
AN INFORMAL INTRODUCTION TO THE MINIMAL
MODEL PROGRAM

ALEX KÜRONYA

This is an expanded version of a talk given in the Fall 2007 Forschungsseminar at the
Universität Duisburg-Essen. The purpose of our seminar was to understand the recent
seminal work [2] of Hacon and McKernan. This note is written for non-specialists by a
non-specialist, and hence might contain more or simply different details than experts

would think necessary. Naturally, no claims regarding originality are made.

1. Birational equivalence in low dimensions

There is an obvious desire to understand the structure of algebraic vari-
eties, and this is what we will try to do in some sense. During this quest
we will restrict ourselves to varieties over the complex numbers (for safety
reasons), although a substantial amount of what is said here goes through
over other fields as well.

Very early on in one’s career as a student in algebraic geometry, we meet
two different notions for two algebraic varieties ’being the same’: isomorphy,
and birational equivalence. In the case of affine varieties, these correspond
to isomorphisms between the coordinate rings or the function fields, respec-
tively.

Although for general abstract varieties the isomorphism between the rings
of globally defined regular functions is no longer equivalent to the under-
lying varieties being isomorphic1, the abovementioned characterization of
birational equivalence carries through in the general case: two abstract va-
rieties are birationally equivalent if and only if their function fields are iso-
morphic. In this sense, birational geometry of varieties is nothing else than
characterizing function fields of varieties.

The problem of describing isomorphy classes of varieties is very difficult,
and hence one might as well opt for a two-step method: first understand
varieties up to birational equivalence, and then work our way from there.
It is important to point out that it is not obvious which of the two steps is
more difficult in general.

In what follows we will primarily care about birational geometry. Histor-
ically one wanted to work with smooth objects only, but as we will see soon,
we had to give up this idea at a certain point in order to be able to proceed.

We are grateful to the authors of [1] for providing us with a very early version of their
work.

1For example if X is an arbitrary projective variety then Γ(X, OX) = k, the base field.
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Let us start with the case of curves. Here the picture is particularly simple
from the point of view of birational equivalence: two smooth projective
curves are birational if and only if they are isomorphic to each other. In
short, each irreducible curve is birational to a unique smooth projective
curve, thus the investigation of smooth projective curves up to isomorphism
is equivalent to the study of all curves up to birational equivalence.

The case of smooth surfaces is a lot more complicated, and the classi-
fication of smooth projective surfaces up to birational equivalence is one
of the major algebro-geometric achievements of the first half of the 20th
century done by the so-called Italian school. Today it is often called the
Kodaira–Enriques classification.

For starters, note that each irreducible surface is birational to infinitely
many smooth projective surfaces (for example take a smooth point, blow it
up, and so on). Our aim here is to find a unique ’simple’ element of each bi-
rational equivalence class of smooth projective surfaces. The method of the
Italian school is simple: if a smooth projective surface contains a smooth ra-
tional curve with self-intersection −1, then by Castelnuovo’s contractibility
theorem this curve can be contracted, and the result will again be a smooth
projective surface.

More precisely:

Theorem 1.1 (Castelnuovo, Theorem V.5.7 in [3]). Let X be a smooth
projective surface, E ⊆ X a smooth rational curve with E2 = −1. Then
there exists a smooth projective surface Y , and a morphism f : X → Y
such that f is the blow-up of a point on Y with E being the exceptional
divisor.

Now if one repeats this process over and over again, then after finitely
many steps it will come to a halt as the Picard number drops by one after
each contraction. In most cases we obtain a unique minimal model this
way. Within this framework minimal models are distiguished by the lack of
(−1)-curves.

On the other hand, birational maps can also be described explicitly:

Theorem 1.2 (Zariski, Theorem V.5.5 in [3]). Let φ : X 99K Y be a bira-
tional map. Then we can factor φ into a sequence of blow-ups of points and
their inverses.

2. The birational classification of surfaces and Mori’s cone
theorem

A crucial observation made in the last third of 20th century was the out-
standing role the canonical class plays in the classification process. The idea
is closely related to the following simple observation.

Lemma 2.1. Let X be a smooth projective surface, C ⊆ X an irreducible
curve with C2 = −1. Then C is a smooth rational curve if and only if
KX · C = −1.
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Proof. The proof follows from the fact that for an integral projective curve
Γ, Γ ' P1 is equivalent to pa(Γ) = 0 via the (arithmetic) genus formula [3,
V. Ex. 1.3 (a)] 2:

pa(C) =
1
2
(KX + C) · C + 1

applied to our curve C ⊆ X. �

To put it a little bit more generally (same proof applies): an integral
curve C ⊆ X is a (−1)-curve if and only if C2 < 0 and KX · C < 0.

The upshot is that instead of trying to find and contract (−1)-curves
(which does not generalize to higher dimensions) one should concentrate on
curves that intersect the canonical class negatively. Hence from now on we
will call a smooth projective variety a minimal model, if it is devoid of such
curves, that is, if KX is nef3. The two notions of a minimal model coincide
very often4. With this in our hand it is easy to believe that extremal rays (at
least KX -negative ones) play a crucial role in the development of birational
geometry. In this direction the basic object is the so-called Mori cone, which
is also called the closed cone of curves.

Definition 2.2. Let X be a smooth projective variety; a 1-cycle C =∑
i=1 aiCi over X is a finite linear combination of proper integral curves

with ai ∈ Z (or Q or R). The 1-cycle C is called effective if ai ≥ 0 for all i’s.
Two one cycles C,C ′ are called numerically equivalent if

D · C = D · C ′

for all Cartier divisors D on X. The set of equivalence classes of 1-cycles
with real coefficients under numerical equivalence is a real vector space, it is
denoted by N1(X). We denote the numerical equivalence class of a 1-cycle
by [C].

Remark 2.3. It is a non-trivial fact (nevertheless not too difficult over C)
that dimR N1(X) is finite.

2The adjunction formulas one often finds require the effective divisor D ⊆ X we restrict
on to be smooth. There are however considerably more general versions in existence. As
described in [4, Proposition 5.73], if X is a projective Cohen–Macaulay scheme of pure
dimension n over an arbitrary field, D an effective Cartier divisor on X, then

ωD ' ωX(D)⊗ OD

with ω is the appropriate dualizing sheaf. This in turn has the property that ωX '
OX(KX) whenever X is a normal projective variety.

3A Cartier divisor D is called nef if D ·C ≥ 0 for every effective 1-cycle. It is of course
enough to test nefness on irreducible curves.

4A notable exception is P2, which is minimal in the classical sense, but KP2 = OP2(−3)
is not nef. The reason for this phenomenon is basically that the morphism contracting
the whole projective plane to a point is the contraction of a single KX -negative extremal
ray spanned by the class of a line.
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Definition 2.4. Let X be a smooth projective variety. Then define

NE(X) def=
{∑

ai[Ci] |Ci ⊆ X integral proper curve , 0 ≤ ai ∈ Q
}

⊂ N1(X)

NE(X) def= the closure of NE(X) in N1(X) .

The cone NE(X) is called the Mori cone of X.

The following result of Mori was one of his first major breakthroughs.

Theorem 2.5 (Mori’s cone theorem, Theorems 1.24 and 3.7 in [4]). Let
X be a smooth projective variety; then there exist countably many rational
curves Ci on X such that 0 < −KX · Ci ≤ dim X + 1, and

NE(X) = NE(X)KX≥0 +
∑

i

R≥0[Ci] .

Moreover, if H is any ample divisor class, and ε > 0 an arbitrary real
number, then

NE(X) = NE(X)KX+εH≥0 +
∑

R≥0[Ci] .

where the latter sum is now finite.

What links extremal rays to morphisms between varieties contracting cer-
tain curves is the following.

Definition 2.6 (Contraction). Let X be a projective variety, F ⊆ NE(X)
an extremal face. A morphism cF : X → Y is called the contraction of F if
the following conditions are satisfied.

(a) if X is an irreducible curve, then cF (C) is a point iff [C] ∈ F ;
(b) (cF )∗OX = OY .

Remark 2.7 (Properties of contractions). There is no guarantee that for a
certain extremal face F the contraction morphism cF exists, and there are
examples where it does not. In fact, it is a very important subtask of the
minimal model program to find conditions that guarantee the contractability
of certain extremal faces. If however cF exists, then it is uniquely determined
by the extremal face F .

With this result in our hands, one would like to know how to describe
extremal rays on projective varieties. It turns out, that the determination of
the Mori cone of a variety is an extremely difficult task, it is only known in
a very few cases5 What one can do though is to give a rough classification,
according to their behaviour.

5To see the extent of our lack of knowledge here is a simple example: let C be a smooth
curve of genus 5. Then one has no idea whatsoever about the extremal rays of C × C.
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Theorem 2.8 (Theorem 1.28 in Kollár–Mori). Let X be a smooth projective
surface, R ⊆ NE(X) a KX-negative extremal ray. Then the corresponding
contraction cR : X → Y exists, and it falls into exactly one of the following
three classes:

(a) Y is a smooth projective surface with ρ(Y ) = ρ(X) − 1, cR is the
blowup of a (closed) point in Y .

(b) Y is a smooth projective curve, ρ(X) = 2, and X is a minimal ruled
surface over Y .

(c) Y is a point, ρ(X) = 1, and −KX is ample.

Remark 2.9. Let C be an irreducible curve such that [C] ∈ R. As we will
shortly see, the three cases above correspond to the sign of C2. In case 3
Mori also proved that Y is isomorphic to the projective plane6.

Proof of 2.8. As mentioned earlier, the three cases are distinguished accord-
ing to the sign of the self-intersection of an irreducible curve generating the
extremal ray R.

Let us first assume that (C2) < 0. Then the adjunction formula says that

2pa(C)− 2 = (KX + C) · C ≤ −2

and so g(C) = 0, KX · C = (C2) = −1, hence C is a (−1)-curve, and one
can apply Theorem 1.1 to obtain the desired conclusion.

Next we treat the case (C2) = 0. The proof proceeds by showing that for
m ≥ 1 the complete linear system |mC| is base-point free, and provides the
required contraction. First let us see what the Riemann–Roch theorem has
to offer: as C is effective, H2

(
X, mC

)
= 0 for all m � 1, and so

H0
(
X, mC

)
= H0

(
X, mC

)
−H0

(
X, mC

)
= χ(X, mC)

=
1
2
(mC −KX) · (mC)− χ(X, OX)

=
(−KX · C)

2
m + χ(X, OX)

≥ 2 .

once m becomes large enough. Since any fixed component is a multiple of
C, there exists an integer m0 > 0 such that |m0C| has no fixed component,
and so has a base-point free multiple by a result of Zariski7. It can be shown
that that |mC| has to be base-point free for m = 1.

6The statement that −KX very ample implies X is a projective space had been previ-
ously known as Hartshorne’s conjecture

7Zariski proved that if some multiple of a base-point free complete linear system has
only isolated base points, then it will eventually become base-point free.
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Let cR : X → Z be the Stein factorization of the corresponding morphism.
Consider a fibre

∑
i aiCi of the morphism cR. Then∑

i

ai[Ci] = [C] ∈ R ,

and since R is an extremal ray, we have [Ci] ∈ R for every i, in particular
C2

i = 0 and KX · Ci < 0. An application of the adjunction formula gives

2pa(C)− 2 = (KX + C) · C = KX · C < 0

which implies Ci ' P1 and KX · Ci = −2. Hence

−2 = KX · C = KX · (
∑

i

aiCi) = −2 ·
∑

i

aiCi ,

and so
∑

i aiCi is a reduced irreducible rational curve. We conclude that
cR : X → Y is a minimal ruled surface over Y .

Lastly, consider the case when C2 > 0. One can show that the classes of
curves with positive self-intersection lie in the interior of NE(X). However,
[C] generates an extremal ray as well, so it has to be the case that N1(X) '
R1. As we have assumed that KX · C > 0, the anticanonical divisor is
positive on NE(X)− 0, and hence ample by a form of the Nakai–Moishezon
ampleness criterion. �

As a consequence, we can describe minimal models of smooth surfaces.

Corollary 2.10. Let X be a smooth projective surface. Then one can find
a sequence of contraction morphisms X → X1 → · · · → Xn = Y such that
exactly one of the following happens.

(a) −KY is nef;
(b) Y is a minimal ruled surface over a curve;
(c) Y ' P2.

Remark 2.11. If Y is a minimal model (i.e. −KY is nef), then Y is uniquely
determined by X.

Let us summarize what has just happened.

Algorithm 2.12 (The Mori program for surfaces).
(a) Start with a smooth projective surface X.
(b) If KX is nef then stop. If KX is not nef then the Cone Theorem 2.5

provides us with a KX -negative extremal ray R.
(c) Theorem 2.8 implies that the contraction morphism cR : X → Y

exists.
(a) If dim Y = dim X then replace X with Y and go back to (a).
(b) If dim Y < dim X then Theorem 2.8 gives detailed information

about the structure of X.

This is the framework one would want to generalize to higher dimensions
to obtain minimal models. In this last formulation everything makes sense
on a normal Q-factorial quasi-projective variety, but there the contractions
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that might occur often produce singular varieties, which causes various parts
of the machine to break down.

3. Extremal rays on higher-dimensional varieties

After having determined the various types of extremal rays that can occur
on a smooth projective surface, it is natural to ask what happens in higher
dimensions. Mori has classified the various possibilities in the case of a
smooth threefold. The classification runs much in parallel with the one we
have seen on surfaces, there is however one very basic difference: it can
and indeed does happen that the result of a contraction of a KX -negative
extremal ray is a singular variety, and hence we cannot apply our previous
methods directly.

One obvious way around the difficulty would be to allow some classes of
singular varieties, however this means walking on really thin ice, as many
of the methods we have used break down if the singularities become too
nasty. The question which class of singularities we should allow has no clear
answer. The approach we will take is roughly to start with smooth varieties,
and include everything we find along the way.

Whatever happens, we will want
(a) to have a canonical class KX in some sense;
(b) and to be able to intersect curves with KX .
Therefore it is absolutely necessary that KX be a Q-Cartier divisor under

all circumstances. As we will see in later talks, KX exists on all normal
varieties as a Weil divisor class. In particular, this minimal working require-
ment can be maintained while all varieties in sight are Q-factorial normal
varieties (actually, Q-Gorenstein normal would be enough, but that is a lot
more difficult to guarantee) and we will always assume this. However, in or-
der for the minimal model program to work (for example to have the Cone
Theorem 2.5), one needs to impose further conditions on the varieties in
question.

Let us have a look at what happens to contractions in higher dimensions.

Proposition 3.1. Let X be a Q-factorial normal projective variety, f :
X → Y the contraction corresponding to an extremal ray R ⊆ NE(X).
Then we have the following options.

(a) (Fibre type contraction) dim X > dim Y ;
(b) (Divisorial contraction) f is birational and the exceptional locus

Ex(f) is a prime divisor;
(c) (Small contraction) f is birational and codimX Ex(f) ≥ 2.

Remark 3.2. It is instructive to check the correspondence with Theorem 2.8.
In the case of fibre type contractions the general fibre F of the morphism
f is a variety with −KF = −KX |F ample (such varieties are called Fano
varieties). In some sense f allows us to reduce the study of X to that of the
lower-dimensional variety Y and F . In dimension two, this happens when
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an irreducible generator of the contracted extremal ray has nonnegative self-
intersection number.

Divisorial contractions correspond to the blowup of a point in the surface
case. In fact, they are a generalization thereof: any blowup of a smooth
variety along a smooth center is a divisorial contraction8. In order for this
to be of use to us, it would be important that Y be Q-factorial (or at the very
least that KY is Q-Cartier). But this luckily holds in all relevant situations.
In addition, it is also true that ρ(Y ) = ρ(X)− 1.

Small contractions did not arise on surfaces for dimension reasons, and
they do not occur on smooth threefolds either. In general however they
do, and cause major problems. Here is why: let f : X → Y be a small
contraction, assume KX is Q-Cartier. We claim that no multiple of KY can
be Cartier.

Indeed, suppose that both mKX and mKY are Cartier. Then mKX and
f∗(mKY ) are two Cartier divisors that are linearly equivalent away from the
codimension at least two subset Ex(f). It follows that the two are linearly
equivalent on X. But this is impossible, as mKX ·R < 0 and f∗(mKY )·R = 0.

Thus small contractions inevitably lead us out of the class of varieties that
we can hope to control. The way out of this seemingly hopeless situation is
a new operation called a flip. The rough idea is that instead of contracting
the locus of the extremal ray, we cut it out, and glue in something else (this
process corresponds to the topological notion of surgery) hoping all the time
that we end up with a more amenable variety.

Definition 3.3 (Flip). Let f : X → Y be a proper birational morphism
with codimX Ex(f) ≤ 2, assume furthermore that −KX is Q-Cartier and
f -ample. A variety X+ together with a proper birational morphism f+ :
X+ → Y is called a flip of X if codim+

X Ex(f+) ≥ 2, K+
X is Q-Cartier and

f+-ample.

Very often it is the birational map X 99K X+ which is referred to as a
flip. At this point it is not at all clear if a flip exists, or if it is unique, or
that it helps us at all, but we’ll sort this out for the most part.

Now comes a brief detour about the singularities we will encounter. Cur-
rently the class of singularities with which the minimal model program works
is the so-called terminal singularities, this is what we will mostly use. They
come from the following situation: let f : X → Y be a birational morphism
of smooth varieties, s ∈ H0

(
X, mKY

)
. Then f∗s as a section of mKX

will wanish along the exceptional divisor of f . This motivates the following
definition.

Definition 3.4 (Terminal singularities). A normal variety Y has terminal
singularities if KY is Q-Cartier, and for every resolution of singularities

8The converse is not true though, there exist divisorial contractions that are not
blowups.
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f : X → Y one has

f∗OX(mKX − E) = OY (mKY )

where E ⊆ X is the reduced exceptional divisor.

Definition 3.5 (Minimal model). A proper normal variety X is called a
minimal model if it has terminal singularities, and KX is nef.

After this rather long preparation we are in a position to state the minimal
model program.

Algorithm 3.6 (Minimal Model Program).
(a) Start with a Q-factorial normal projective variety X with terminal

singularities.
(b) If KX is nef then stop. If KX is not nef then the Cone Theorem

guarantees us the existence of a KX -negative extremal ray R.
(c) Let cR : X → Y be the contraction of R.

(a) If cR is a fibre type contraction, then stop. We have reduced the
study of X to that of the fibres of cR and a smaller-dimensional
variety Y .

(b) If cR is a divisorial contraction, then we will prove later that Y
is also Q-factorial with terminal singularities, so replace X by
Y , and return to (b).

(c) If cR is a small contraction, then we will again prove that the
flip X+ of cR is Q-factorial with terminal singularities. Hence
we can replace X by X+, and return to (b).

It is far from clear why the above procedure should stop, let alone why
the required flips exist. In any case, once the algorithms stops, it produces
either a minimal model or a Fano fibre space.

Before proceeding any further, we need to say a few words about pairs,
which are a widely used technical tool in the theory of minimal models. A
pair (or logarithmic pair or simply a log pair) is defined to be an ordered pair
(X, ∆), with X being an arbitrary variety, and ∆ an R-Weil divisor on X.
Very often X is required to be normal, ∆ to be effective, and KX+∆ to be Q-
Cartier. While most of what we have said so far goes through without serious
modification upon replacing KX by KX + ∆ (the so-called log-canonical
divisor), the presence of ∆ provides an extra amount of flexibility and power
which one cannot do without. In what follows we will often do without pairs.
From a certain point on however, one cannot get around them.

4. Finite Generation of the Canonical Ring and the Existence
of Flips

As far as the minimal model program goes, the two main problems are
the existence of flips (meaning that we don’t know if the flip of a small con-
traction of a KX -negative extremal ray exists or not), and the termination
of flips (which asks if there can be an infinite sequence of flips). In this
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generality, these are only known up to dimension four, and even there the
proofs are quite hard and technical.

Every variety comes with a handful of objects naturally attached to it.
Provided KX is Q-Cartier, one of these is the canonical ring

R(X, KX) def=
∞⊕
i=0

H0
(
X, im0KX

)
,

where m0KX is a Cartier divisor class.

Remark 4.1. Note that as written R(X, KX) implicitly depends on the choice
of m0. In fact, different choices for m0 give possibly different graded rings.
However, given that we are really interested only in the problem whether
R(X, KX) is finitely generated (and in ProjR(X, KX) if so), we can for the
most part ignore the dependence on m0 (see Proposition 4.6).

The following results provide a strong connection between finite genera-
tion of the canonical ring and the existence of flips.

Proposition 4.2 (Lemma 6.2 in [4]). Let Y be a normal algebraic variety,
D a Weil divisor on Y . Then the following are equivalent.

(a) R(Y, D)
def
=

⊕∞
m=0 OY (mD) is a sheaf of finitely generated OY -

algebras;
(b) There exists a projective birational morphism g : Z → Y with Z

normal, codimZ Ex(g) ≥ 2, and g−1
∗ D Q-Cartier and g-ample over

Y .
When these equivalent conditions are satisfied, then g : Z → Y is unique.

Proof. Let us first assume (b). In this case we observe that

OY (mD) = g∗OZ(m · g−1
∗ D) .

Indeed, we have an injection g∗OZ(m · g−1
∗ D) ↪→ OY (mD) which we now

prove be an isomorphism. Let U ⊆ Y an open set, and s ∈ H0
(
U,OY (mD)

)
an arbitrary section. Then s lifts to H0

(
g−1(U)− Ex(g),OZ(m · g−1

∗ D)
)
.

Now the codimension of the exceptional set of g is at least two, hence the
lift of s extends to a section g∗s ∈ H0

(
g−1(U),OZ(m · g−1

∗ D)
)
.

As the divisor g−1
∗ D is g-ample, the section rings
∞⊕

m=0

OY (mD) =
∞⊕

m=0

g∗OZ(m · g−1
∗ D)

are finitely generated. Also, since Z = ProjY
⊕∞

m=0 OY (mD), Z is unique.
For the other direction, after possibly replacing D by a high enough multi-

ple, we can assume that OY (D) generated R(Y, D) as an OY -algebra. Setting

Z
def= ProjY R(Y, D) ,

observe that g∗OZ(m) = OY (mD), OZ(1) is very ample, and g∗OZ(m) =
OY (mB).
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We will now show that g is small. Suppose on the contrary that g : Z → Y
has an exceptional divisor E. Then the inclusion OZ ⊂ OZ(E) is proper,
and we obtain an injection

τ : OY (mB) = f∗OZ(m)  f∗(OZ(m)(E))

for all m large enough. But this is a contradiction as OY (mB) is a reflex-
ive sheaf, and τ is an isomorphism away from the codimension two subset
g(Ex(g)). �

Corollary 4.3. Let f : X → Y be the small contraction of a KX-negative
extremal ray with X being a normal Q-factorial projective variety with ter-
minal singularities only.

Then a flip f+ : X+ → Y exists if and only if
∞⊕

m=0

f∗OX(mKX)

is finitely generated as an OY -algebra. In this case a flip of f is isomorphic
to

ProjY
∞⊕

m=0

f∗OX(mKX) .

Proof. Let us first assume then a flip f+ : X+ → Y of f exists. Then
∞⊕

m=0

f∗OX(mKX) =
∞⊕

m=0

OX(mKY ) =
∞⊕

m=0

f+
∗ OX+(mKX+) .

This last OY -algebra is however finitely generated Proposition 4.2 as KX+

is f+-ample.
For the other implication assume that

⊕∞
m=0 f∗OX(mKX) is a finitely

generated OY -algebra. Then again the equivalence in Proposition 4.2 implies
that the flip of f exists and is equal to ProjY

⊕∞
m=0 f∗OX(mKX). �

Remark 4.4. Note that Corollary 4.3 implies immediately that the flip of f
is unique. In addition, we obtain that the existence of flips is a local question
on the base (Y in our case). Therefore not only can we assume without loss
of generality that Y is affine, but we can shrink Y to our heart’s content
if it seems necessary. As we will see in the talks about the actual work of
Hacon–McKernan, this is often done and typically without further notice.

Assuming now that f : X → Y is a flipping contraction with Y = Spec S
affine, the question of the existence of flips gets simplified to some extent.
By [3, Proposition 8.5]

f∗OX(mKX) ' ˜H0
(
X, mKX

)
,

and so the existence of the flip of f is quickly seen to be equivalent to the
finite generation of the canonical ring R(X, KX).
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Definition 4.5. Let R = ⊕∞i=0Ri be a graded ring, d an arbitrary natural
number. The dth truncation of R is defined as

R(d) def=
∞⊕
i=0

Rid .

Proposition 4.6. Let R be a graded ring as above. Then R is finitely gen-
erated if and only if there exists d0 ≥ 1 for which R(d0) is finitely generated.
In this case R(d) is finitely generated for all d ≥ 1.

Proof. Observe that R(d) is the ring of invariants of R under the finite group
action of µd, hence itself finitely generated once R is.

For the other implication, let r ∈ R be a homogeneous element of R.
Then r satisfies a monic equation

Xd0 − rd0 = 0 ,

with rd0 ∈ R(d0), which implies that the ring R is integral over R(d0) ⊆ R.
Now if R(d0) is finitely generated then so is R by the finiteness of integral
closure. �

Remark 4.7. The previous result is a small but very useful observation.
Whenever we deal with the issue of finite generation, it provides us with the
possibility of passing to truncations at our leisure to get into a possibly more
favourable situation. In the existing literature this happens quite often (and
most of the time without warning).

The area around the existence of flips in higher-dimensions has been dom-
inated by ideas of Shokurov in recent years. One of his crucial insights is
the following reduction step.

We consider a somewhat special situation, which eventually will turn out
to imply the general case under certain (strong) hypothesis9 From now will
not the able to avoid the use of pairs.

Let f : (X, ∆) → Z be a flipping contraction where Z is affine, ∆ =
S + B, S is a prime divisor, and bBc = 0. Assume in addition that −S
and −(KX + ∆) are f -ample, and ρ(X/Z) = 1. Instead of dealing with
the canonical ring of X directly, we will try to replace it by some kind of a
restriction to S. In what follows, let m0 be an integer so that m0(KX + ∆)
is a Cartier divisor.

Definition 4.8. With notation as above, we define the restricted algebra of
R(X, KX + ∆) as

RS(X, ∆) def=
∞⊕

m=0

im
(
res : H0

(
X, mm0(KX + S + B)

)
→ H0

(
S, mm0(KS + B|S)

))
,

9This is the part where induction on dimension plays a crucial role. The abovemen-
tioned hypothesis is namely the log minimal model program in dim X − 1.
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where ’res’ denotes the restriction of sections to S.

Remark 4.9. It follows from an extension of the adjunction formula specially
crafted for such situations (see [5, ???]) that

(KX + B + S) |S = KS + B|S .

Proposition 4.10. With notation as above, R(X, KX + ∆) is finitely gen-
erated if and only if RS is.

Proof. As S ⊆ X is a prime divisor, we can find a rational function φ ∈ C(X)
which has a zero of order one along S. Set D

def= S − div φ, then on the one
hand D ∼lin S, on the other hand D has neither a pole nor a zero alongside
S.

We have assumed that the relative Picard number ρ(X/Z) = 1, therefore
modulo pullbacks from Cartier divisors on Z there exists a rational number
r for which

D ∼f,Q r(KX + ∆) .

It follows that R(X, D) and R have a common truncation, in particular, one
is finitely generated if and only if the other one is.

Since φ ∈ H0
(
X, D

)
, it will be enough to verify that φ generates

K
def=

⊕
m≥0

ker(H0
(
X, mD

)
→ H0

(
S, mD|S

)
) .

Observe that we have

div φm + mD − S ≥ 0

whenever φm ∈ H0
(
X, mD

)
∩ K. Setting φm = φφ′m for a suitable φ′m ∈

k(X), we obtain

div φ′m + (m− 1)D = div φm − div φ + (m− 1)D
= div φm + mD − S

≥ 0 .

This means that φ′m ∈ H0
(
X, (m− 1)D

)
, and therefore we are done. �

Another crucial idea is to relate the various section rings we have seen to
function algebras associated to certain sequences of b-divisors. The impor-
tance of such a connection lies in the fact that there is a criterion for the
finite generation of such b-divisorial algebras which has a scope wide enough
to be practical.

The result goes as follows

Theorem 4.11. A saturated semi-ample adjoint b-divisorial algebra if
finitely generated.

The essential content of the paper [2] is the fact the under certain hy-
potheses the restricted algebras RS is isomorphic to a saturated semi-ample
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adjoint b-divisorial algebra, and as such, is finitely generated. It is impor-
tant to point out, that the proof of this result in [2] relies on induction on
the dimension of X, and uses the log minimal model program in dimension
dim X − 1.
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