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Equilibrium Fluctuations for a System of Harmonic
Oscillators with Conservative Noise
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We investigate the harmonic chain forced by a multiplicative noise, the evo-
lution is given by an infinite system of stochastic differential equations. To-
tal energy and deformation are preserved, the conservation of momentum is
destroyed by the noise. Gaussian product measures are the extremal station-
ary states of this model. Equilibrium fluctuations of the conserved fields at a
diffusive scaling are described by a couple of generalized Ornstein-Uhlenbeck
processes.
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1. INTRODUCTION AND MAIN RESULTS

During the last 15 years a great progress has been made in the theory of hy-
drodynamic limits of one component systems, whereas only a few results are
available on two component models, see (4,5,6,9,12), and these latter all con-
cern the hydrodynamic law of large numbers. Here we present an equilib-
rium fluctuation result for a two component system. Stochastic perturbations
of mechanical systems are certainly interesting also from a physical point of
view, see (5,8,9) for some examples. The model we discuss here is also of this
kind.
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Perhaps the simplest mechanical model is the harmonic chain defined by its
formal Hamiltonian

H = 1

2

∑
k∈Z

(
p2

k + (qk+1 − qk)2
)
, (1.1)

where pk and qk denote the momentum and amplitude of oscillator k ∈ Z .

Newton’s equations of motion read as ṗk = qk+1 + qk−1 − 2qk and q̇k = pk , total
energy and momentum are certainly preserved by the dynamics. It is natural to
introduce new coordinates rk := qk+1 − qk called deformation; total deformation,∑

rk turns out to be a third conserved quantity. In terms of the pk and rk variables,
Gaussian product measures like (1.3) are stationary states of the Hamiltonian flow.

In this article we consider this linearly ordered system of harmonic oscilla-
tors with damping and conservative noise. This model has been considered in a
non-equilibrium setting in (1) and (2). The oscillators are labelled by k ∈ Z , the
configuration space � = (R × R)Z is equipped with the usual product topology, a
typical configuration is of the form ω = (pk, rk)k∈Z where pk denotes the velocity
of oscillator indexed by k ∈ Z, and rk stands for the difference between the am-
plitudes of oscillators k + 1 and k. The dynamics is given by the following set of
stochastic differential equations:

dpk = (rk − rk−1) dt − γ pk dt + √
γ pk+1 dWk − √

γ pk−1 dWk−1

dqk = pk dt, i.e. drk = (pk+1 − pk) dt, (1.2)

where {Wk : k ∈ Z} are independent, standard Wiener processes, and γ > 0 is the
coefficient of damping. Since the r.h.s. of (1.2) is uniformly Lipschitz continuous
with respect to any of the norms ||ω||α , ||ω||2α := α

∑
k∈Z

e−α|k|(p2
k + r2

k ), α > 0,

a standard iteration procedure yields existence of unique strong solutions to (1.2)
in the associated weighted �2 spaces. In fact, the infinite dynamics is approximated
by solutions of its finite subsystems. This approach also shows that for any β > 0
and ρ ∈ R the Gaussian product measures µβ,ρ on � with marginals

µβ,ρ(dpk, drk) = β

2π
exp

(
−β

2

(
p2

k + (rk − ρ)2
))

dpk drk (1.3)

are invariant measures of the process. One can also prove that their convex com-
binations are the only stationary states, but we do not need this fact here.

The formal generator of the system reads as L = A + S , where

A =
∑
k∈Z

{(pk+1 − pk)∂rk + (rk − rk−1)∂pk} ,

S = γ

2

∑
k∈Z

(pk+1∂pk − pk∂pk+1)2.
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Here A is the Liouville operator of a chain of interacting harmonic oscillators,
∂ pk and ∂rk denote differentiation with respect to pk and rk, finally S is the
noise operator. The symmetric S is acting only on velocities and it couples the
neighboring velocities in such a way that kinetic energy of the system is conserved.
Actually the model admits two conserved quantities: total deformation (the sum
of rk ’s ) and total energy (the sum of the Hk ’s, where Hk = 1

2 p2
k + 1

4r2
k + 1

4r2
k−1).

The model is obviously asymmetric, nevertheless it exhibits a diffusive hy-
drodynamic behaviour. In fact its hyperbolic (Euler) limit is trivial while a couple
of nonlinear parabolic equations

∂t u = 1

γ

u , (1.4)

∂t e = 1 + γ 2

2γ

e + 1 − γ 2

4γ

(u2) ,

are obtained in the hydrodynamic limit under diffusive scaling, see (1) for a partial
derivation. At a level of hyperbolic scaling there are no fluctuations either as Euler
time is not enough to develop effective randomness.

Our aim is to study the equilibrium fluctuation of the two conserved quantities
under diffusive scaling. The fluctuation fields are defined as follows:

uε
t (ψ) = √

ε
∑
k∈Z

ψ(εk)(rk(t/ε2) − ρ) , (1.5)

eε
t (ϕ) = √

ε
∑
k∈Z

ϕ(εk)

(
Hk(t/ε2) − 1

β
− ρ2

2

)
, (1.6)

where ϕ and ψ are smooth functions of compact support. It is straightforward to
see that in an equilibrium state µ = µβ,ρ , ξ ε

t := (uε
t , eε

t ) converges in law at any
fixed t to a Gaussian field ξt = (ut , et ) with mean (0, 0) and covariances

Eµ[ut (ψ1)ut (ψ2)] = 1

β

∫
ψ1(x)ψ2(x) dx ,

Eµ[et (ϕ1)et (ϕ2)] = 1 + βρ2

β2

∫
ϕ1(x)ϕ2(x) dx , (1.7)

Eµ[ut (ψ)et (ϕ)] = ρ

β

∫
ψ(x)ϕ(x) dx ,

where Eµ denotes expectation in a stationary regime specified by an arbitrary, but
fixed stationary state µ = µβ,ρ .

In this paper we prove that ξε
t = (uε

t , eε
t ) , as a vector of two distribution

valued processes converges in law to the solution ξt = (ut , et ) of the following
pair of stochastic partial differential equations of generalized Ornstein-Uhlenbeck
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type:

∂t u = 1

γ

u +

√
2

γβ
∇ j1 , (1.8)

∂t e = 1 + γ 2

2γ

e + 1 − γ 2

2γ

(ρu) +

√
2ρ√
γβ

∇ j1 +
√

1 + γ 2

β
√

γ
∇ j2 ,

where j1 and j2 are independent, standard white noise processes in space and time.
According to general principles of hydrodynamics the drift of these equations can
be obtained by the linearization of the hydrodynamic equations, (1.4). Of course,
(1.8) should be interpreted in a weak sense, and the law of ξt = (ut , et ) is specified
as the unique solution to the martingale problem for (1.8).

To formulate our result more precisely, we have to introduce some notation.
Let Hm be the Sobolev space associated to the scalar product

( f, g)m =
∫

R

f (q)(q2 − 
)m g(q) dq , (1.9)

and let H−m be its dual space with respect to L2(R) . We consider the fluctuation
fields ξε

t = (uε
t , eε

t ) as random elements of C (R+;H−m×H−m) with some k > 0
large enough, and Pε denotes the probability distribution of ξε

t in a stationary
regime. The parameters β > 0 and ρ ∈ R of the stationary state µβ,ρ are arbitrary;
sometimes we put β = 1 and ρ = 0 for convenience. In Section 3 we prove
tightness of Pε for m > 3 , thus first of all, we have to see that any limit point
of Pε solves the martingale problem related to (1.8), that is for all compactly
supported and infinitely differentiable ψ, ϕ ∈ C∞

c (R) we have

ut (ψ) = u0(ψ) + 1

γ

∫ t

0
us(ψ ′′) ds + Mu

t (ψ) (1.10)

et (ϕ) = e0(ϕ) + 1 + γ 2

2γ

∫ t

0
es(ϕ′′) ds + ρ − γ 2ρ

2γ

∫ t

0
us(ϕ′′) ds + Me

t (ϕ) ,

where Mu
t (ψ) and Me

t (ϕ) are Ft adapted Gaussian martingales with quadratic and
cross variations

d
〈
Mu

t , Mu
t

〉 = 2(γβ)−1‖ψ ′‖2 dt,

d
〈
Me

t , Me
t

〉 = 2ρ2β + γ 2 + 1

β2γ
‖ϕ′‖2 dt, (1.11)

d
〈
Mu

t , Me
t

〉 = 2ρ(γβ)−1〈ψ ′, ϕ′〉 dt,

respectively, where ‖ f ‖ and 〈 f, g〉 denote the usual norm and scalar product in
L2(R). In view of the Holley-Stroock theory of generalized Ornstein-Uhlenbeck
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processes (cf. Chapt. 11 in (7)), this martingale problem is uniquely solved under
(1.7). We are now in a position to state our main result:

Theorem 1. If m > 3 and ε → 0, then the distribution Pε of the fluctuation fields
ξε converges in C(R+;H−m×H−m) to the unique solution P of the martingale
problem (1.10) specified by (1.7).

What makes this system interesting is the fact that one of the conserved quan-
tities, namely energy, is not a linear functional of the coordinates of the system,
and the investigation of its fluctuation field is not trivial. While the derivation
of the stochastic PDE for u is straightforward, to obtain that for e, one has to
overcome two difficulties. First we have to get rid of the singularity coming from
the asymmetric Hamiltonian part of the generator by means of some non-gradient
analysis. The second crucial step is the verification of the Boltzmann-Gibbs prin-
ciple, we have to replace the microscopic currents with linear functionals of the
conserved quantities, see Section 2 for further details. In Section 3 tightness of
the distribution of the fluctuation fields is proven, finally in Section 4, by means
of the a priori bounds of Sections 2 and 3, we prove convergence to the solution
of the martingale problem (1.10) related to (1.8).

2. TIME EVOLUTION OF THE FLUCTUATION FIELDS

To make computations more transparent, we introduce:

∇1ak : = ak+1 − ak,∇∗
1 ak := ak−1 − ak,
1ak := ak+1 + ak−1 − 2ak,

∇ε f (x) : = ε−1( f (x + ε) − f (x)),∇∗
ε f (x) := ε−1( f (x − ε) − f (x)) ,


ε f (x) : = ε−2( f (x + ε) + f (x − ε) − 2 f (x)) .

From the evolution law 1.2

drk = 1

γ

1rkdt − 1

γ
∇1dpk + 1√

γ
∇1 (pk+1dWk − pk−1dWk−1) , (2.1)

thus the deformation fluctuation field satisfies

uε
t (ψ) = uε

0(ψ) + 1

γ

∫ t

0
uε

s (
εψ) ds + ε

γ

[
πε

t (∇εψ)−πε
0 (∇εψ)

] + Mu,ε
t (∇εψ) ,

where

πε
s (ψ) : = √

ε
∑
k∈Z

ψ(εk)pk(s/ε2) ,

Mu,ε
t (ψ) : =

√
ε

γ

∫ t

0

∑
k∈Z

(ψ(εk)pk − ψ(εk − ε)pk+1)) dW̄k (2.2)
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is a martingale, and W̄k(s) := εWk(s/ε2) . Note that here and below the time
argument of all microscopic observables is speeded up by a factor ε−2 . It is
easy to see that ε[πε

t (∇εψ) − πε
0 (∇εψ)] vanishes in mean square as ε → 0. The

replacements ∇εψ ∼ ψ ′ and 
εψ ∼ ψ ′′ are also immediate, thus we have proven

Proposition 2. For any ψ ∈ C2
c (R) we have

lim
ε→0

Eµ

[
uε

t (ψ) − uε
0(ψ) − 1

γ

∫ t

0
uε

s (ψ ′′) ds − Mu,ε
t (ψ ′)

]2

= 0 .

Our next aim is to prove a similar result for the fluctuation field of energy.
Set hk = Hk − 1/β − ρ2/2 , from (1.2) we get

dhk = 1

2
[rk−1(pk − pk−1) + rk(pk+1 − pk)] dt + pk(rk − rk−1) dt

+γ

2

(
p2

k+1 + p2
k−1 − 2p2

k

)
dt + √

γ (pk pk+1dWk − pk−1 pkdWk−1) ,

that is

dhk = A hk + S hk + √
γ ∇1 (pk−1 pk dWk−1) , (2.3)

where

Ahk = ∇1 Jk−1 , Shk = γ

2

1 p2

k , Jk := 1

2
rk (pk+1 + pk) . (2.4)

Using (2.3) and (2.4) we rewrite the energy fluctuation field as

eε
t (ϕ) = eε

0 (ϕ) − 1√
ε

∫ t

0

∑
k∈Z

∇ε ϕ(εk)Jk(s/ε2) ds

+γ
√

ε

2

∫ t

0

∑
k∈Z


εϕ(εk)

(
p2

k (s/ε2) − 1

β

)
ds − K e,ε

t (∇εϕ) , (2.5)

where

K e,ε
t (ϕ) := √

γ ε

∫ t

0

∑
k∈Z

ϕ(εk) pk pk+1 dW̄k (2.6)

is a martingale. Since the Hamiltonian flux is not a gradient, the first integrand
of (2.5) containing Jk is rapidly oscillating. In the following proof we use some
elementary tricks to find cancellation of singularities. To simplify computations
we assume that ρ = 0 and β = 1 ; the general case reduces to this one by a linear
transformation, see the end of Section 4.
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Proposition 3. If β = 1, ρ = 0 and ϕ ∈ C2
c (R) , then

lim
ε→0

Eµ

[
eε

t (ϕ) − eε
0(ϕ) − Aε

t (
εϕ) + K e,ε
t (∇εϕ) + N e,ε

t (∇εϕ)
]2 = 0,

where

Aε
t (ϕ) =

√
ε

2γ

∫ t

0

∑
k∈Z

ϕ(εk)
[
(1 + γ 2)

(
p2

k − 1
) + rk−1rk

]
ds,

while K e,ε
t and N e,ε

t are martingales defined by 2.6 and 2.11.

Proof: As S Jk = −γ Jk , we have

Jk = 1

γ
(AJk − LJk) and AJk = 1

2
∇1 p2

k + 1

2
∇1(rk−1rk) . (2.7)

Moreover,

d Jk = LJkdt +
√

γ

2
rk (pk+2 dWk+1 − pk dWk)

+
√

γ

2
rk (pk+1 dWk − pk−1 dWk−1) , (2.8)

while from 2.7

− 1√
ε

∫ t

0

∑
k∈Z

∇εϕ(εk)Jk(s/ε2) ds = 1

γ
√

ε

∫ t

0

∑
k∈Z

∇εϕ(εk)LJk(s/ε2) ds

+
√

ε

2γ

∫ t

0

∑
k∈Z


εϕ(εk)(p2
k − 1 + rk−1 rk) ds. (2.9)

Since d Jk integrates out, in view of (2.8) we have

lim
ε→0

Eµ

[
1

γ
√

ε

∫ t

0

∑
k∈Z

∇εϕ(εk)LJk(s/ε2)ds + N e,ε
t (∇εϕ)

]2

= 0 , (2.10)

where N ε is the associated martingale,

N e,ε
t (ϕ) : =

√
ε

2
√

γ

∫ t

0

∑
k∈Z

Gk(s/ε2) dW̄k , (2.11)

Gk : = ϕ(εk − ε)rk−1 pk+1 − ϕ(εk)rk pk + ϕ(εk)rk pk+1 − ϕ(εk + ε)rk+1 pk .

Comparing (2.5), (2.9) and (2.10) we obtain the desired statement. �

In view of the Boltzmann-Gibbs principle, in an asymptotic sense we have to
represent Aε

t (ϕ) as a linear functional of the conserved quantities. The first step
in this direction is the treatment of kinetic energy.
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Lemma 4. Let β = 1 and ρ = 0, then for any ϕ ∈ C2
c (R)

lim
ε→0

Eµ

[
√

ε

∫ t

0

∑
k∈Z


εϕ(εk)

(
p2

k − 1 − hk − 1

2
rkrk−1

)
ds

]2

= 0

Proof: Since L(pkrk) = pk pk+1 − γ pkrk − (p2
k − r2

k + rk−1rk) ,

p2
k = p2

k + r2
k

2
+ pk pk+1 − γ pkrk − L(pkrk)

2
− rk−1rk

2
.

It is easy to see that the martingale part of the contribution of d(pkrk) vanishes in
mean square, and that of d(pkrk) integrates out in the limit which yields

lim
ε→0

Eµ

[
√

ε

∫ t

0

∑
k∈Z


εϕ(εk)

(
p2

k + r2
k

2
− 1 − hk − 1

2
L (pkrk)

)
ds

]2

= 0 .

The remainder we still have to treat comes from

aε := √
ε
∑
k∈Z


εϕ(εk)(pk pk+1 − γ pkrk) .

At this point we use an H−1 bound, namely Theorem 2.2 of (10). In view of
S pk pk+1 = −3γ pk pk+1 and S pkrk = −γ pkrk we get

Eµ

[∫ t

0
aε(ω(s/ε2)) ds

]2

≤ 4tε2
Eµ

(
aε(−S)−1aε

)

≤ 4tε3
Eµ

[∑
k∈Z


εϕ(εk)
pk pk+1

3γ

]2

+ 4tε3
Eµ

[∑
k∈Z


εϕ(εk)
pkrk

γ

]2

,

and the right hand side goes to 0 as ε → 0 . �

The following lemma shows that the contribution of the rk−1rk terms of Aε
t

vanishes in the limit, too.

Lemma 5. Since ρ = 0, for ϕ ∈ C2
c (R)

lim
ε→0

Eµ

[
√

ε

∫ t

0

∑
k∈Z


εϕ(εk)rk rk−1 ds

]2

= 0 (2.12)

Proof: We have three auxiliary functions and a clever decomposition

rk−1rk = −LF (1)
n,k + F (2)

n,k + F (3)
n,k − γ F (1)

n,k
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for n > 2 , where

F (1)
k,n : = 1

n

n∑
l=1

(n + 1 − l)pk+lrk−1 ,

F (2)
k,n : = 1

n

n∑
l=1

(n + 1 − l)(pk − pk−1)pk+l , (2.13)

F (3)
k,n : = 1

n

n∑
l=1

rk+lrk−1 .

Let n → ∞ as ε → 0 such that εn → 0 . Computing the stochastic differential of
F (1) we see that the related martingale vanishes, consequently

Eµ

[
√

ε

∫ t

0

∑
k∈Z


εϕ(εk)LF (1)
k,n(s/ε2) ds

]2

= (tγ + 1)‖ϕ′′‖2 O(ε2n2) .

The contribution of F (3) can directly be estimated by Schwarz:

Eµ

[
√

ε

∫ t

0

∑
k∈Z


εϕ(εk)F (3)
n,k(s/ε2) ds

]2

= t2‖ϕ′′‖2 O(1/n) .

The remaining two terms are treated by means of the H−1 bound, Theorem 2.2
in (10). Taking into account S(pi pi+1) = −3γ pi pi+1 , S(pkrk) = −γ pkrk and
S(pi p j ) = −2γ pi p j for i, j ∈ Z , |i − j | ≥ 2 we obtain that

Eµ

[
√

ε

∫ t

0

∑
k∈Z


εϕ(εk)F (2)
n,k(s/ε2) ds

]2

= t

γ
‖ϕ′′‖2 O(ε2n)

and

Eµ

[
√

ε

∫ t

0

∑
k∈Z


εϕ(εk)γ F (1)
n,k(s/ε2) ds

]2

= t

γ
‖ϕ′′‖2 O(ε2n) ,

which complete the proof of (2.12). �

We are now in a position to state the main result of this section on the energy
fluctuation field.

Proposition 6. Let β = 1 and ρ = 0, then for every ϕ ∈ C2
c (R)

lim
ε→0

Eµ

[
eε

t (ϕ) − eε
0 (ϕ) − 1 + γ 2

2γ

∫ t

0
eε

s (ϕ′′) ds + K e,ε
t (ϕ′) + N e,ε

t (ϕ′)
]2

= 0,

where K e,ε
t and N e,ε

t are the martingales defined by (2.6) and (2.11).
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Proof: This statement is a direct consequence of Proposition 3, Lemma 4 and
Lemma 5. �

Let us postpone the easy calculation of the quadratic and cross variations of
the underlying martingales Mu,ε, K e,ε and N e,ε to Section 4.

3. TIGHTNESS

Here we prove the tightness of the family Pε, 0 < ε ≤ 1 of the measures of
the conservative fields. Since energy is a nonlinear function of the configuration,
some lengthy computations are required. Actually we are extending the proof of (8),
calculations are based on a representation of Sobolev spaces Hm in terms of
Hermite polynomials. For any k ≥ 0 and f, g ∈ C∞

c (R) consider the scalar product
( f, g)m, see (1.9), and denote by Hm the corresponding closure. For any positive
m, H−m is its dual with respect to L2(R) ≡ H0 , i.e. ‖ f ‖ ≡ ‖ f ‖0. It is convenient
to represent (·, ·)m in terms of Hermite polynomials, which are the eigenfunctions
of q2 − 
. Let hn denote the nth normalized Hermite polynomial, each is an
infinitely differentiable real function with Gaussian tail, and hn , n ∈ Z+ form a
complete orthogonal base of L2(R) . Since q2hn − 
hn = (2n + 1)hn , for every
m ≥ 0 and f ∈ L2 we have

‖ f ‖2
m =

∫
R

f (q)(q2 − 
)m f (q) dq = (2n + 1)m
∑
n∈N

〈 f, hn〉2 ,

and this is valid also for negative m, thus the H−m-norm of a distribution ζ = ζ (φ)
can be written as

‖ζ‖2
−m =

∑
n∈N

(2n + 1)−mζ (hn)2. (3.1)

In an equilibrium state pk and rk can not grow faster than log(1 + |k|), thus
the fluctuation fields uε

t and eε
t can be considered as distributions, i.e. elements

of the Schwartz space S′(R) ; S′ is the dual of the space S(R) of smooth and
rapidly decreasing functions. It is plain that, as far as ε > 0, the probability
distribution Pε of the equilibrium process ξε

t = (uε
t , eε

t ) is concentrated on the
space C(R+, S′(R)×S′(R)). The basic result of this section is

Proposition 7. For any m > 3 and every T > 0, the family Pε , 0 < ε < 1 of
probability measures has support in C([0, T ],H−m×H−m) , and it is relatively
compact in this space.

In view of the Holley-Stroock theory of Generalized Ornstein-Uhlenbeck
processes (cf. Chapt. 11 in (7)), Proposition 7 is a consequence of the following
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result. To avoid too big expressions, let sup(δ,T ) denote the least upper bound over
the set {s, t : 0 ≤ s < t ≤ T , t − s ≤ δ} .

Proposition 8. For any m > 3 and every T, R > 0 we have

(i) supε∈(0,1) Eµ[sup0<t<T ‖uε
t ‖2

−m] < +∞ ,

(ii) supε∈(0,1) Eµ[sup0<t<T ‖eε
t ‖2

−m] < +∞ ,

(iii) limδ→0 lim supε→0 Pµ[sup(δ,T ) ‖uε
t − uε

s‖−m > R] = 0 ,

(iv) limδ→0 lim supε→0 Pµ[sup(δ,T ) ‖eε
t − eε

s ‖−m > R] = 0 .

To prove Proposition 8, we need several technical results, a basic a priori
bound first of all. As before, we may, and do assume that β = 1 and ρ = 0.

Lemma 9. There exists a constant B = B(T ) < ∞ such that

Eµ[sup{uε
t (ψ)2 : t ∈ [0, T ]}] ≤ B (‖ψ‖2 + ‖ψ ′‖2)

and

Eµ[sup{eε
t (ϕ)2 : t ∈ [0, T ]}] ≤ B (‖ϕ‖2 + ‖ϕ′‖2 + ‖ϕ′′‖2)

for all ϕ,ψ ∈ S(R) and 0 < ε < 1.

Proof: Set fε(s) := √
ε
∑

k∈Z
∇εψ(εk)pk+1(s/ε2), from (1.2) for rk we have

uε
t (ψ) = uε

0(ψ) − 1

ε

∫ t

0
fε(s) ds ,

whence

Eµ

[
sup

0<t<T
uε

t (ψ)2

]
≤ 2Eµuε

0(ψ)2 + 2Eµ

[
sup

0<t<T

(
1

ε

∫ t

0
fε(s) ds

)2
]

.

Since S fε = −γ fε by Theorem 2.2 of (10)

Eµ

[
sup

0<t<T

(
1

ε

∫ t

0
fε(s) ds

)2
]

≤ 8T εEµ

[
fε(−S)−1 fε

]
= 8T ε

γ

∑
k∈Z

(∇εψ(εk))2 ,

which completes the proof of the first bound because the case of the initial value
is trivial, and by Schwarz

ε
∑
k∈Z

(∇εψ(εk))2 ≤ ‖ψ ′‖2 .
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The energy field is a bit more complicated. For reader’s convenience recall (2.5),

eε
t (ϕ) = eε

0(ϕ) − 1√
ε

∫ t

0

∑
k∈Z

∇εϕ(εk)Jk(s/ε2) ds

+γ
√

ε

2

∫ t

0

∑
k∈Z


εϕ(εk)
(

p2
k (s/ε2) − 1

)
ds − K e,ε

t (∇εϕ) , (3.2)

where

K e,ε
t (ϕ) = √

γ ε

∫ t

0

∑
k∈Z

ϕ(εk)pk pk+1 dW̄k .

The initial value is easy to treat, the second integral on the right hand side is
estimated directly by the Schwarz inequality:

Eµ

[
sup

0<t<T

(
γ
√

ε

∫ t

0

∑
k∈Z


εϕ(εk)
(

p2
k (s/ε2) − 1

)
ds

)2]

≤ εγ 2T

2
Eµ

∫ T

0

(∑
k∈Z


εϕ(εk)
(

p2
k (s/ε2) − 1

))2

ds = O(‖ψ ′′‖2) .

For brevity set gε := ∑
k∈Z

∇εϕ(εk)Jk . Since S Jk = −γ Jk , by Theorem 2.2 of
(10) on the critical first integral we get

Eµ


 sup

0<t<T

(
1√
ε

∫ t

0

∑
k∈Z

∇εϕ(εk)Jk(s/ε2) ds

)2

 ≤ 8T ε

γ
Eµ[gε(−S)−1gε]

= 16T ε

γ

∑
k∈Z

(∇εϕ(εk))2 = O(‖ϕ′‖2) .

Finally, the martingale is treated by means of Doob’s inequality:

Eµ

[
sup

0<t<T
K e,ε

t (∇εϕ)2
]

≤ 4EµK e,ε
T (∇εϕ)2

= 4γ εT
∑
k∈Z

(∇εϕ(εk))2 = O(‖ϕ′‖2) .

Combining the estimates above, we obtain the second bound. �

Proof of (i) and (ii) of Proposition 8: From (3.1) and Lemma 9 we obtain

Eµ

[
sup

0<t<T
‖uε

t ‖2
−m

]
≤

∑
n∈N

(2n + 1)−m
Eµ

[
sup

0<t<T
uε

t (hn)2
]

≤ B
∑
n∈N

(2n + 1)−m(‖hn‖2 + ‖h′
n‖2) ≤ B

∑
n∈N

(2n + 1)−m
(
1 + ‖hn‖2

1

)
,
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and the last series converges if m > 2 because ‖hn‖2
1 ≤ 2n + 1 .

The case of energy field is similar,

Eµ

[
sup

0<t<T
‖eε

t ‖2
−m

]
≤

∑
n∈N

(2n + 1)−m
Eµ

[
sup

0<t<T
eε

t (hn)2
]

≤ B
∑
n∈N

(2n + 1)−m(‖hn‖2 + ‖h′
n‖2 + ‖h′′

n‖2)

≤ B
∑
n∈N

(2n + 1)−m(2 + ‖hn‖2
1 + ‖hn‖2

2)

Since ‖hn‖2
2 ≤ (2n + 1)2 , both bounds are finite if m > 3 . �

By means of the Hermite expansion we reduce the problem of equicontinuity
as follows. From 3.1

Eµ

[
sup
(δ,T )

‖uε
t − uε

s‖2
−m

]
≤

∑
n∈N

(2n + 1)−m
Eµ

[
sup
(δ,T )

(uε
t (hn) − uε

s (hn))2
]
,

however

Eµ

[
sup
(δ,T )

(uε
t (hn) − uε

s (hn))2
]

≤ 4Eµ

[
sup
(δ,T )

uε
t (hn)2

]
,

thus in view of Lemma 9, the series above is uniformly convergent if m > 2.

Therefore (iii) is implied by

lim
δ→0

lim sup
ε→0

Eµ

[
sup
(δ,T )

(uε
t (hn) − uε

s (hn))2
]

= 0. (3.3)

Similarly, to prove (iv) we have to show that

lim
δ→0

lim sup
ε→0

Eµ

[
sup
(δ,T )

(eε
t (hn) − eε

s (hn))2
]

= 0 (3.4)

for each n ∈ Z+ , at this point it is important that m > 3. However, we need not
worry about dependence of the rates of convergence on n any more. The structure
of the forthcoming calculations resembles those in Section 2.

Proof of (iii) of Proposition 8: Using notation introduced there, from (2.1) we get

uε
t (hn) − uε

s (hn) = 1

γ

∫ t

s
uε

τ (
εhn) dτ + ε

γ
(πε

t (∇εhn) − πε
s (∇εhn))

+Mu,ε
s (∇εhn) − Mu,ε

t (∇εhn) .

In view of Lemma 9, the integral of uε
τ can directly be estimated by Schwarz,

Eµ

[
sup
(δ,T )

(∫ t

s
uε

τ (
εhn) dτ

)2
]

≤ B(n, T ) δ .
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The singularity appearing in the stochastic differential of επε is suppressed
by the damping and the factor ε in front of it. In fact, we prove that

sup
0<ε<1

Eµ

[
sup

0<t<T
πε

t (∇εhn)2
]

< +∞ . (3.5)

Indeed, from 1.2

pk(t) = e−γ t pk(0) +
∫ t

0
e−γ (t−s)(rk − rk−1) ds + mk(t) ,

where

mk(t) := √
γ

∫ t

0
e−γ (t−s)(pk+1 dWk − pk−1 dWk−1) ,

whence

πε
t = e−γ t/ε2

πε
0 − 1

ε

∫ t

0
e−γ (t−s)/ε2

uε
s (
εhn) ds + √

ε
∑
k∈Z

∇εhn(εk) mk(t/ε2) .

Due to the exponential factor, the first term obviously vanishes. Separating uε
s

from e−γ (t−s)/ε2
by means of the Schwarz inequality, we obtain a factor ε, which

implies immediately that the contribution of the deterministic integral is bounded.
The case of the stochastic integral is similar. Since

mk(t/ε2) :=
√

γ

ε

∫ t

0
e−γ (t−s)/ε2

(pk+1 dW̄k − pk−1 dW̄k−1) ,

where W̄k are independent standard Wiener process, just as before, the quadratic
variation of the stochastic integral in the above decomposition of πε can easily
be estimated by Schwarz, and the proof of (3.5) is completed by Doob’s maximal
inequality.

The quadratic variation of Mu,ε is easily controlled, its intensity is just Qu,ε,

where

Qu,ε
t (ψ) = ε

γ

∑
k∈Z

(ψ(εk − ε)pk+1(t/ε2) − ψ(εk)pk(t/ε2))2 . (3.6)

Like in many other cases, the equicontinuity of Mu,ε is controlled by its fourth
moment. An easy stochastic calculus exploiting stationarity of the underlying
process yields

EµMu,ε
t (∇εhn)4 = O(t2) , (3.7)

where the bound does not depend on ε. To verify this we use a shorthand notation
Mt := Mu,ε

t , Qt := Qu,ε
t , mt := EµM4

t , qt := Eµ Q2
t , and all we need to exploit

is the fact that Mt is a continuous martingale with M0 = 0 and
∫ t

0 qsds ≤ K t for
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all t, ε > 0 with a universal constant K . In fact

d M4
t = 4M3

t d Mt + 6M2
t Qt dt

and Schwartz inequality yields

mt ≤ 6

√∫ t

0
msds

√∫ t

0
qsds ≤ 6

√∫ t

0
msds

√
K t (3.8)

whence ∂t

√∫ t
0 msds ≤ 3

√
K t which results in

√∫ t
0 msds ≤ 2

√
K t3/2. Using (3.8)

again we get mt ≤ 12K t2 and thus (3.7) is varified. From (3.7) we obtain

Pµ

[
sup

0≤t≤δ

Mu,ε
t (∇εhn)2 > R

]
= O(δ2/R2) .

Now we can divide the interval (0, T ) into small pieces of size δ , and exploit
stationarity to conclude that

Pµ[�ε
δ,T > R] = O(δ/R2) ,

where

�ε
δ,T := sup

(δ,T )
(Mu,ε

t (∇εhn) − Mu,ε
s (∇εhn))2.

From here using the fact that Eµ�ε
δ,T ≤ R(1 + Pµ[�ε

δ,T > R]) and taking supre-
mum in R , we can deduce that the variables �ε

δ,T are uniformly integrable when
ε and δ go to 0, consequently

lim
δ→0

lim sup
ε→0

Eµ�ε
δ,T = 0 ,

which completes the proof. �

The identities we have established in the proof of Proposition 3. are most
useful for equicontinuity of the energy field. We start with a decomposition

eε
t (hn) = eε

0(hn) + Aε
t (
εhn) + εJ ε

0 (∇εhn) − εJ ε
t (∇εhn) + Me,ε

t (∇ε p) , (3.9)

where Me,ε := −K e,ε
t − N e,ε

t , and

J ε
t :=

√
ε

γ

∑
k∈Z

∇εhn(εk)Jk(t/ε2) .

Remember that J ε = rk(pk + pk+1)/2 and LJk = (1/2γ )∇1(p2
k + rk−1rk) −

γ Jk , thus all previous tricks are available also here.

Proof of (iv) of Proposition 8: By the Schwarz inequality it follows immediately
that

lim
δ→0

lim sup
ε→0

Eµ

[
sup
(δ,T )

(Aε
t (
εhn) − Aε

s (
εhn))2
]

= 0 .
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Due to the damping of the microscopic current Jk ,

lim
δ→0

lim sup
ε→0

Eµ

[
sup
(δ,T )

(εJ ε
t (∇εhn) − εJ ε

s (∇εhn))2
]

= 0

follows in exactly the same way as we did for the velocity field πε in the proof of
(iii).

Finally, let Qek,ε and Qen,ε denote the intensities of the quadratic variations
of K e,ε and N e,ε , respectively. We have

Qek,ε
t (ϕ) = γ ε

∑
k∈Z

ϕ2(εk)p2
k (t/ε2)p2

k+1(t/ε2) , (3.10)

Qen,ε
t (ϕ) = ε

4γ

∑
k∈Z

G2
k(t/ε2) , (3.11)

see (2.11) for the definition of Gk . These martingales can not be exponentiated, but
their fourth moments can again be estimated, thus from EµMek,ε

t (∇εhn)4 = O(t2)
and EµMen,ε

t (∇εhn)4 = O(t2) we obtain

lim
δ→0

lim sup
ε→0

Eµ

[
sup
(δ,T )

(Me,ε
t (∇εhn) − Me,ε

s (∇εhn))2
]

= 0

in the same way as for Mu,ε in the proof of (iii). �

4. THE MACROSCOPIC EQUATIONS

Having proven both the Boltzmann–Gibbs principle and tightness of the
fluctuation fields, the proof of Theorem 1. is almost complete. First we identify
the quadratic variations of the martingales Mu and Me in (1.9) when β = 1 and
ρ = 0. From (3.6), (3.10) and (3.11) by the law of large numbers

lim
ε→0

Qu,ε
t (ψ ′) = 2

γ
‖ψ ′‖2 , lim

ε→0
Qek,ε

t (ϕ′) = γ ‖ϕ′‖2 , lim
ε→0

Qen,ε
t (ϕ′) = 1

γ
‖ϕ′‖2

in L1 . Moreover, all cross variations vanish in the limit, and the bounds on fourth
moments of these martingales imply uniform integrability, consequently

lim
ε→0

〈Mu,ε
t , Mu,ε

t 〉 = 2t

γ
‖ψ ′‖2 , lim

ε→0
〈Me,ε

t , Me,ε
t 〉 = t + tγ 2

γ
‖ϕ′‖2 , (4.1)

and the fluctuation equations read as

∂t u = 1

γ

u +

√
2

γ
∇ j1 , ∂t e = 1 + γ 2

2γ

e +

√
1 + γ 2

γ
∇ j2 (4.2)
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in the particular case of β = 1 and ρ = 0. The general case follows from here by
a linear transformation p̃k = pk/

√
β , r̃k = rk/

√
β + ρ , i.e.

1

2
( p̃2

k + r̃2
k ) = 1

2β
(p2

k + r2
k ) + rkρ√

β
+ ρ2

2
,

consequently convergence of the transformed process to the solution of (4.2)
implies convergence of the original to the solution of (1.8).

REFERENCES

1. C. Bernardin, Hydrodynamics for a heat conduction model. Preprint 2004.
2. C. Bernardin and S. Olla, Fourier’s law for a microscopic model of heat conduction, To appear in

J. Stat. Phys.
3. S. Ethier and T. Kurtz, Markov Processes, Characterization and Convergence, (Wiley, New York

1986).
4. J. Fritz, An Introduction to the Theory of Hydrodynamic Limits. Lectures in Mathematical Sciences

18, The University of Tokyo, ISSN 0919–8180, (Tokyo 2001).
5. J. Fritz and C. Maes, Derivation of a hydrodynamic equation for Ginzburg-Landau models in

external field, J. Stat. Phys. 53, 1179–1206 (1988).
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