathbb{R}^2}$, $X = \mathbb{R}$, $T(x,y) = \frac{1}{2m}(x^2 + y^2) = E$, $\pi = \text{Leb}$. Let $\mu = \pi * k$.

- a.) Show that $k(E, \cdot) = \text{const} \cdot \text{arclength}$.
- b.) Find the "constant" const = const(E).
- c.) compare with the case $T = \sqrt{x^2 + y^2}$.

Exercise 3. Let X_1, X_2, \ldots be a Markov chain on the state space $\{1, 2, \ldots, K\}$ with initial distribution π and transition matrix $(p_{ij})_{i,j=1}^K$. Prove that for the entropy of the joint distribution of X_1 and X_2

$$S((X_1, X_2)) = S(\pi) + \sum_{i=1}^{K} S(p_i) \pi_i$$

holds, where p_i is row *i* of the transition matrix.

Exercise 4. Find the random variable $X : A \to \mathbb{R}$ with distribution μ with maximal relative entropy with respect to ν in the following scenarios. (See HW 4.6 in [HW] for details.)

- a.) $A = \{1, 2, ..., K\}, \nu =$ counting measure,
- b.) $A = [0, k], \nu =$ Lebesgue,
- c.) $A = \mathbb{R}, \nu = \text{Lebesgue},$
- d.) $A = \mathbb{R}, \nu = \text{Lebesgue}, \mathbb{E}X = 1,$
- e.) $A = \mathbb{R}^+, \nu =$ Lebesgue, $\mathbb{E}X = 1$,
- f.) $A = \mathbb{R}, \nu =$ Lebesgue, $\mathbb{E}X = 0, \mathbb{E}X^2 = 1,$
- g.) $A = \mathbb{N}, \nu = \text{counting measure}, \mathbb{E}X = 2.$

Exercise 5. Consider the free gas. (For details, see Exercise 4.7, 5.4 and 5.5 in [HW].)

- 1. Microcanonical setting: Calculate the microcanonical partition function Z(V, N, E), the microcanonical entropy S(V, N, E), the temperature T(V, N, E), the pressure P(V, N, E) and the chemical potential $\mu(V, N, E)$.
- 2. Canonical setting: Calculate the free energy $A(V, N, \beta)$, the canonical pressure $P(V, N, \beta)$ and the canonical chemical potential $\mu(V, N, \beta)$.
- 3. Grand canonical setting: Calculate the grand canonical partition function $Z(V, \beta, \beta')$, the entropy density s(V, N, E), the free energy per particle $a(V, N, \beta)$ and the grand free energy density $g(V, \beta, \beta')$.

Most importantly: find calculate the thermodynamic limits as $V \to \infty$ in all three cases, and compare the results.

Exercise 6. In what sense is the grand canonical partition function $Z(V, \beta, \beta')$ a moment generating function? Hint: calculate

$$M_{H}(\lambda) = \mathbb{E}e^{\lambda H} = \int_{\Omega_{1}} e^{\lambda H(\omega)} d\mu_{V,\beta,\beta'}^{gr}(\omega),$$
$$M_{N}(\lambda') = \mathbb{E}e^{\lambda' N} = \int_{\Omega_{2}} e^{\lambda' N(\omega)} d\mu_{V,\beta,\beta'}^{gr}(\omega),$$
$$M_{H,N}(\lambda) = \mathbb{E}e^{\lambda H + \lambda' N} = \int_{\Omega_{1}} e^{\lambda H(\omega) + \lambda' N(\omega)} d\mu_{V,\beta,\beta'}^{gr}(\omega).$$

Exercise 7. Consider the configuration gas with Hamiltonian

$$H(q_1,\ldots,q_N,p_1,\ldots,p_N) = \sum_{i< j} \Phi(|q_i - q_j|),$$

where Φ is tempered and stable. Let Λ_k be a square with side length $2^k - R$, $V_k = \text{Leb}(\Lambda_k)$ and $N_k = \rho V_k$.

(a) Let

$$\tilde{a}(\rho,\beta) = \lim_{k \to \infty} \frac{1}{V_k} \log Z_k(V_k, N_k, \beta).$$

Show that \tilde{a} is midpoint concave in ρ . That is, show if $\rho = \frac{\rho_1 + \rho_2}{2}$, then

$$\tilde{a}(\rho) \ge \frac{\tilde{a}(\rho_1) + \tilde{a}(\rho_2)}{2}.$$

(b) Let $\hat{\Lambda}_k$, $k \to \infty$ be an arbitrary growing sequence of boxes, $\hat{V}_k = \text{Leb}(\hat{\Lambda}_k)$ and $\hat{N}_k = \rho \hat{V}_k$. Show that

$$-\lim_{k\to\infty}\frac{1}{\hat{V}_k\beta}\log\hat{Z}_k(\hat{\Lambda}_k,\hat{N}_k,\beta) = -\lim_{k\to\infty}\frac{1}{V_k\beta}\log Z_k(\Lambda_k,N_k,\beta) = a(\rho,\beta).$$

Exercise 8. Consider the 1D Ising model with L sites. Denote the partition function by $Z_L(\beta, h)$. (See Exercise 10.6 in[HW] for details.)

(a) Consider periodic boundary conditions. Show that $Z_L(\beta, h) = \text{Tr}(T^L)$, where

$$T = \begin{bmatrix} e^{\beta(1+h)} & e^{-\beta} \\ e^{-\beta} & e^{\beta(1-h)} \end{bmatrix}$$

- (b) Calculate the eigenvalues of T.
- (c) Find a matrix power formula for $Z_L(\beta, h)$ for open boundary conditions.

Exercise 9. Consider the 2D Ising model. Let $P_{\Lambda}(\beta, h)$ be the pressure of the system in a box Λ . Let $A_m \subset \mathbb{Z}^2$ be a box of size m. Let $A_m \to \mathbb{Z}^2$ in the sense of van Hove. Show that $\lim_{m\to\infty} P_{A_m}(\beta, h) = \lim_{m\to\infty} P_{\Lambda_m}(\beta, h)$, where Λ_m is a square of side length 2^m .

Exercise 10. List of other relevant exercises from [HW]: 2.8, 4.1, 4.2, 4.3, 5.1, 5.2, 5.3, 10.1, 10.2, 10.3, 10.4, 11.2, 11.5, 12.2

References

[HW] Tóth Imre Péter: homework sheets for Mathematical Statistical Physics – with solutions to many exercises.

http://math.bme.hu/~mogy/oktatas/stat_fiz_mat_modszerei/math_stat_phys/exercises/ or find the link from http://math.bme.hu/~mogy/oktatas.html