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Abstract. We give upper estimates of ratios of eigenvalues of Schrödinger operators
with nonnegative single-well potentials tending to infinity for large |x|, corresponding
to previous estimates on a finite interval.

1. Introduction. Consider the Schrödinger operator

− y′′ + q(x)y = λy (1.1)

on the real line. A solution y 6= 0 is called an eigenfunction of (1.1) if it tends to
zero as |x| tends to infinity. If q tends to infinity for large |x|, then the spectrum
consists of a growing sequence of real eigenvalues λ1, λ2, . . ., see for example in [4].
Moreover, if q(x) is nonnegative then λ1 > 0 (see Remark after Theorem 1.1).

On a finite interval exact estimates have already been known concerning eigen-
value ratios of Schrödinger operators. We only mention here the fundamental result
of Ashbaugh and Benguria [1] who proved the bound

λn

λm
≤

⌈ n

m

⌉2

for m < n (1.2)

for nonnegative potentials (with Dirichlet boundary conditions), where dxe denotes
the smallest integer greater than or equal to x. Horváth and Kiss showed [2] that
for nonnegative single-well potentials

λn

λm
≤

( n

m

)2

(1.3)

is also true. Single-well means that there is a point a ∈ [0, π] such that q is decreasing
in [0, a] and increasing in [a, π] (see in [1]). In this paper we prove a corresponding
statement for Schrödinger operators on the real line, namely, if lim|x|→∞ q(x) = +∞
and q is nonnegative and single-well, then

λn

λm
<

( n

m

)2

. (1.4)

The following theorem summarizes the properties of the solutions y that we are
going to use:
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Theorem 1.1. Consider the Schrödinger equation

− y′′ + q(x)y = λy (1.5)

on the half-line (−∞, 0] (and suppose that q > 0 is decreasing and q(x) → +∞ if
x → −∞). Then for each λ ∈ R there exists exactly one solution y tending to zero
at −∞ such that y > 0 near −∞ and

∫ 0

−∞ y2 = 1. This solution has the following
properties:

• y(x) and y′(x) are positive if q(x) ≥ λ,
• if x → −∞, y

y′ tends to zero.

The proof will be given in Section 3.

Remark. Let y be an eigenfunction of (1.1). If it is positive near −∞ and λ ≤ 0,
then through the sign of y′′ it must be convex. So y is increasing and positive in R
which is impossible for an eigenfunction, thus λ1 > 0.

2. The Main Statement. Let 0 < λ = z2 and denote by y(x, z) the solution of
(1.1) mentioned in Theorem 1.1. Let us introduce Prüfer-type variables:

y(x, z) =
r(x, z)

z
sin ϕ(x, z), (2.1)

y′(x, z) = r(x, z) cos ϕ(x, z), (2.2)

where r(x, z) > 0, and we denote by prime the derivative with respect to x (and by
dot the derivative with respect to z). According to the last statement of Theorem
1.1 we can assume

lim
x→−∞

ϕ(x, z) = 0. (2.3)

Define further
ψ =

ϕ

z
. (2.4)

An easy computation shows that for these variables the following equations hold:

ϕ′ = z − q

z
sin2 ϕ, (2.5)

r′

r
=

q

z
sin ϕ cosϕ. (2.6)

Remark. These formulae hold in the usual sense at the continuity points of q and
in both half-sided senses at the jumps of q: ϕ′±(x, z) = z − q(x±0)

z sin2 ϕ(x, z), and
analogously for r.

One important idea of [2] was to show that the monotonicity of ψ(x, z) in z
implies (1.4). It proves to be useful again:

Theorem 2.1. Let limx→−∞ q(x) = +∞ and q(x) ≥ 0 be monotone decreasing in
(−∞, x0]. Then ψ̇(x0, z) > 0, so ψ(x0, z) is a strictly monotone increasing function
in z > 0.

The proof will be given in Section 4.

The main statement of this paper reads as follows:
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Theorem 2.2. Consider equation (1.1) with the boundary conditions

lim
|x|→∞

y(x) = 0. (2.7)

If the potential q is nonnegative, single-well and limx→±∞ q(x) = +∞ then for the
m-th and n-th eigenvalues with m < n

λn

λm
<

n2

m2
. (2.8)

The proof will be given in Section 5.

Remark. A well-known example of a Schrödinger operator with discrete spectrum
arises when q(x) = x2; then

−y′′ + x2y = (2n + 1)y, y = e−x2/2Hn(x) (n ≥ 0)

where the Hn are the Hermite polynomials. In this case λn = 2n − 1, n ≥ 1 and
(2.8) is obvious.
Remark. A weaker form of estimate (2.8), with ≤ instead of <, has a simpler proof
based on the previous result [2] concerning finite intervals. As it is discussed in the
proof of Theorem 4.1. in Ashbaugh and Benguria [1], the eigenvalues of the problem
with Dirichlet boundary condition imposed at (−b, b) tend to the eigenvalues of
the problem in R as b → ∞, thus (1.3) must hold. This and the above example
shows that it would be an interesting problem to find the exact upper estimate
for the eigenvalue ratios. The authors express their thanks to the referees for this
observation.

3. The proof of Theorem 1.1. It is known that there exists a solution y of (1.1),
unique up to a constant multiple, satisfying y(−∞) = 0 and y ∈ L2(−∞, 0], see
e.g. [3]. Suppose that y(x0) = 0 for some x0 with q(x0) ≥ λ. Then y′(x0) 6= 0; for
example let y′(x0) < 0. Since q ≥ λ for x ≤ x0, we see from (1.1) that y is positive,
convex and decreasing in (−∞, x0], hence y(−∞) = +∞; a contradiction. So in
the half-line q ≥ λ y has no zeros. We can suppose that y > 0 here and then it is
convex; from y(−∞) = 0 we get that y is strictly increasing i.e. y′ is positive.

To prove the second property in Theorem 1.1 introduce the function h = y′

y . An
easy calculation shows that the following equation holds:

h′(x, z) = q(x)− z2 − h2(x, z) (3.1)

Let N > 0 be arbitrary. If x0 < −K with K large enough, then q(x) − z2 >
(N + 1)2 + 1 and y(x) > 0, y′(x) > 0 for x < x0, so h(x) > 0. If h(x) < N + 1 for
some x < x0 then h′(x) > 1. Consequently h(x′) < N + 1 and h′(x′) > 1 for all
x′ < x; this is clearly incompatible with h(x′) > 0. In other words, h(x) ≥ N + 1
for all x < x0 and then h(−∞) = +∞ as asserted.

4. The proof of Theorem 2.1.

Lemma 4.1. If q(x) is monotone decreasing in (−∞, x0], then (for z > 0) ϕ(x0, z)
is a strictly monotone increasing function of x in (−∞, x0]. Moreover, ϕ′±(x, z) > 0
for z > 0.

Proof.
In [2], Lemma 3.1 we proved that there exists no interval (x1, x2) such that

0 < ϕ < π
2 , ϕ′− > 0 on (x1, x2) and ϕ′−(x2) = 0. By the monotonicity of q we see

that ϕ′+ ≥ ϕ′−. Suppose that ϕ−(x∗, z) ≤ 0 for some x∗ < x0. Now (2.5) implies
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z2 ≤ q(x∗ − 0). Thus q ≥ z2 and then 0 < ϕ < π/2 on (−∞, x∗). There must be
an x1 < x∗ with ϕ′−(x1, z) > 0; otherwise ϕ would be decreasing on (−∞, x1). If
x increases, ϕ′− is either continuous or has upward jumps (at the discontinuities of
q). Now if

x2 = sup{t ∈ [x1, x
∗] : ϕ′− > 0 on [x1, t)}

then ϕ′− > 0 on (x1, x2) and ϕ′−(x2, z) = 0. Since this contradicts the result of [2]
quoted at the beginning of this proof, Lemma 4.1 is proved.

In the following formulae we sometimes write ϕ(x) instead of ϕ(x, z).

Lemma 4.2. For every x1 < x2

ϕ̇(x2)− ϕ̇(x1)e
− R x2

x1
q
z sin 2ϕ =

∫ x2

x1

(1 +
q(t)
z2

sin2 ϕ(t))e−
R x2

t
q
z sin 2ϕ dt, (4.1)

and the integrand on the right-hand side is in L1(−∞, x2].

Proof.
Differentiate equation (2.5) with respect to z:

ϕ̇′(x, z) = 1 +
q(x)
z2

sin2 ϕ(x)− q(x)
z

sin 2ϕ(x, z)ϕ̇(x, z). (4.2)

This is a linear differential equation in x → ϕ̇(x, z). Multiplying both sides by
e−
R x2

x
q
z sin 2ϕ, we have:

(ϕ̇(x, z)e−
R x2

x
q
z sin 2ϕ)′ = (1 +

q(x)
z2

sin2 ϕ(x, z))e−
R x2

x
q
z sin 2ϕ. (4.3)

The right-hand side of this equation is in L1(−∞, x2], since

r2(x2)(1 +
q(x)
z2

sin2 ϕ(x, z))e−
R x2

x
q
z sin 2ϕ = (1 +

q(x)
z2

sin2 ϕ(x))r2(x)

= r2 + qy2 = z2y2(x) + y′2(x) + q(x)y2(x) = (y′(x)y(x))′ + 2z2y2(x).

By convexity at infinity both y(x) and y′(x) tend to zero, so y′(x)y(x) is bounded
and positive for x → −∞, finally (y′y)′ = y′′y + y′2 > 0, hence (y′y)′ ∈ L1 follows.
From Theorem 1.1 y2 ∈ L1 also holds. Integrating (4.3) from x1 to x2, we get
(4.1).

Lemma 4.3. Let z1 < z2. If x < −K where K is sufficiently large, then ϕ(x, z1) <
ϕ(x, z2).

Proof. We can suppose that q(x) > z2
1 , q(x) > z2

2 for x < −K and then 0 <
ϕ(x, z1) < π

2 and 0 < ϕ(x, z2) < π
2 . If ϕ(x, z1) − ϕ(x, z2) ≥ 0 then (ϕ(x, z1) −

ϕ(x, z2))′ = z1 − z2 − q(x)(sin2 ϕ(x, z1)/z1 − sin2 ϕ(x, z2)/z2) ≤ z1 − z2 < 0, thus
limx→−∞(ϕ(x, z1) − ϕ(x, z2)) cannot be zero. This contradiction proves Lemma
4.3.

Lemma 4.4. ϕ(x, z) is strictly monotone increasing in z.

Proof.
Let z1 < z2, F (x, ϕ) = z1 − q(x)

z1
sin2 ϕ and G(x, ϕ) = z2 − q(x)

z2
sin2 ϕ. If x <

−K, K large enough, then ϕ(x, z1) < ϕ(x, z2). Using

ϕ′(x, z1) = F (x, ϕ(x, z1)), (4.4)
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ϕ′(x, z2) = G(x, ϕ(x, z2)) (4.5)
and

F (x, ϕ) < G(x, ϕ), (4.6)
by comparison theorems we get ϕ(x, z1) < ϕ(x, z2) for all x.

Comparing this with Lemma 4.2, we get:

Corollary 4.5.

ϕ̇(x) ≥
∫ x

−∞
(1 +

q(t)
z2

sin2 ϕ(t))e−
R x

t
q
z sin 2ϕ dt. (4.7)

Remark. From (2.6) we can rewrite (4.7):

ϕ̇(x) ≥
∫ x

−∞
(1 +

q(t)
z2

sin2 ϕ(t))
r2(t)
r2(x)

dt. (4.8)

Corollary 4.6.

ψ̇(x) ≥ 2
r2(x)z2

∫ x

−∞
r2(

q

z
sin2 ϕ− q

z
ϕ sin ϕ cos ϕ). (4.9)

Proof.

ψ̇(x) =
ϕ̇(x)

z
− ϕ(x)

z2
≥

≥ 1
r2(x)z2

{∫ x

−∞
r2(t)[2(z − ϕ′(t)) + ϕ′(t)] dt− r2(x)ϕ(x)

}
=

=
2

r2(x)z2

∫ x

−∞
[r2(t)(z − ϕ′(t))− r(t)r′(t)ϕ(t)] dt =

=
2

r2(x)z2

∫ x

−∞
r2(

q

z
sin2 ϕ− q

z
ϕ sin ϕ cos ϕ).

Proof of Theorem 2.1.
Let

h(t) = r2(t)
(

q(t)
z

sin2 ϕ(t)− q(t)
z

ϕ(t) sin ϕ(t) cos ϕ(t)
)

be the integrand in (4.9); we have to show that
∫ x0

−∞ h > 0 if q ≥ 0 is decreasing
in (−∞, x0]. If ϕ(x0) ≤ π then h ≥ 0 on (−∞, x0) and h > 0 for x → −∞ since
sin2 ϕ > ϕ sin ϕ cosϕ for 0 < ϕ < π. Thus ψ̇ > 0 follows in this case. Now suppose
that

ϕ(x0) = kπ + π/2 + D, k ≥ 0 integer, 0 ≤ D < π

and consider the decomposition
∫ x0

−∞
h =

∫ ϕ−1(π/2)

−∞
h +

k∑

j=1

∫ ϕ−1(jπ+π/2)

ϕ−1(jπ−π/2)

h +
∫ x0

ϕ−1(kπ+π/2)

h. (4.10)
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It is shown in [2] that if q ≥ 0 is decreasing on [0, x0] and ϕ(0) = 0 then all

the summands in (4.10) are nonnegative (with
∫ ϕ−1(π/2)

0
instead of

∫ ϕ−1(π/2)

−∞ ) and
any of them can be zero only if the potential is zero on the (open) interval of
integration. In our setting, where q ≥ 0 is decreasing in (−∞, x0] and ϕ(−∞) = 0,
the same arguments show that the first summand of (4.10) is positive and the
others are nonnegative. (The reason of this decomposition is that each term can
be estimated from below with the help of the alteration of r. This function, as it
is proved in Lemma 3.7. of [2], has the following properties: r(ϕ−1(kπ + 3π

2 )) ≤
r(ϕ−1(kπ + π

2 )), if k = 0, 1, 2, .... Moreover, the function r is monotone increasing
between ϕ−1(kπ) and ϕ−1(kπ+ π

2 ) and is monotone decreasing between ϕ−1(kπ+ π
2 )

and ϕ−1((k +1)π). This leads to the desired nonnegativity. For details see [2] from
Lemma 3.4. to the end of the section.) Thus ψ̇ > 0 holds also in this case.

5. The proof of Theorem 2.2. Let the potential q(x) be monotone decreasing
in (−∞, a] and monotone increasing in [a,∞). Denote by q̃(x) the reverse of the
potential, i.e., q̃(x) = q(2a− x). Denote y(x, z) the solution described in Theorem
1.1. Moreover, (with zn =

√
λn) define

ỹ(x, zn) = (−1)n+1y(2a− x, zn), (5.1)

r̃(x, zn) = r(2a− x, zn) (5.2)
and

ϕ̃(x, zn) = nπ − ϕ(2a− x, zn). (5.3)
Then ỹ(x, zn) solves (1.1) with q̃ instead of q and ỹ(±∞) = 0 . It is also simple
that

ỹ(x, zn) =
r̃(x, zn)

zn
sin ϕ̃(x, zn), (5.4)

ỹ′(x, zn) = r̃(x, zn) cos ϕ̃(x, zn). (5.5)

Lemma 5.1.
ỹ > 0 near −∞ and ϕ̃(−∞, zn) = 0. (5.6)

Proof. We know ([3]) that y(x, zn) has exactly n− 1 (simple) zeros in R so it has
the sign (−1)n−1 near +∞ i.e. ỹ is positive near −∞. The second statement in
(5.6) can be reformulated as

ϕ(+∞, zn) = nπ.

And indeed, since y has n− 1 zeros and since ϕ(x, z) = dπ, , d ∈ N implies by (2.5)
that ϕ′(x, z) > 0, we get (n − 1)π < ϕ < nπ for large x. Since y(+∞) = 0, this
means that ϕ → (n − 1)π + 0 or ϕ → nπ − 0 at infinity. The first case cannot be
true because then y and y′ would have the same sign for large x and then y → 0 is
impossible.

We proved that ϕ̃ and const·r̃ are the Prüfer-variables for ỹ; the constant depends
on the L2(0,∞)-norm of y. According to (2.4), let ψ̃ = ϕ̃

z .

Proof of Theorem 2.2.
Consider the function Ψ(z) = ψ(a, z)+ ψ̃(a, z). This is, by Theorem 2.1, the sum

of two strictly increasing functions. By (5.3),

znΨ(zn) = nπ. (5.7)

Let m be less than n. Then mπ
zm

= Ψ(zm) < Ψ(zn) = nπ
zn

, thus zn

zm
< n

m , and
λn

λm
< n2

m2 .
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