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ON THE INVERSE PROBLEM OF REACTION KINETICS

V. HARS - J. TOTH

l. INTRODUCTION

The object most cften dealt with in the theory of
formal reaction kinetics is the complex chemical
reacetion or mechanism. It means that a vessel is given
that contains, say M kinds of different, homogeneously
distributed chemical components. Reactions take place
among these components causing the change of the
guantities of the components but retaining their spatial
homogeneity. The state of the mechanism is characterized
by the vector consisting of the quantities of the
components. Time is considered to be continuous, the

state is assumed to change continuously and determinig-
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tically.® The change of state is usually described by
a system of polynomial differential equations, called
kinetie differential equation.

We may say that relating a differential equation to
a complex chemical reaction and investigating its qua-
ntitative and gqualitative properties we solve parts of
the direFt problem of chemical reaction kinetics. On the
other side, the Zinverse problem is to determine whether
to a given set of gqualitative and/or guantitative
properties of the kinetic differential equation there
exists a complex chemical reaction having the properties
given before ([1], p. 154; (8], p. 1, 102, 152, 187,
211; [12], pp. 303-307). Here it will be called inverse
problem only to determine whether to a given system of
polynomial differential equations there exists a complex
chemical reaction (and if it does, how many) having the
given differential eguation as its kinetic differential

eguation.

Another model, that is very often dealt with, is the
continuous time, discrete state stochastic model. Some
of the relations between the properties of these models

are treated in our other paper [2] in this volume.
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This step of the inverse problem of reaction
kinetics can be formulated in purely mathematical terms,
using the terminology introduced by VOL'PERT [14]. Let
us given the transformation that maps the set of oriented
bipartite graphs with multiple edges and without loops
into the set of polynomial differential equationg. What
is the range of this transformation and what is the full
inverse of a point of its range?

(There is only a slight difference between the
definitions of Vol'pert and those used here and having
been developed by FEINBERG, HORN and JACKSON, see e.qg.
(4], [12].)

The solution of the inverse problem has a double
significance. From the practical point of view, it is
vital to know that a system obtained by model fitting
may be considered as a kinetic differential eguation or
not. From the theoretical point of view, if it is known,
that a given differential equation may be considered as
a kinetic differential equation then the surprisingly
strong theorems on the qualitative behaviour of the
kinetic differential eguations, such as the zero
deficiency theorem or Vol'pert's theorems can be applied.
This second one is the viewpoint of the theoretical

biochemist: the man who is seeking for reactions
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exhibiting exotic behaviour (multistationarity,
oscillation, etc. [2].)

In the present paper first we introduce some
definitions in order to be able to formulate precisely
our problem. Secondly, we give an (essentially trivial)
necessary and sufficient condition for the solvability
of the inverse problem and if this condition is fulfilled,
we construct the so called canonic mechanism to the
differential eguation.

Our results outlined here made it possible to
determine the structure of mechanisms having a gradient
ayetem as their kinetic differential eguation, i.e.
having a potential function to the right-hand side of

the kinetic differential equation [11].

i. NOTATIONS AND DEFINITIONS

For the sake of uniqueness wholly formal definitions

will be given below. Further motivations and clarifications,

if necessary, may be found in e.g. [4], [7] and [12].
Let M, NeN; S=:{A(1),...,A(M)}). (Alm) is the symbol
of the m-th chemical component; me{l,2,...,M}.) Let us
c

given the set® T=:{C{l},...,ﬂtﬂ}}cumn ; the elements of

L

_WU:=EHHU} is the set of nonnegative integers.
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which are called complexes, and the set RCTxT7, the
elements of which are called elementary reactions. I
(C(F),C(<£))ER, then to write C(j)=C(<¢) is preferred and
it is said that the reactant complex C(j) is transformed
into the product complex C(Z). It can be assumed that
all of the complexes take part in a reaction, i.e. for
every ne{1,2,...,N} there is an Z€{1,2,...,¥}, such that
either C(Z)}-C(n) or C(n)+C(7Z) is fulfilled.

5

The natural basis B of I~ is formed by the

functions w ) such that

Alm

mﬂ(m}{ﬁ{ijjnﬁim (myf€{1,2,...,M})
{here L is the Kronecker-symbol), accordingly
= & E # - &
E-{MA{m]rmﬁ{m}Em £ mﬁ{mliﬁti}} '51:??]', m’tE{]’E,iil'H}}+
By these functions all C(»n)&T can be expressed:
v m
Clnl=: L ¥y (n)w .
368 Alm)
Instead of this last expression one always writes in
chemistry and sometimes in linear algebra ([5], p. 85):
¥ m
Cln)= L ¥ (n)A(m),
m=1
and also we shall identify the elements of the natural

basis of E?S with the elements of S.
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Let the complex vectors y(n) be defined as

follows:

M

riﬂl:={y1{ﬂl-..yH{n}}TEﬂEU

(nELY,2....:50)),

i.e. vectors having the coefficients of the complexes
in the natural basis as their coordinates. (These are
called stoichiometric coeffieients in chemistry.)

Further let

r=( p(1)... y(N)})

be the complex matrix. (This can be assumed not to have
a row of zeros, i.e. each chemical component takes part
in at least one complex. Although it may have a column
of zeros, this corresponds to the zere complex, denoted
by (0.) By the complex vectors the elementary reaction
C(7)+C(Z) will be denoted sometimes by »(jl= ¥iZ) as
well.

Let F:=E?M be the component space, and H:=E?N

be
the complex @épace, and R the function providing the

rates, the kineties®:

E———

®* is the set of positive real numbers, ®m" is the

set of nonnegative real numbers.
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+]H=:'|,.-'+'-}.t'+* R( « ]Em.ﬁ":ﬂ:i‘i’

(IR

For each x¢ev’ the elements Pij{ x Yz={ pf x}}ij of the

rate matrizx R{ x») fulfil

(1) ry 0 2020 (4.5€01,2,000,0))

(ii) rﬁi{ x =0 (EEL s wul )

The reaction C(j)+-C(Z) is said to have a rate rij{ x) if

the vector of the concentrations of the components is x.

DEFINITION 2.1. A complex chemical reaction Or
mechanism is an object M=<M,¥,S$,7T,R, R > of elements with

the properties described above.

DEFINITION 2.2. The complex chemical reaction M is
of the maoss action type if there exists a matrix H'Emﬂxﬂ
with nonnegative components and zero main diagonal which
gives the rates as follows:

ylg)

Pij( xJ:kij % ’

where kfj:=I Kjij and the second factor of the right-hand

side is defined as usual ([7], p. 90):

x Y03,

mM

n = ==

iy -
¥ {J}_
1 m
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DEFINITION 2.3. The (continuous time, continuous
state) determiniatic model or kinetie differential
equation of the mechanism is the following explicit first

order differential equation:

i(e)= vl R( x(£))- RO ()11,

M

(0,cR¥;R, cm";tep S (O T L) e

X 3 N
It is easy to show that the kinetic differential equa-

tion of a mechanism of the mass action type is of the

following form:

$(t)= yIKk-ag KT 1,1 x(6) =
(2.1) N N
=T T kip,q)l #(p)- slg)) x(z) 24
P:I g=]
(teD, ),
where
& 0 0
RY3 2wdag s :=| 072 emV*N
0
B it Dz
if 15{51,32, ,HN] ; and
Y ;
(el x(e) POV L sy ZORNT

In this paper only mechanisms of the mass aection type

will be dealt with. These are determined by M, ¥, 8, T, R
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and K , therefore they will be denoted - with a bit of

inexactness - by <M.¥,5,T,.R, K >.

3. SOLUTION OF THE INVERSE PROBLEM

Here we state a property of the kinetic differential
equation (2.1) that will prove to be characteristic. In
other words, a necessary condition of the solvability
of the inverse problem will be given, then it will be
proved that this condition is sufficient as well.

Difficult it may be to formulate, the condition is
self-evident.

DEFINITION 3.1. Let Mel¥ . The function P:ﬂ?H*ﬂ?H
is a polynomial of M variables, if for each
m,m'€{l1,2,...,M} and for each L e

2% 2 F o1 e 2

...,mHEﬂ? the function

prm,cP{.rI,arz,...,xm_t,.,xmﬂ....,xﬁl:m*ﬂ?

is a polynomial. (Here o is the sign of composition of
functions; prm,LmH+ﬂEis the projection on the m'th

coordinate. ) Thais means that there exist parameters

(3.1) YN G, WIERT  (me{1,2,...,M), T€{1,2,...,1,))
zgem‘g, WIERT  (ME{1,2,... M}, TE{1,2,...,d)))
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such that for each me{1,2,...,M)}) the vectors yT,..., y?
m

and :T,..., :E are pairwise different and that for each
m
rEEM and me{1,2,...,M}
o I
P’rm {P{x}:’=1¢i1 - 11-‘1:""
i=] =1

(It is understood that if e.gq. I =0 then there do not

exist F? and ¢? and the first sum is zero.)
THEOREM 3.1. The kinetic differential equation of
the mechantam M=<M,N,8,T,R, K> 18 of the form
x =Po X p

where P:E?H*E?M 18 a polynomital of M variables, for the

parameters of which
fir
pr, ( :i}bﬂ

holde, whenever Jm}ﬂ, for each iE{I,E,...,Jm}.

PROOF. Starting from the form

x ()= zl Elk{p.q]‘{ wip)- »a)) x(t) V9 (tep, )
F]E q:l

of the kinetic differential eguation we can see that
the m—-th coordinate of the right hand side of the equa-

tion is
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N N N
T k(p,@)y™(p) x(2) TN 5 Mgy x(e) M)y
p=1 q=I ol
N
x L kip.q).
p=1
Here the coefficient of x(t) riq) in the second term

N
differs from zero if and only if T k(p,q)>0 and y"(q)>0

holds at the same time. S

Now we show that all the differential equations
having the peculiar property of kinetic differential
equations expressed in Theorem 3.1 - that may be called
the lack of negative eross-effeets - may be considered
as kinetic differential equations.

THEOREM 3.2, Let MEN , PR M be o polynomial
of M variables and let us suppose that P fulfils the
necessgary condition imposed upon the right-hand side of

a kinetie differential equation in Theorem 3.1. Then

there exigsts a mechanism M=<M,N,S5,T,R, K > having
(3.2) x =Po x

g8 1ts determinigtic model.
The PROOF is constructive: a mechanism will be

provided having (3.2) as its deterministic model. This
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construction leads to a unique mechanism, called the
eagnonic mechaniam attached to the differential equation
(3.2). Obviously, there are many other mechanisms having
the same kinetic differential egquation.

Let the elements of the set of the complex vectors be

defined (some of them twice or more) as follows:

m ] 2
Pi, y£+fm, mE{1,2,..:5M), 1E{I,....Im};
il m .
:£, zi-em, meE{1,2,...,M}, 1E{i,...,Jm}.
where emEﬂ?H is the m—-th vector of the natural basis
of ﬂ?”.

According to the assumption of lack of negative
cross-effects all of the coordinates of the vector

=$- e ~are nonnegative. Let the reactions be

(3.3) S QT L Mo 272
T = m E- T i

with reaction rate constants w? and ug, respectively

(for all of the values of the indices). It can be easily
verified that the kinetic differential equation of this
mechanism is (3.2), where the parameters of the polynomial

P are those given under (3.1).
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EXAMPLE 3.1. Let us given the differential equation

. 4
mm-ﬂﬁx2u+2Tz

§= Samzu-EEysuz

2= 4Bygu2-ﬁT3ﬁ

. 2 2
v=ar u-isysu +T3ﬁ'

{3.4)

The cancnic mechanism attached to (3.4) is:

2X+T1 43
V\I 2/\
Ia by
X+ 2x«2y X+42 5Z+V
2X+Y+T 3z
1Y+
V\EE
g
2¥+2V 3Y+V
I¥+342V

On the other hand, the kinetic differential equation of

the mechanism

V+2X x

(3.5 ;\\ B
42

3¥+2V

is also (3.4).
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This example shows that the canonic mechanism is
not the simplest, neither it is minimal in any sense.

Its only advantage is that it can be constructed very
guickly and algorithmically.

Some of the guestions arising here - and outnum—
bering those answered here - are as follows:

l. For the sake of easy handling we may look for a
mechanism with the minimal number of complexes,
elementary reactions, linkage classes etc. What kind of
reasonable assumptions makes this mechanism unigque?

Z. We may look for a mechanism in a class of
mechanisms with a given - chemically relevant - property.
Such a property may be conservativity, (weak) reversibi-
lity, zero deficiency or just structural stability as
well. When will a mechanism having the prescribed
differential eguation as its deterministic model be found
within the given class of mechanisms, will it be unigque,
or, 1f not, how much not?

3. A similar, but more complicated problem will be
obtained, if only an "essential" part of the differential
equation is considered. A problem of this kind has been
solved in [13] for a special case of first order

reactions - for compartment systems.
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