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Abstract. In this paper the notion of the Krein spectral shift function is

extended to the radial Schrödinger operator with fixed energy. Then we analyze

the connections between the tail of the potential and the decay rate of the fixed-
energy phase shifts. Finally we extend former results on the uniqueness of the

fixed-energy inverse scattering problem to a general class of potentials.

1. Introduction. The notion of the spectral shift function, introduced by M. G.
Krein has become an important tool in the inverse spectral theory of Schrödinger
and other operators. The interested reader can consult the review paper of Birman
and Yafaev [6] and many other publications, e.g. Simon [28], Gesztesy and Simon
[12], [13], Gesztesy and Holden [10], Gesztesy and Makarov [11] and so on. In
the present paper we consider analogous notions for the three-dimensional inverse
potential scattering with fixed energy in case of spherically symmetrical potentials.
This is described by the radial Schrödinger operator

(τf)(r) = −(r2f ′(r))′ − 1
4
f(r) + r2(q(r)− 1)f(r). (1)

The potential q(r) is supposed to be real-valued and∫ 1

0

r|q(r)| dr <∞,

∫ ∞

1

|q(r)| dr <∞ (2)

unless other condition is explicitly stated.
Consider the (unique) solution ϕ(r) = ϕ(r, ν) of τϕ = −ν2ϕ, <ν > 0 satisfying

ϕ(r) = rν−1/2(1 + o(1)), r → 0 + . (3)

Then we have

ϕ(r) =
c(ν)
r

sin(r − (ν − 1/2)π/2 + δ(ν)) + o(1/r), r →∞. (4)

The quantity δ(ν) is the phase shift corresponding to the spectral parameter ν. It
is defined by (4) only modulo π but it can be defined as an analytic function of
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ν, <ν > 0 and then δ(ν) becomes unique if we suppose that it tends to zero for
positive parameters ν →∞.

Remark 1. Often the equation

hy = −ν
2

r2
y, hy = −y” + (q(r)− 1)y − 1

4r2
y

is called radial Schrödinger equation, see e.g. [7], (1.1.6) or [20], Ch. 20.4. It is
easy to check that h = 1

r τ
1
r . The operator τ used e.g. in [18] has the technical

advantage that it defines selfadjoint operators in the unweighted L2 space. The
solutions of τf = −ν2f are of order rν−1/2 or r−ν−1/2 near zero, so the subspace
of L2-solutions near r = 0 is one-dimensional if <ν > 0 and =ν 6= 0. On the other
hand all solutions are asymptotically cos(r + α)/r for large r with some constants
α thus all solutions belong to L2 at infinity. So, by the classical Weyl terminology
τ is in the limit point case at zero and in the limit circle case at infinity, the defect
indices are (1,1) and the selfadjoint extensions are given by introducing a boundary
condition at infinity. That is, if θ ∈ [0, π) is a fixed parameter, τ is selfadjoint with
the domain

Dθ ={f ∈ L2(0,∞) : f, f ′ ∈ ACloc(0,∞), τf ∈ L2(0,∞), (5)

lim
r→∞

WR(f,
cos(r + θ)

r
) = 0}

where WR(f, g) = r2(fg′− f ′g) is the weighted (or radial) Wronskian, see e.g. [18].
If ϕ ∈ Dθ then λ = −ν2 is an eigenvalue of τ . It is known that the eigenvalues

λn(θ) are negative and tend to −∞ by the rate

λn(θ) = −(2n− 1/2− 2θ/π + o(1))2. (6)

The phase shifts are related to the scattering amplitude by the well-known formula

A(t) =
∞∑

n=0

(2n+ 1)AnPn(t), An =
1
2i

(e2iδ(n+1/2) − 1) (7)

where Pn(t) are the Legendre polynomials. Thus the physical phase shifts δn =
δ(n+1/2) are of primary interest in the applications. However Regge [26] proposed
the investigation of δ(ν) with complex ν as early as in 1959. The Gelfand-Levitan
inverse spectral theory has been extended to this complex setting e.g. in Loeffel
[18] and Burdet, Giffon and Predazzi [9]. The idea of taking complex phase shifts
proved to be fruitful in investigating inverse scattering problems, see e.g. [18]. In the
present paper two uniqueness results are based on the Regge uniqueness theorem,
using δ(ν), <ν > 0; details are given later.

Concerning the notion of the spectral shift function belonging to the operators τ
the following statements will be proved. In analogy with Gesztesy and Simon [12]
we prove

Theorem 1.1. Let 0 ≤ θ1 < θ2 < π and suppose (2). If the domain (5) of the
operator τj is defined by the parameter θj, j = 1, 2, then there exists a measurable
function 0 ≤ ξθ1,θ2(t) ≤ 1 such that

Tr[(τ2 + ν2)−1 − (τ1 + ν2)−1] = 1
4ν

d
dν ln cos2(δ(ν)−π/2(ν−1/2)−θ2)

cos2(δ(ν)−π/2(ν−1/2)−θ1)

= −
∞∫
−∞

ξθ1,θ2 (t)

(t+ν2)2 dt, <ν > 0, =ν < 0.
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The range of (τ2 + ν2)−1 − (τ1 + ν2)−1 consists of the constant multiples of ϕ(., ν).
Under the additional condition∫ 1

0

r1−ε0 |q(r)| dr <∞ for some ε0 > 0 (8)

the spectral shift function ξθ1,θ2(t) uniquely determines θ1, θ2 and the potential q(r)
a.e. in [0,∞).

Now let θ be fixed, τ be the operator with domain (5) and for a constant r0 > 0
let τr0 be the selfadjoint operator with domain

Dr0 = {f ∈ L2(0,∞) :f, f ′ ∈ ACloc(0, r0) ∩ACloc(r0,∞), f(r0 ± 0) = 0, (9)

τf ∈ L2(0,∞), lim
r→∞

WR(f,
cos(r + θ)

r
) = 0}.

Let ψ be the solution of τf = −ν2f with ψ(r) = cos(r + θ)/r + o(1/r), r → ∞.
Consider the function

F (z) =
ϕ′(r0, ν)
ϕ(r0, ν)

− ψ′(r0, ν)
ψ(r0, ν)

, =z > 0, z = −ν2, <ν > 0, =ν < 0.

Theorem 1.2. Suppose (2). For =ν > 0 the range of (τ − z)−1 − (τr0 − z)−1

consists of functions parallel with ϕ on (0, r0), with ψ on (r0,∞) and continuous at
r0. The function F (z) is Herglotz (i.e. =z > 0 implies =F (z) > 0) and there exists
a measurable function 0 ≤ ξr0(t) ≤ 1 called Krein spectral shift function such that

Tr[(τ − z)−1 − (τr0 − z)−1] = − d

dz
lnF (z) = −

∞∫
−∞

ξr0(t)
(t− z)2

dt.

In case of Schrödinger operators there are explicit formulae (called trace for-
mulae) expressing special values of the potential by the Krein function, see e.g.
Gesztesy and Simon [13], Gesztesy and Holden [10] and Rybkin [27]. The counter-
part of these formulae in the situation of Theorem 1.2 is

Theorem 1.3. Suppose (2). If q is right and left Lebesgue continuous at r0 then

q(r0 − 0) + q(r0 + 0)
2

= 1 + r−2
0 lim

z→i∞

∫ ∞

−∞

z2

(t− z)2
(χ(0,∞)(t)− 2ξr0(t)) dt. (10)

In case of Theorem 1.1 we can state the vague claim that the characteristics of
the behavior of the potential at infinity can be expressed from the Krein function.
Since the phase shifts can be expressed by the Krein function, we formulate the
results directly for the phase shifts δ(ν). Below we obtain an explicit asymptotics
for the phase shifts with an estimation of the remainder.

Theorem 1.4. Suppose that ν > 1/3 is sufficiently large:

2π
∫ ∞

0

r|q(r)| dr ≤ ν1/2. (11)

Then ∣∣eiδ(ν) sin δ(ν) +
π

2

∫ ∞

0

rq(r)J2
ν (r) dr

∣∣ (12)

≤ c0√
ν

∫ ∞

0

r|q(r)|J2
ν (r) dr, c0 = π2

∫ ∞

0

r|q(r)| dr.
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For large ν the Bessel function Jν is extremely small in fixed finite intervals,
so (12) implies that the asymptotical properties of δ(ν) are mostly influenced by
the tail of the potential. Some special cases are listed below, where the tail of q
has polynomial, exponential or superexponential decay and where q has compact
support. In all cases the asymptotics of the potential can be reconstructed from the
asymptotics of phase shifts of large indices; in the last case the support [0, a] and
q(a− 0) can be recovered.

Corollary 1. Under the condition (2)
• If q(r) = cr−s(1 + o(1)) as r →∞ with some constants c 6= 0 and s > 2 then

for ν →∞

δ(ν) = −cπΓ(s− 1)
2sΓ(s/2)2

ν1−s(1 + o(1)). (13)

• If q(r) = c
r e
−ar(1 + o(1)) with c 6= 0 and a > 0 then

δ(ν) = −c
√

π

8 sinh η
ν−1/2e−ην(1 + o(1)), cosh η = a2/2 + 1. (14)

• If q(r) = ce−a2r2
(1 + o(1)) with c 6= 0 and a > 0 then

δ(ν) = −c π

4a2
e−

1
2a2

1√
2πν

( e

4a2ν

)ν

(1 + o(1)) (15)

• If q = 0 for r > a and q is left Lebesgue continuous in a in the sense that

lim
h→0+

1
h

∫ a

a−h

q = q(a− 0) (16)

then

δ(ν) = −
(ae

2ν

)2ν+2
(
q(a− 0)

2e2
+ o(1)

)
. (17)

Our last topic is the uniqueness of the inverse scattering problem with fixed en-
ergy and spherically symmetrical potentials. That is, the scattering amplitude is
known at a fixed energy and we have to identify uniquely the potential. In New-
ton [20], Ch. 20.4 constructions are given to suggest that there exist potentials
oscillating and decaying at infinity at the rate r−3/2 producing no scattering what-
soever, that is, for which all physical phase shifts δn = δ(n + 1/2) vanish. Thus
uniqueness can fail for slowly decaying potentials. Regge [26] proved uniqueness if
all the (nonphysical) phase shifts δ(ν) are known and formulated some hints how
to prove uniqueness from the scattering amplitude. Loeffel [18] made rigorous some
considerations of Regge and proved uniqueness from the scattering amplitude for
the potentials of compact support. This result has been considerably strengthened
by Ramm [24] who proved that knowledge of a very sparse subsequence of the phase
shifts δn is enough to ensure uniqueness: the sum of reciprocals of the indices of
known phase shifts must be infinite. In [16] it is shown that this condition is also
necessary. Martin and Targonski [19] showed uniqueness for Yukawa-like potentials
(special analytic potentials of exponential decay). If we remove the condition of
spherical symmetry of the potential, uniqueness from the fixed-energy scattering
amplitude is proved in Henkin and Novikov [15] if the potential is exponentially de-
caying and has sufficiently small norm. This smallness condition has been removed
later in Novikov [21]. For potentials of compact support uniqueness has been ob-
tained independently by Novikov [22] and Ramm [23]. Weder [30] proved that if two
potentials q1 and q2 have a decay of order |x|−3−ε and q2− q1 has compact support
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and the fixed-energy scattering amplitudes are the same then q1 = q2. Ramm and
Stefanov [25] proved uniqueness for potentials decaying faster than any exponential.
Weder and Yafaev [31] proved that uniqueness holds for C∞-potentials which are
(for large |x|) finite linear combinations of homogeneous functions of order −ρj ,
ρj > 3. Finally remark that concerning 2D inverse scattering problems Grinevich
[14] constructed transparent potentials (with no scattering at a given energy) of
decay O(|x|−2).

Below we prove uniqueness for 3D spherically symmetrical potentials where in-
stead of exponential decay we only suppose that rq(r) is integrable at infinity:

Theorem 1.5. Suppose (8) and∫ ∞

1

r|q(r)| dr <∞. (18)

Then the scattering amplitude (7) uniquely determines q(r) a.e.

2. Proof of the results about the Krein function. In what follows we borrow
some ideas and notations from Loeffel [18]. Let ψ±(r, ν) be the solutions of τψ =
−ν2ψ such that

ψ±(r, ν) =
e±ir

r
(1 + o(1)), r →∞.

By the quantities in (4) define the functions

α(ν) =
c(ν)
2i

ei(δ(ν)−π/2(ν−1/2)), β(ν) = −c(ν)
2i

e−i(δ(ν)−π/2(ν−1/2)),

Then

ϕ = αψ+ + βψ−. (19)

Let further

u = αe−iθ + βeiθ = c(ν) sin(δ(ν)− π/2(ν − 1/2)− θ), (20)

v = i[αe−iθ − βeiθ] = c(ν) cos(δ(ν)− π/2(ν − 1/2)− θ).

We see that v = 0 if and only if ϕ = cψ for the function ψ in Theorem 1.2, that is,
if λ = −ν2 is an eigenvalue of the operator τ with domain (5).

The Green function of τ , i.e. the kernel of (τ − λ)−1, is

Gλ(r, r′) =
ϕ(r<)ψ(r>)

v
, λ = −ν2, <ν > 0, =ν 6= 0 (21)

see [18].

Lemma 2.1. a. If <ν1,<ν2 > 0 then

(ν2
2 − ν2

1)
∫ ∞

0

ϕ(r, ν1)ϕ(r, ν2)
c(ν1)c(ν2)

dr = sin(
π

2
(ν2 − ν1) + δ(ν1)− δ(ν2)). (22)

b.

δ′(ν) =
π

2
− 2ν

∫ ∞

0

ϕ2

c(ν)2
, <ν > 0. (23)

c. ∫ ∞

0

|ϕ|2

|c(ν)|2
=

sinh 2=(π
2 ν − δ(ν))

4<ν=ν
, <ν > 0. (24)

Remark that (23) is given in Regge [26].
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Proof. Denote ϕi = ϕ(r, νi), then

[ϕ1 · r2ϕ′2 − ϕ2 · r2ϕ′1]′ = ϕ1(r2ϕ′2)
′ − ϕ2(r2ϕ′1)

′ = (ν2
2 − ν2

1)ϕ1ϕ2

hence

(ν2
2 − ν2

1)
∫ ∞

0

ϕ1ϕ2 = [r2(ϕ1ϕ
′
2 − ϕ2ϕ

′
1)]

∞
0 .

The asymptotics (3) and (4) can be differentiated in r (see [18]), so the limit at zero
vanishes (rν1−1/2rν2−3/2r2 → 0) and the main term of the asymptotics at infinity
gives, apart from the factor c(ν1)c(ν2),

sin(r − π

2
(ν1 − 1/2) + δ(ν1)) cos(r − π

2
(ν2 − 1/2) + δ(ν2))

− cos(r − π

2
(ν1 − 1/2) + δ(ν1)) sin(r − π

2
(ν2 − 1/2) + δ(ν2))

= sin(
π

2
(ν2 − ν1) + δ(ν1)− δ(ν2)).

This shows (22). Dividing it by ν2 − ν1, with ν1 = ν, ν2 → ν we get (23). Since
q is real and rν−1/2 = rν−1/2, the formulae ϕ(r, ν) = ϕ(r, ν), c(ν) = c(ν) and
δ(ν) = δ(ν) follow; putting ν1 = ν, ν2 = ν in (22) we finally get (24).

As in [18], introduce the function

m(λ) =
u(ν)
v(ν)

= tan(δ(ν)− π/2(ν − 1/2)− θ), λ = −ν2, <ν > 0, =ν 6= 0. (25)

Lemma 2.2. The functions δ(ν) − πν/2 and m(λ) are Herglotz in the variable
λ = −ν2, <ν > 0, =ν < 0.

Proof. From (24) we get that =ν < 0 implies =(δ(ν) − π/2ν) > 0 which is the
Herglotz property of the first function. The identity

= tan z =
(1 + tan2 x) tanh y
1 + tan2 x tanh2 y

, z = x+ iy

shows that =z > 0 if and only if = tan z > 0. Thus by (25)m(λ) is also Herglotz.

Lemma 2.3. If mj and Gj denote the m-function and the Green function corre-
sponding to the parameter θj then

G2 −G1 =
m2 −m1

c(ν)2
ϕ(r)ϕ(r′). (26)

Proof. From

m =
u

v
=

α+ βe2iθ

i(α− βe2iθ)
we find

e2iθ =
α(im− 1)
β(im+ 1)

.

Thus,
ψ

v
=

1
2i
ψ+e

2iθ + ψ−
α− βe2iθ

=
1
4i

[
ψ+

β
(im− 1) +

ψ−
α

(im+ 1)
]

and then

G(r, r′) =
1
4i
ϕ(r<)

[
ψ+(r>)
β

(im− 1) +
ψ−(r>)
α

(im+ 1)
]
. (27)
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Now a subtraction gives

G2 −G1 =
ϕ(r<)

4
(m2 −m1)

[
ψ+(r>)
β

+
ψ−(r>)
α

]
=
m2 −m1

4
ϕ(r<)

ϕ(r>)
αβ

= (m2 −m1)
ϕ(r)ϕ(r′)
c(ν)2

as asserted.

Proof of Theorem 1.1 By (26) the operator (τ2 + ν2)−1 − (τ1 + ν2)−1 is of rank
one,

(τ2 + ν2)−1f − (τ1 + ν2)−1f =
∫ ∞

0

(G2 −G1)(r, r′)f(r′) dr′

=
m2 −m1

c(ν)2
ϕ

∫ ∞

0

fϕ

and its trace is

Tr[(τ2 + ν2)−1 − (τ1 + ν2)−1] =
m2 −m1

c(ν)2

∫ ∞

0

ϕ2. (28)

Thus there exists a spectral shift function ξθ1,θ2(t) such that

Tr[(τ2 + ν2)−1 − (τ1 + ν2)−1] = −
∞∫

−∞

ξθ1,θ2(t)
(t+ ν2)2

dt, <ν > 0, =ν < 0.

Since

4m1ν

∫ ∞

0

ϕ2

c(ν)2
= 2 tan(δ(ν)− π/2(ν − 1/2)− θ1)(π/2− δ′(ν))

=
d

dν
ln[cos2(δ(ν)− (ν − 1/2)π/2− θ1)]

= −4ν
d

dz
ln[cos(δ(ν)− (ν − 1/2)π/2− θ1)], z = −ν2

we get that

Tr[(τ2 + ν2)−1 − (τ1 + ν2)−1] = − d

dz
lnH(z),

where

H(z) =
cos(δ(ν)− (ν − 1/2)π/2− θ2)
cos(δ(ν)− (ν − 1/2)π/2− θ1)

, z = −ν2. (29)

The function H(z) is Herglotz since m1 is Herglotz and

H(z) = cos(θ2 − θ1) +m1 sin(θ2 − θ1), 0 < θ2 − θ1 < π. (30)

Consequently by the Aronszajn-Donoghue theorem [4] there is a measurable func-
tion 0 ≤ ξ(t) ≤ 1 with

H(z) = exp
(
c+

∫ ∞

−∞

[
1

t− z
− t

1 + t2

]
ξ(t) dt

)
and

ξ(t) = π−1=[lnH(t+ i0)], t ∈ R. (31)
Now

− d

dz
lnH(z) = −

∫ ∞

−∞

ξ(t)
(t− z)2

dt, z = −ν2
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shows that ξ = ξθ1,θ2 .
Finally consider the uniqueness claim in Theorem 1.1. We need

Lemma 2.4. The eigenvalues of the operators τ1 and τ2 separate each other. More-
over, if t < 0 increases, the function ξθ1,θ2(t) jumps from 0 to 1 at the eigenvalues
of τ1, from 1 to 0 at the eigenvalues of τ2 and stays constant in between.

Proof. For t < 0 H(t) is real (since ν > 0), so by (31) ξθ1,θ2(t) = 0 if H(t) > 0
and ξθ1,θ2(t) = 1 if H(t) < 0. From (23) we see that δ(ν) − (ν − 1/2)π/2 is
a strictly decreasing function of ν > 0. The eigenvalues are λk,j = −ν2

k,j , where
δ(νk,j)−(νk,j−1/2)π/2−θj = −(k−1/2)π and νk,j > 0, hence νk,2 < νk,1 < νk+1,2,
i.e. λk,2 > λk,1 > λk+1,2 so the eigenvalues separate each other. If ν passes through
νk,1 increasingly then the denominator in (29) goes from negative to positive for k
even and from positive to negative for k odd. The same is true for the numerator
if ν passes through νk,2. This means that H(t) < 0 in (λk,1, λk,2) and H(t) > 0 in
(λk+1,2, λk,1). This proves the lemma.

By this lemma the spectral shift function ξθ1,θ2 gives the eigenvalues of τ1 and
τ2. From the formula

λk,j = −(2k − 1/2 + (δ(νk,j)− θj)2/π)2, δ(νk,j) → 0

we get the values 0 ≤ θ1 < θ2 < π. By the trace formula ξθ1,θ2 gives d
dz lnH(z).

For t→ +∞, H(−t+ i0) almost equals to

cos((
√
t− 1/2)π/2 + θ2)

cos((
√
t− 1/2)π/2 + θ1)

.

Thus from d
dz lnH(z) we get H(z) and then by (30) we obtain m1(z) and finally

e2iδ(ν). By the uniqueness theorem of Regge [26] (see also [18]) the knowledge of
e2iδ(ν), <ν > 0 implies the knowledge of q a.e. under the conditions (2) and (8).
This completes the proof of Theorem 1.1.

Proof of Theorem 1.2 It is based on the observation that the radial Schrödinger
operator τ is unitarily equivalent to the 1D Schrödinger operator Ly = −y”+Q(x)y
on the real line with the potential

Q(x) = r2(q(r)− 1), x = ln(r0/r) (32)

where 0 < r0 <∞ is fixed. Indeed, let

U : L2(0,∞) → L2(R), U(ϕ(r)) =
√
rϕ(r)|r=r0e−x (33)

with the inverse

U∗ : L2(R) → L2(0,∞), U∗(y(x)) = y(ln(r0/r))r−1/2. (34)

U is unitary since∫ ∞

−∞
|y(x)|2dx =

∫ ∞

0

|y(ln(r0/r))|2
dr

r
=
∫ ∞

0

|ϕ(r)|2dr.

Straightforward differentiations of y(ln(r0/r)) = r1/2ϕ(r) with respect to r give

U∗LUϕ = U∗Ly = U∗(−y” +Qy) =
1√
r
(−y”(ln(r0/r) +Q(ln(r0/r)))) = τϕ.

The radial and ordinary Wronskians are connected by

WR(ϕ(r), ϕ∗(r)) = −W (y(x), y∗(x)), y = Uϕ, y∗ = Uϕ∗.
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Indeed,

y(ln(r0/r))y∗
′(ln(r0/r))− y′(ln(r0/r))y∗(ln(r0/r))

=r1/2ϕ · (−r1/2ϕ∗/2− r3/2ϕ∗′)

+(−r1/2ϕ/2− r3/2ϕ′) · r1/2ϕ∗ = r2(ϕ′ϕ∗ − ϕϕ∗′).

Thus the boundary condition

lim
r→∞

WR(ϕ,
cos(r + θ)

r
) = 0

in (5) is transformed into the form

lim
x→−∞

W (f, ex/2 cos(r0e−x + θ)) = 0.

Applying this condition L becomes selfadjoint and unitarily equivalent to τ . Anal-
ogously if we define the operator L0 by inserting Dirichlet condition at x = 0, then
U∗L0U = τr0 . Thus

Tr[(τ − z)−1 − (τr0 − z)−1] = Tr[(L− z)−1 − (L0 − z)−1]

hence the Krein functions are the same. The function y = Uψ satisfies the trans-
formed boundary condition at x→ −∞ and

y′(0)
y(0)

= −1
2
− r0

ψ′(r0)
ψ(r0)

,

so
ψ′(r0)
ψ(r0)

=
1
r0

(m− + 1/2)

where m− is the m-function of the left hand side of L. Analogously Uϕ is the Weyl
solution at x→ +∞ and

ϕ′(r0)
ϕ(r0)

=
1
r0

(m+ + 1/2).

Thus

F (z) =
ϕ′(r0, ν)
ϕ(r0, ν)

− ψ′(r0, ν)
ψ(r0, ν)

=
1
r0

(m+ −m−).

Since m+ and −m− are Herglotz, F (z) is Herglotz, too, and Tr[(L− z)−1 − (L0 −
z)−1] = − d

dz lnF (z), see Gesztesy and Simon [12]. It is also known that (L−z)−1−
(L0 − z)−1 is of rank one. The description of the range of (τ − z)−1 − (τr0 − z)−1

can be given as follows. If f = (τ − z)h = (τ0 − z)h0 then h − h0 is in the (two-
dimensional) kernel of the differential expression τ − z on (0, r0) and on (r0,∞).
Since h− h0 is regular at 0 and satisfies the boundary condition of parameter θ at
infinity, it must be parallel to ϕ on (0, r0), to ψ on (r0,∞) and continuous at r0.
Thus all statements of Theorem 1.2 is verified.

Proof of Theorem 1.3 Taking into account the previous proof, this is a simple
transformation of Theorem 6.1 in Rybkin [27].
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3. Proof of Theorem 1.4 and its Corollary. We start from the known integral
equation

rϕ(r, ν) = e−iδ(ν)u(r, ν)c(ν) +
∫ ∞

0

u(r<, ν)w(r>, ν)q(r′)r′ϕ(r′, ν) dr′. (35)

Here u(r, ν) =
√
πr/2Jν(r) and w(r, ν) = −i

√
πr/2H(1)

ν (r). At r → +∞ we have
u = sin(r − (ν − 1/2)π/2) + o(1), w = −ei(r−(ν−1/2)π/2) + o(1) and u

∫∞
r
r′wqϕ =

o(1). Hence we get from (35) that

rϕ(r) = e−iδ sin(r − (ν − 1/2)π/2)c(ν)− ei(r−(ν−1/2)π/2)

∫ ∞

0

r′uqϕ+ o(1).

Comparing this with (4) gives that

sin(δ(ν)) = −
∫ ∞

0

ru(r)q(r)ϕ(r) dr/c(ν). (36)

We borrow some estimation tricks from Alfaro, Regge [3]. The bound

|Jν(r)H(1)
ν (R)| ≤ (ν2 − 1/16)−1/4 ≤ 2ν−1/2, 0 < r ≤ R, ν > 1/3 (37)

is given in [3], Appendix D. Applying it in (35) yields∣∣rϕ(r)− e−iδ(ν)u(r)c(ν)
∣∣ ≤ π

√
r

ν

∫ ∞

0

r′
3/2|q(r′)ϕ(r′)| dr′ (38)

Multiply it by r1/2|q(r)| and integrate in r to obtain∫ ∞

0

r3/2|q(r)ϕ(r)| dr ≤ |c(ν)|
∫ ∞

0

r1/2|u(r)q(r)| dr

+πν−1/2

∫ ∞

0

r|q(r)| dr
∫ ∞

0

r3/2|q(r)ϕ(r)| dr.

Now it follows from (11) that∫ ∞

0

r3/2|q(r)ϕ(r)| dr ≤ 2|c(ν)|
∫ ∞

0

r1/2|u(r)q(r)| dr.

Substitute it back to (38) to obtain∣∣rϕ(r)− e−iδ(ν)u(r)c(ν)
∣∣ ≤ 2π

√
r

ν
|c(ν)|

∫ ∞

0

r1/2|q(r)u(r)| dr (39)

for large ν. Now from (36) we get∣∣ sin δ(ν)eiδ(ν) +
∫ ∞

0

qu2
∣∣ = ∣∣ ∫ ∞

0

qu(rϕ/c(ν)eiδ(ν) − u)
∣∣

≤ 2πν−1/2

(∫ ∞

0

r1/2|q(r)u(r)| dr
)2

≤ 2πν−1/2

∫ ∞

0

r|q(r)| dr
∫ ∞

0

|q(r)u(r)2| dr

which proves Theorem 1.4.
Proof of Corollary 1 Remark first that (12) implies that∣∣δ(ν) +

π

2

∫ ∞

0

rq(r)J2
ν (r) dr

∣∣
≤ c√

ν

∫ ∞

0

r|q(r)|J2
ν (r) dr + c

(∫ ∞

0

r|q(r)|J2
ν (r) dr

)2

.
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From the estimate (42) below and from (8), (18) we get that∫ ν1/3

0

r|q(r)|J2
ν (r) dr ≤ c

( e

2ν2/3

)2ν

.

In the first case consider the identity [5], 7.7.4(30)∫ ∞

0

J2
ν (r)r1−sdr =

Γ(s− 1)Γ(ν + 1− s/2)
2s−1Γ(s/2)2Γ(ν + s/2)

=
Γ(s− 1)

2s−1Γ(s/2)2
ν1−s(1 + o(1)), ν → +∞, 2ν + 1 > s− 1 > 0.

Taking into account the estimate∫ ν1/3

0

r1−sJ2
ν (r) dr ≤ c

( e

2ν

)2ν
∫ ν1/3

0

r2ν+1−sdr ≤ c
( e

2ν2/3

)2ν

ν−(1+s)/3

the above considerations prove (13). Now consider the formula [29], 13.22(2) or [1],
10.22.66 ∫ ∞

0

e−arJ2
ν (r) dr =

1
π
Qν−1/2(1 + a2/2),

where Qν = Q0
ν is the associated Legendre function of the second kind. From [1],

14.3.10, 14.15.14 and 10.25.3 we know that

Qν−1/2(cosh η) =
√

η

sinh η
K0(νη)(1 + o(1)) =

√
π

2ν sinh η
e−νη(1 + o(1))

which proves (14). The formula (15) can be similarly proved on the basis of∫ ∞

0

re−a2r2
J2

ν (r) dr =
1

2a2
e−1/(2a2)Iν(1/(2a2))

=
1

2a2
e−1/(2a2) 1√

2πν

( e

4a2ν

)ν

(1 + o(1))

see [1], 10.22.67 and 10.41.1. Finally suppose that q(r) = 0 for r > a. We need

Lemma 3.1. If (16) holds then∫ a

0

r2ν+1q(r) dr =
a2ν+2

2ν + 2
(q(a− 0) + o(1)), ν → +∞.

Proof. We have to show that∫ a

0

r2ν+1(q(r)− q(a− 0)) dr

= (2ν + 1)
∫ a

0

r2ν

∫ a

r

(q − q(a− 0)) dr = o(a2ν/ν).

Take the number 0 < δ < a with (a− δ)2νν2 = a2ν . Then δ → 0 as ν → +∞. Now∣∣(2ν + 1)
∫ a−δ

0

r2ν

∫ a

r

(q − q(a− 0)) dr
∣∣ ≤ cν

∫ a−δ

0

r2νdr ≤ c(a− δ)2ν+1 ≤ cν−2a2ν

and ∣∣(2ν + 1)
∫ a

a−δ

r2ν

∫ a

r

(q − q(a− 0)) dr
∣∣ = o

(
ν

∫ a

a−δ

r2ν(a− r) dr
)

= o
(

ν

2ν + 1
(a2ν+2 − (a− δ)2ν+1a)− ν

2ν + 2
(a2ν+2 − (a− δ)2ν+2)

)
= o(a2ν/ν)
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which proves the Lemma.

From the power series expansion of the Bessel functions ([5], 7.2(2)) we see that

Jν(r) =
(r/2)ν

Γ(ν + 1)
(1 + O(ν−1)), ν → +∞

uniformly on [0, a]. Hence∫ a

0

rq(r)J2
ν (r) dr =

1
22νΓ(ν + 1)2

·

·
[∫ a

0

r2ν+1q(r) dr + O(ν−1)
∫ a

0

r2ν+1|q(r)| dr
]

=
1

22νΓ(ν + 1)2
a2ν+2

2ν
[q(a− 0) + o(1)]

=
(ae

2ν

)2ν+2
(
q(a− 0)
πe2

+ o(1)
)

which implies (17)

4. Proof of Theorem 1.5. We will apply the Regge uniqueness theorem in [18],
mentioned in the proof of Theorem 1.1 stating that the knowledge of e2iδ(ν), <ν > 0
implies uniqueness of q under the conditions (2) and (8). The phase shifts δ(n+1/2)
can be expressed from the scattering amplitude, hence we have to reconstruct the
function δ(ν) from its values at ν = n+1/2. It is possible only if we have information
about the growth of δ(ν) for large ν. We need the following

Lemma 4.1. Let D > 0. If <ν ≥ D−1 and |=ν| ≤ D then

|Jν(r)| ≤ c|ν|−1/3, r ≥ 0 (40)

and ∫ ∞

0

|Jν(r)|
r

dr ≤ c|ν|−1/3. (41)

The constants c = c(D) are independent of ν and r.

Remark that the growth order of Jν(ν) is ν−1/3 for real ν → +∞ (see e.g. [2],
9.3.31), so the estimate (40) is sharp. On the other hand, in (41) the better bound
cν−1/2 is proved in [3] for real ν.

Proof. The representation

Jν(r) =
(r/2)ν

π1/2Γ(ν + 1/2)

∫ π

0

cos(r cos t) sin2ν t dt

([2], 9.1.20) shows that

|Jν(r)| ≤ π1/2 (r/2)<ν

|Γ(ν + 1/2)|
≤ c(r/2)<ν |(e/ν)ν | ≤ c

(
er

2|ν|

)<ν

. (42)

For large values r we consider another representation

πJν(r) =
∫ ∞

0

e−νt sin(r cosh t−νπ/2) dt+
∫ π/2

0

cos(r sin t−νt) dt =: I1 +I2, (43)
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see [5], 7.12(16). Let now t0 > r−1/2, then∫ ∞

t0

sin(r cosh t) dt =
∫ ∞

t0

1
r sinh t

· r sinh t sin(r cosh t) dt

=
[

−1
r sinh t

cos(r cosh t)
]∞

t0

−
∫ ∞

t0

cosh t
r sinh2 t

cos(r cosh t) dt

= O(r−1/2) +
∫ ∞

1

O(r−1e−t) dt+
∫ 1

t0

O(r−1t−2) dt = O(r−1/2).

Obviously ∫ r−1/2

0

sin(r cosh t) dt = O(r−1/2)

hence ∫ ∞

t0

sin(r cosh t) dt = O(r−1/2), t0 ≥ 0

and analogously for cos(r cosh t) and sin(r cosh t− νπ/2). Consequently in (43)

I1 =
[
−e−νt0

∫ ∞

t0

sin(r cosh t− νπ/2) dt
]∞
0

−ν
∫ ∞

0

e−νt0

∫ ∞

t0

sin(r cosh t− νπ/2) dtdt0

we have

|I1| ≤ cr−1/2 + cr−1/2|ν|
∫ ∞

0

e−Reνt0dt0 ≤ cr−1/2. (44)

Concerning I2, we exclude from [0, π/2] the subinterval where |r cos t− ν| < r1/3 +
2D. It has a length at most O(r−1/3), so on the excluded interval the integral of
cos(r sin t− νt) is of order r−1/3, too. In the remaining intervals [a, b] we have∫ b

a

cos(r sin t− νt) dt =
[

1
r cos t− ν

sin(r sin t− νt)
]b

a

−
∫ b

a

r sin t
(r cos t− ν)2

sin(r sin t− νt) dt = O(r−1/3) + O

(∫ b

a

r sin t
(r cos t−<ν)2

dt

)
= O(r−1/3).

That is, |I2| ≤ cr−1/3, |I1| ≤ cr−1/2 and then

|Jν(r)| ≤ cr−1/3. (45)

In particular for r ≥ (2− ε)|ν|/e we get |Jν(r)| ≤ c|ν|−1/3. Now for r ≤ (2− ε)|ν|/e
we apply (42):

|Jν(r)| ≤ c

(
er

2|ν|

)<ν

≤ c(1− ε/2)<ν ≤ c|ν|−1/3,

so (40) is proved. Finally we use (42) for r ≤ 2|ν|/e and (45) for r ≥ 2|ν|/e to
obtain ∫ 2|ν|/e

0

|Jν(r)|
r

dr ≤ c

∫ 2|ν|/e

0

(
er

2|ν|

)<ν
dr

r
=

c

<ν
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and ∫ ∞

2|ν|/e

|Jν(r)|
r

dr ≤ c

∫ ∞

2|ν|/e

r−4/3 = c|ν|−1/3

which gives (41).

Corollary 2. Under the conditions of the previous Lemma,

|Jν(r)H(1)
ν (R)| ≤ c|ν|−1/3, 0 < r ≤ R.

Proof. Consider the formula ([29], 13.7(2) and [3], Appendix D)

Jν(r)H(1)
ν (R) =

1
iπ

∫ i∞

0

exp(t/2− r2 +R2

2t
)Iν(

rR

t
)
dt

t

where Iν(−ix) = exp(−iνπ/2)Jν(x), x > 0 is the modified Bessel function of index
ν. Thus

Jν(r)H(1)
ν (R) =

1
π
e−iνπ/2

∫ ∞

0

exp(i/2(t+
r2 +R2

t
))Jν(

rR

t
)
dt

t

=
1
π
e−iνπ/2

∫ ∞

0

exp(i/2(
rR

t
+
r2 +R2

rR
t))Jν(t)

dt

t

and then

|Jν(r)H(1)
ν (R)| ≤ c

∫ ∞

0

|Jν(t)|dt
t
≤ c|ν|−1/3.

Proof of Theorem 1.5
Repeating the estimation procedure in the proof of Theorem 1.4 we see that∣∣ sin δ(ν)eiδν

∣∣ ≤ ∫ ∞

0

|qu2|+ c|ν|−1/3

∫ ∞

0

|q(r)u(r)2| dr

≤ c

∫ ∞

0

r|q(r)J2
ν (r)|dr ≤ c|ν|−2/3

i.e.

|δ(ν)| ≤ c|ν|−2/3, <ν ≥ 1/D, |=ν| ≤ D. (46)

Recall the following estimate for the growth of Herglotz functions (Levin [17], Ch.I,
§7): if f(z) is Herglotz, then

|f(z)| < 5|f(i)| |z|
2

=z
.

By Lemma 2.2 we can apply this estimate to the function f(z) = δ(ν) − πν/2,
z = −ν2, <ν > 0, =ν < 0. Thus

|δ(ν)− πν/2| ≤ c
|ν|4

<ν|=ν|
, Reν > 0, =ν < 0.

Taking into account (46) and the fact that δ(ν) = δ(ν) we see that δ(ν) is of
polynomial growth on the half-plane <ν ≥ 1/D. The Carlson uniqueness theorem
(see e.g. in Fuchs [8]) says that if g(ν) is regular in <ν ≥ 1/D and |g(ν)| ≤
c exp(a|ν|) for some a < π then the values g(n + 1/2), n ≥ n0 uniquely determine
g(ν). Since the knowledge of the scattering amplitude means the knowledge of
δ(n+1/2), we get δ(ν) by the Carlson theorem and then q by the Regge uniqueness
theorem, mentioned earlier. This completes the proof.
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