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We consider the inverse eigenvalue problem for Schrödinger operators on finite inter-

vals. Among others, we show that if the potential is in L p, then the perturbation of the

potentials can be estimated by the lp′-norm of the sequence of the eigenvalue differences

only if p ≥ 2. As a consequence, we give estimates if only finite number of eigenvalues

are known with an error < ε.

1 Introduction

Consider the eigenvalue problem

−y′′ + q(x)y = λy on [0, π ], (1.1)

y(0) cos α + y′(0) sin α = 0, y(π) cos β + y′(π) sin β = 0. (1.2)

The set of eigenvalues is denoted by σ(α, β) or σ(α, β, q). The inverse Sturm–Liouville

problem aims to identify the operator from a set of eigenvalues. Since the fundamental

work of Borg [2], we know that in most cases two complete spectra are needed for the

unique recovery of the operator (i.e., of the potential q). Later it became clear that a suf-

ficiently large part of more than two spectra also implies uniqueness; a brief account
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Stability of Direct and Inverse Problems 2023

of this topic is given, for example, in [10]. The idea of taking the eigenvalues from

infinitely many spectra appears first in Gesztesy, del Rio, and Simon [5]. In Horváth

[10], a necessary and sufficient condition for the uniqueness is given, which covers most

of the former results. The aim of the present paper is to study the stability of the ope-

rator reconstruction using eigenvalues from infinitely many spectra. However, many of

our results are new also in the classical case where two complete spectra are known.

Finally, we present stability estimates if only finitely many noisy data are available.

We will use the following notations throughout: 1 ≤ p ≤ ∞, 1
p + 1

p′ = 1, q and q∗

are two real valued potentials, q, q∗ ∈ L1(0, π). Sometimes we assume that ‖q‖1, ‖q∗‖1 ≤
D; c(D) always means a positive constant, possibly different in different occurrences,

depending only on D. The eigenvalues corresponding to the potential q and q∗ are de-

noted by λn and λ∗
n, respectively. If λ∗

n ∈ σ(αn, 0, q∗), λn is the corresponding element of

σ(αn, 0, q), that is, their indices inside the spectrum σ(αn, 0) are the same (we can relax

this assumption, see the remark after Theorem 5.9).

In this paper, we investigate relationships between the L p-norm of the potential

perturbation

‖�q‖p = ‖q − q∗‖L p

and the l p′
-norm of the perturbation of eigenvalues

‖�λ‖p′ = ‖λn − λ∗
n‖l p′

1
p + 1

p′ = 1, 1 ≤ p ≤ ∞. Roughly speaking, we will prove that

‖�λ‖p′ ≤ c‖�q‖p for p ≤ 2 but not for p > 2

related to the stability of the direct problem of determining the eigenvalues correspon-

ding to a potential and

‖�q‖p′ ≤ c‖�λ‖p for p ≤ 2 but not for p > 2

concerning the stability of the inverse problem of reconstructing the potential from a set

of eigenvalues. More details are given below. Unless p = 2, these results are new also in

the classical situation where the λn’s run over σ(0, 0) ∪ σ(π
2 , 0).
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2024 M. Horváth and M. Kiss

The above stability estimates for the nonlinear relation between the potential

and the eigenvalues are reduced to simple continuity properties of the linear mapping

(1.4) below, see Theorems 1.1–1.2. The main tool in proving stability results is Lemma

6.1. Finally, we extend two results of Marletta and Weikard [19] concerning the situation

where only finitely many eigenvalues are known with errors.

1.1 General results

We present two general theorems, which will essentially imply the subsequent more

specialized results.

Consider the system

C (	) = {ϕn : n ≥ 0}, ϕ0 = 1, ϕn = cos 2
√

λ∗
nx : n ≥ 1 (1.3)

and the mapping

T : b �→ (〈b, ϕn〉) (n ≥ 0) b ∈ L1[0, π ]. (1.4)

In what follows, L p
0 denotes the subset of L p = L p(0, π) in which

∫ π

0 b = 0, l p

denotes the infinite sequences beginning from the 0th index with the usual p-norm,

while l p
0 consists of sequences whose 0th coordinate is zero. If q∗ is fixed, let �	(q)

denote the sequence
(∫ π

0 (q − q∗), (λn − λ∗
n)n≥1

)
.

Theorem 1.1. Let q∗ ∈ L1[0, π ], q − q∗ ∈ L1
0 and consider the eigenvalues 0 �= λ∗

n → ∞,

λ∗
n ∈ σ(αn, 0; q∗). Suppose that λn ∈ σ(αn, 0; q) are the eigenvalues corresponding to λ∗

n.

The (nonlinear) mapping

q − q∗ �→ �	(q) (1.5)

is continuous from Lr
0 to ls (1 ≤ r, s ≤ ∞) at q = q∗ if and only if the (linear) mapping (1.4)

restricted to Lr
0 is Lr → ls continuous, that is,

(∑
|〈h, ϕn〉|s

)1/s ≤ C‖h‖r, h ∈ Lr
0 (1.6)

(with the usual modification for s = ∞).
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Stability of Direct and Inverse Problems 2025

Moreover, if the mapping (1.4) from Lr → ls (1 ≤ r, s ≤ ∞) is bounded by a con-

stant C , then

(∑
n

|λn − λ∗
n|s

) 1
s

≤ c(D)C‖q − q∗‖r, (1.7)

provided that ‖q‖1, ‖q∗‖1 ≤ D and λ∗
n ≥ −D. �

The general answer to the question of the stability of the inverse problem

depends on whether the inverse of the mapping defined in (1.4) is bounded.

Theorem 1.2. Let q∗ ∈ L1[0, π ], q − q∗ ∈ L1
0 and consider the eigenvalues 0 �= λ∗

n → ∞,

λ∗
n ∈ σ(αn, 0; q∗). Suppose that λn ∈ σ(αn, 0; q) are the eigenvalues corresponding to λ∗

n.

The following statements are equivalent:

A) The (possibly multivalued) inverse of the mapping (1.5)

�	(q) �→ q − q∗ (1.8)

with domain {(cn) ∈ ls
0|∃q ∈ L1 : q − q∗ ∈ Lr

0 and cn = λn − λ∗
n ∀n > 0} is a (non-

linear) ls → Lr continuous mapping at q = q∗, that is, λn(q) − λ∗
n → 0 in ls

implies q − q∗ → 0 in Lr .

B) The inverse of (1.4) with domain {(cn) ∈ ls
0|∃h ∈ Lr

0 : ∀n cn = 〈h, ϕn〉} is a (lin-

ear) ls → Lr continuous mapping (1 ≤ r, s ≤ ∞), that is,

‖h‖r ≤ C
(∑

|〈h, ϕn〉|s
)1/s

, h ∈ Lr
0 (1.9)

with obvious modification for s = ∞. The right-hand side is allowed to be

infinite.

Moreover, in this case

‖q − q∗‖r ≤ c(D)C

(∑
n

|λn − λ∗
n|s

) 1
s

, (1.10)

provided that ‖q‖1, ‖q∗‖1 ≤ D, q − q∗ ∈ Lr
0 and λ∗

n ≥ −D. The upper bound in (1.10) can

again be infinite. �
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2026 M. Horváth and M. Kiss

Remark. If the restriction of the mapping (1.4) to Lr
0 is continuous, then it is continuous

on the entire Lr . However, their bounds can be different. Similarly, if (1.9) holds, then the

same inequality hold for all h ∈ Lr with a different constant, see Lemma 8.1. �

Remark. Instead of the condition λ∗
n �= 0, we could require λ∗

n �= μ for any μ ∈ C. In that

case, we would have defined ϕ0(x) = cos 2μx and we would have restricted the mapping

(1.4) to the subspace orthogonal to cos 2μx (instead of Lr
0), and for the estimates we

would have had to require |μ| ≤ D. �

Remark. The estimate (1.10) shows that there are no different potentials q with the

same eigenvalues λn ∈ σ(αn, 0, q). This (and more) has been previously known: in Horváth

[10] it is proved that the completeness of the system (1.3) is necessary and sufficient for

the unique recovery of q from the eigenvalues. By definition, the completeness means

that no nontrivial Lr-function can be orthogonal to all the elements of (1.3), that is, the

mapping b �→ (〈b, ϕn〉) is injective. To ensure stability of the recovery of the potential we

need more, namely that the inverse mapping is bounded. �

1.2 Frames

The system {ϕn} in a separable Hilbert space H is a frame if there exist two constants

0 < m, M < ∞ such that

m‖h‖2 ≤
∑

|〈h, ϕn〉|2 ≤ M‖h‖2 h ∈ H. (1.11)

We know that (see [3] and references therein) in this case for all h ∈ H the series

F h =
∑

n

〈h, ϕn〉ϕn (1.12)

converges in norm and the operator F —the frame operator—is a bounded bijection of H .

The left inverse of (1.4) is then given by

T−1 : (cn) �→
∑

n

cnF −1ϕn (n ≥ 0). (1.13)
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Stability of Direct and Inverse Problems 2027

By left inverse, we mean that T−1T = idH , while TT−1(cn) = (cn) if (cn) ∈ RanT . By F , we

can express the constants in (1.11) as follows:

m= 1

‖F −1‖ , M = ‖F‖. (1.14)

The system {F −1ϕn} is known to be another frame, the inverse frame in H .

If only the first inequality holds in (1.11), then we say that {ϕn} satisfies the lower

frame condition with constant min H . If only the second inequality holds in (1.11), then

{ϕn} is called Bessel system in H .

The system {ϕn} is called a Riesz basis in H if it is the image of an orthonormal

basis under an isomorphism of H . The system ψn is biorthogonal to the Riesz basis

{ϕn} if

〈ϕn, ψk〉 = δn,k.

It is known that every Riesz basis is a frame and every minimal frame is a Riesz basis.

We see from the first inequality (1.11) that a frame is necessarily complete, so it is either

a Riesz basis or it contains “superfluous” terms (which are in the closed linear hull

of the others). In a Riesz basis, the biorthogonal system is the inverse frame, that is,

ψn = F −1ϕn. Consequently, if the system (1.3) is a Riesz basis in L2(0, π) then the inverse

of (1.4) as an L2 → l2 operator exists and has the form (1.13).

1.3 Positive results

The following theorems require almost the same set of assumptions. For the convenience

of the reader, we collect them in the condition (C):

(C) ‖q‖1, ‖q∗‖1 ≤ D, 0 �= λ∗
n → ∞, −D ≤ λ∗

n ∈ σ(αn, 0, q∗), and λn ∈ σ(αn, 0, q) are

the eigenvalues corresponding to λ∗
n and limn→∞ |λ∗

n − λn| = 0.

The latter condition turns out to be equivalent to
∫ π

0 (q − q∗) = 0, see Lemma 6.3.

Theorem 1.3. Assume condition (C) and suppose that {ϕn} is a Bessel system in L2(0, π),

that is,

∑
|〈h, ϕn〉|2 ≤ M‖h‖2

2 h ∈ L2.
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2028 M. Horváth and M. Kiss

Then for 1 ≤ p ≤ 2,

(∑
n

|λn − λ∗
n|p′

) 1
p′

≤ c(D)M
1
p′ ‖q − q∗‖p. (1.15)

�

Theorem 1.4. Assume (C) and suppose that the system ϕn satisfies the lower frame

condition with a constant m in L2(0, π). Then

m‖q − q∗‖2
2 ≤ c(D)

∑
n

|λn − λ∗
n|2. (1.16)

�

Remark. The first estimate of type (1.16) is implicitly given in a proof in Borg’s funda-

mental paper [2] where the λn run over σ(0, 0) ∪ σ(0, β) and if the right-hand side of (1.16)

is small. A similar estimate with explicit constants is proved in Hald [6] for the Dirichlet

spectrum of a symmetric potential but only in a small neighborhood of the zero poten-

tial. More precisely, let q ∈ L1 be symmetrical, that is, q(x) = q(π − x) a.e. and denote

λn = λn(q) the Dirichlet eigenvalues. Hald verified ‖q − q∗‖2
2 ≤ c

∑ |λn(q) − λn(q∗)|2 with

an explicit constant if
∑ |λn(q) − λn(0)|2 and

∑ |λn(q∗) − λn(0)|2 are small. It is easy to

see that the Dirichlet eigenvalues of a symmetric potential run over σ(0, 0) ∪ σ(π/2, 0) if

the operator is defined on the half-interval [0, π/2]. So Hald’s result is equivalent to a

local version of (1.16) for nonsymmetrical potentials. Ryabushko [23] then proved (1.16)

in full generality for the set of eigenvalues λ∗
n ∈ σ(π/2, 0, q) ∪ σ(0, 0, q). �

Theorem 1.5. Assume (C). Suppose that the system ϕn is a frame in L2(0, π) with frame

operator F and assume there exists a constant C such that for the elements of the inverse

frame

‖F −1ϕn‖∞ ≤ C (n ≥ 0). (1.17)

Then for 1 ≤ p ≤ 2

‖q − q∗‖p′ ≤ c(D)
(
C p′−2‖F −1‖

) 1
p′
(∑

n

|λn − λ∗
n|p

) 1
p

. (1.18)
�
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Stability of Direct and Inverse Problems 2029

Remark. In [2], Borg proved among others the following statement. Let q ∈ L1 be

symmetrical and denote λn = λn(q) the Dirichlet eigenvalues. If
∑ |λn(q) − λn(0)|p < ∞

for some 1 < p ≤ 2, then q ∈ L p′
. By the last remark, this result of Borg is almost

the same as Theorem 1.5 in the special case where q∗ = 0 and the eigenvalues are

λn ∈ σ(0, 0) ∪ σ(π/2, 0). For p = 1, several special cases have been known. About sym-

metric non-Dirichlet boundary conditions and symmetric potential, see Theorems 2 and

3 in Hald [7], see also Hochstadt [8]. A local version for nonsymmetric potential with two

spectra σ(α, 0) ∪ σ(α, π/2) is given in part 8.1 in Yurko [26]. �

Remark. If we consider a spectrum defined by y′(0) − hy(0) = 0 = y′(π) + Hy(π) and the

norming constants αn = ∫ π

0 y(x, λn)
2 dx, where y(x, λ) is the solution started from y(0) =

1, y′(0) = h, the following local result is given in Mizutani [21]: if

A =
∑(

|λn − λ̃n| + √|λn||αn − α̃n|
)

is small enough then ‖q − q̃‖∞ ≤ cA. For the Dirichlet spectrum, an analogous statement

can be found in McLaughlin [20]: if

A =
√∑(

|λn − λ̃n|2 + n6|αn − α̃n|2
)

is small then ‖q − q̃‖2 ≤ cA. For the stability of reconstruction from the spectral func-

tion, see also Marchenko and Maslov [18]. If we have to reconstruct the potential from

one spectrum and from the constants |y(π, λn)/y(0, λn)|, stability is proved in Isaacson

and Trubowitz [12], Pöschel and Trubowitz [22], and Chelkak and Korotyaev [4]. �

Theorem 1.6. Suppose (C) and let the system ϕn be a frame in L2(0, π) with frame ope-

rator F . Assume that there exists a constant C such that for the elements of the inverse

frame

‖F −1ϕn‖p′ ≤ C (n ≥ 1). (1.19)

Then for p′ ≥ 2

‖q − q∗‖p′ ≤ c(D)C
∑

n

|λn − λ∗
n|. (1.20)

�
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2030 M. Horváth and M. Kiss

Remark. Comparing with Theorem 1.5, we get here from a weaker assumption ((1.19)

instead of (1.17)) a weaker statement (since the l p-norms are decreasing in p). �

1.4 Negative results

Theorem 1.7. Suppose (C), let the system ϕn be a frame in L2(0, π) with frame operator

F and assume there exists a constant C such that the elements of the inverse frame

satisfy (1.17). Then ‖q − q∗‖p′ → 0 does not imply
∑

n |λn − λ∗
n|p → 0 if 1 ≤ p < 2. That is,

the mapping (1.4) from L p′
0 to l p

0 is not continuous at q = q∗. �

Theorem 1.8. Suppose (C) and that the system ϕn is a frame in L2(0, π). If the elements

of the inverse frame are not bounded in L p′
, then either

∑
n |λn − λ∗

n| < ∞ does not imply

‖q − q∗‖p′ < ∞ or
∑

n |λn − λ∗
n| → 0 does not imply ‖q − q∗‖p′ → 0 if p′ > 2. �

Theorem 1.9. Suppose (C) and that the system {ϕn} is a Bessel system in L2(0, π). Then∑
n |λn − λ∗

n|p′ → 0 does not imply ‖q − q∗‖p → 0 if 1 ≤ p < 2. �

1.5 Results in L2

Consider the system

e(	) =
{
1, e±2i

√
λ∗

nx : n ≥ 1
}

. (1.21)

It is easy to see that if e(	) is a frame or a Riesz basis in L2(−π, π), then also is the

system (1.3) in L2(0, π), with similar constants (see Lemma 8.3). Using this observation,

for p = 2 the following useful stability result (a special case of Theorems 1.3 and 1.4)

can be stated:

Theorem 1.10. Let ‖q∗‖1 ≤ D, −D ≤ λ∗
n ∈ σ(αn, 0, q∗) (n ≥ 1) are given such that λ∗

n �= 0,

limn→∞ λ∗
n = +∞. If ‖q‖1 ≤ D,

∫ π

0 (q − q∗) = 0, λn are the corresponding elements of

σ(αn, 0, q) and the system (1.21) is a frame in L2(−π, π), then

c(D)m‖q − q∗‖2
2 ≤

∑
|λn − λ∗

n|2 ≤ c(D)M‖q − q∗‖2
2 (1.22)

with the constants in (1.14). �
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Stability of Direct and Inverse Problems 2031

1.6 Special eigenvalues

For efficient Riesz basis tests of e(	), see for example Hruscev, Nikolskii, and Pavlov [11].

We recall the following useful result: if δn ∈ C, δn → 0 for |n| → ∞ and if (n+ δn) is sepa-

rated, that is, infn�=m |(n+ δn) − (m+ δm)| > 0 then the system {ei(n+δn)x} is Riesz basis in

L2(−π, π). Now let {λ1,n : n ≥ 1} = σ(π/2, 0), {λ2,n : n ≥ 1} = σ(0, 0) and list in a common

sequence {λn : n ≥ 1} the union of the two spectra. We know that 2
√

λ1,n = 2n− 1 + o(1)

and 2
√

λ2,n = 2n+ o(1), see for example [15]. Since σ(π/2, 0) ∩ σ(0, 0) = ∅, we see that

the exponents 0, ±√
λn are separated and give a o(1)-perturbation of Z. Consequently,

(1.21) is a Riesz basis in L2(−π, π) and the following statement is a special case of

Theorem 1.10:

Corollary 1.11. Define {λn : n ≥ 1} = σ(π/2, 0, q) ∪ σ(0, 0, q) and analogously for q∗ and

λ∗
n. Then (1.22) holds in the same sense as in Theorem 1.10. �

Using Theorem 1.5, Theorem 1.9 and Theorem 1.15 , we can state

Corollary 1.12. Let ‖q‖1, ‖q∗‖1 ≤ D, 1 < p ≤ ∞. Define {λn : n ≥ 1} = σ(π/2, 0, q) ∪
σ(0, 0, q) and analogously for q∗ and λ∗

n. Then the value of

‖q − q∗‖p(∑
n |λn − λ∗

n|p′) 1
p′

(1.23)

is locally bounded for p ≥ 2, while for p < 2 it can be arbitrarily large even if

‖q − q∗‖p → 0. �

1.7 Finitely many known eigenvalues

For a practical point of view, one can measure only finitely many eigenvalues, hence

we need a theorem which gives an estimate tending to zero if an increasing number of

eigenvalues are equal.

Theorem 1.13. Suppose condition (C). If the system (1.21) is a frame in L2(−π, π) and

the L∞-norm of the elements of the inverse frame is bounded by C , then

sup
0≤x≤π

|
∫ x

0
(q − q∗)| ≤ C

∑
n

c(D)√|λ∗
n|

|λn − λ∗
n|. (1.24)

�
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2032 M. Horváth and M. Kiss

The previous theorem has an immediate consequence:

Theorem 1.14. Assume (C) and that ‖q − q∗‖2 ≤ D. Suppose further that |λn − λ∗
n| < ε

if 1 ≤ n ≤ N, for a given ε > 0. If the system (1.21) is a frame in L2(−π, π) with frame

operator F and the L∞-norm of the elements of the biorthogonal system is bounded by

C , then

sup
0≤x≤π

|
∫ x

0
(q − q∗)| ≤ C c(D)ε

N∑
n=1

1√|λ∗
n|

+ C c(D)‖F‖ 1
2

( ∞∑
n=N+1

1

|λ∗
n|

) 1
2

. (1.25)
�

If, for example, the first N Dirichlet eigenvalues and the first N Dirichlet–

Neumann eigenvalues are given (i.e., there are 2N pair of eigenvalues and
√

λ∗
n = 1

2n+
o(1)), then ‖F‖ and C depend only on D, and this estimate gives c(D)(ε log N + N− 1

2 ),

which is the main result of Marletta and Weikard [19]. Remark that for the operators

defined on the half-line, an analogous estimate is obtained in Marchenko and Maslov

[18]. Theorem 1.13 also contains the corresponding result in Marletta and Weikard [19].

To verify it, we need that the system biorthogonal to (1.19) is uniformly bounded if the

λ∗
n run over σ(0, 0) ∪ σ(π/2, 0). We prove more:

Theorem 1.15. Let 0 �= μn = n2 + O(1), n ≥ 1 be arbitrary different real or complex

numbers. Then the system {1, e±i
√

μnx : n ≥ 1} is a Riesz basis in L2(−π, π) and its

biorthogonal system is uniformly bounded in L∞(−π, π). �

2 Structure of the Proofs

First, we summarize the proof of Theorems 1.1–1.2. It consists of three comparisons

between the norms

‖q − q∗‖ ↔ ‖Aq(q − q∗)‖ ↔ ‖(〈Aq(q − q∗), cos 2
√

λ∗
nx〉)‖ ↔ ‖�	(q)‖, (2.1)

(where the operators Aq are defined in (4.5)). The first comparison is based on the fact

that the operators Aq are of Volterra type. This is verified in Section 4. The third one is

contained in Lemma 6.2, which is a consequence of a series of estimates in Section 5.

Thus, we reduce the comparison between ‖�q‖ and ‖�λ‖ to a comparison between

h = Aq(q − q∗) and 〈h, cos 2
√

λ∗
nx〉). The continuity of the mapping (1.4) or its inverse

guarantees the stability of the direct or the inverse problem, respectively. In order to

show that this continuity is an equivalent condition to the stability, we need to prove
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Stability of Direct and Inverse Problems 2033

that the range of Aq(q − q∗) contains a common part of a ball and a dense set. This is

also found in Section 4.

Remark. There are some straightforward extensions of the above listed stability and

instability results. In Theorems 1.4, 1.5, 1.6, 1.7, 1.13, and 1.14, we can suppose that

the set of eigenvalues λ∗
n contains a subsystem with the desired properties while in

Theorems 1.3 and 1.9 we can suppose that {λ∗
n} can be extended to a system with the

prescribed properties. Secondly, since the L p-norms are increasing (apart from constant

factors) and the l p-norms are decreasing, a simple corollary of Theorems 1.5 and 1.9

is that ‖�q‖r ≤ c‖�λ‖s holds for 1 ≤ r ≤ 2, 1 ≤ s ≤ r/(r − 1) and does not hold for r > 2,

s ≥ r/(r − 1). Analogously, we infer from Theorems 1.3 and 1.7 that ‖�λ‖s ≤ c‖�q‖r is

true for r ≥ 2, s ≥ r/(r − 1) and is not true for 1 ≤ r < 2, 1 ≤ s ≤ r/(r − 1).

3 Extensions to Complex-valued Potentials

If we allow the potentials to take complex values, the main difficulty is the appearance

of algebraically multiple eigenvalues. More precisely, let q and q∗ be two potentials in

L p and qs(x) = sq∗(x) + (1 − s)q(x) be the linear deformation of the potential from q to

q∗. Introduce the (characteristic) function

F (λ, s) = cos αy2(π, λ; qs) + sin αy′
2(π, λ; qs)

where the solution y2 is defined at the beginning of Section 5. Clearly, λ ∈ σ(0, α; qs)

if and only if F (λ, s) = 0. It is known that if λ = λ(0) ∈ σ(0, α; q0) then there exists a

continuous branch of eigenvalues λ(s) ∈ σ(0, α; qs). Suppose, for example, that λ(0) is an

algebraically double eigenvalue, that is,

F ′
λ(λ(0), 0) = 0.

Expanding F (λ, s) around (λ(0), 0) at the point (λ(s), s), we see that for small s, (λ(s) −
λ(0))2 is proportional to s (if F ′

s(λ(0), 0) �= 0), consequently no inequality of type |λ∗ − λ| ≤
c‖q∗ − q‖p can be true if λ is a multiple eigenvalue. Thus, no direct stability estimate

‖�λ‖p′ ≤ c‖�q‖p holds in this setting. The negative inverse stability results obviously

remain valid. The positive inverse stability results listed in Section 1 can be proved if all

the values λ∗
n are different. We need the following interpretation of the corresponding

eigenvalues. If we are given eigenvalues λ∗
n∈σ(αn, 0; q∗), n≥0, we say that λn ∈ σ(αn, 0; q)
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2034 M. Horváth and M. Kiss

is the eigenvalue corresponding to λ∗
n if λ∗

n can be continuously shifted to λn by the linear

deformation of the potentials, that is, if there exists a continuous function λ(s) with

λ(0) = λ∗
n, λ(1) = λn, and λ(s) ∈ σ(αn, 0; qs). We choose a correspondence λ∗

n �→ λn such

that every value λn occurs in the sequence no more than its multiplicity. The condition

(C) is substituted by

(CC) ‖q‖1, ‖q∗‖1 ≤ D, q − q∗ ∈ L1
0, 0 �= λ∗

n ∈ σ(αn, 0, q∗) are different values, −D ≤
�λ∗

n → ∞ and λn ∈ σ(αn, 0, q) are the eigenvalues corresponding to λ∗
n in the above

defined sense.

The following inverse results hold for complex potentials:

Theorem 3.1. Let q∗ ∈ L1(0, π) and consider the different eigenvalues 0 �= λ∗
n ∈

σ(αn, 0, q∗), −D ≤ �λ∗
n → ∞. Then the implication B ⇒ A of Theorem 1.2 holds and B

implies (1.10) if ‖q‖1 ≤ D, ‖q∗‖1 ≤ D, and q − q∗ ∈ Lr
0. �

Theorem 3.2. The statements of Theorems 1.4, 1.5, 1.6, and 1.13 hold if (C) is substi-

tuted by (CC). �

The counterpart of Theorem 1.14 is as follows:

Theorem 3.3. Assume (CC) and suppose that |λn − λ∗
n| < ε if 1 ≤ n ≤ N, for a given ε > 0.

If the system (1.21) is a frame in L2(−π, π) with frame operator F and the L∞-norm of

the elements of the biorthogonal system is bounded by C , then

sup
0≤x≤π

∣∣∣∣
∫ x

0
(q − q∗)

∣∣∣∣ ≤ C c(D)ε

N∑
n=1

1√|λ∗
n|

(3.1)

+ C c(D)

( ∞∑
n=N+1

1

|λ∗
n|

) 1
2
(∑

n

|λ∗
n − λn|2

) 1
2

. �

Unfortunately, this statement does not contain the Marletta–Weikard result if

the union σ(0, 0) ∪ σ(π/2, 0) contains multiple eigenvalues.

In the proofs, we cannot use the variational calculus: the formula λ̇n = |g2
n| cor-

responding to (5.8) holds only for simple eigenvalues. Instead, we apply the representa-

tion (5.6) and some Lipschitz properties of its kernel function. More details are given at

the end of the paper.
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Stability of Direct and Inverse Problems 2035

4 Integral Operators

As before, c(D) denotes constants, depending only on D, possibly different in each

occurrence. Let λ ∈ C, z = √
λ. Introduce the function v(x, λ) as the solution of (1.1) with

the initial conditions

v(π, λ) = 0, v′(π, λ) = −1.

We need the following lemmas:

Lemma 4.1. (Lemma 5.2 of Horváth [10]) Let ‖q‖1, ‖q∗‖1 ≤ D. Then there exists a conti-

nuous kernel function M1 such that

1 − 2z2v(π − x, λ)v∗(π − x, λ) = cos 2xz +
∫ x

0
cos 2tzM1(x, t, q, q∗) dt, (4.1)

and

|M1(x, t, q, q∗)| ≤ c(D), (4.2)

|M1(x, t, q1, q∗) − M1(x, t, q2, q∗)| ≤ c(D)‖q1 − q2‖1. (4.3)
�

Corollary 4.2. Let h ∈ L p(0, π). Then

∫ π

0
h − 2z2

∫ π

0
h(x)v(x, λ)v∗(x, λ) dx =

∫ π

0
Aq (h(π − x)) cos 2xz dx, (4.4)

where

(Aqh)(x) = h(x) +
∫ π

x
M(x, t)h(t) dt h ∈ L1(0, π). (4.5)

with M(x, t) = M1(t, x). �

Proof. Multiplying (4.1) by h(π − x), integrating from 0 to π and changing the order of

integrations give the formula (4.4). �
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2036 M. Horváth and M. Kiss

Substituting z = 0 to (4.4) gives

Corollary 4.3.

∫ π

0
Aqh =

∫ π

0
h, (4.6)

�

and using 1 − cos 2xz = 2 sin2 xz we get the following:

Corollary 4.4. Let h ∈ L p(0, π). Then

∫ π

0
h(x)v(x, λ)v∗(x, λ) dx =

∫ π

0
Aq (h(π − x))

(
sin xz

z

)2

dx. (4.7)
�

Substituting h(x) = q(π − x) − q∗(π − x) to (4.4) gives

Corollary 4.5.

∫ π

0
(q − q∗) − 2z2

∫ π

0
(q(x) − q∗(x))v(x, λ)v∗(x, λ) dx (4.8)

=
∫ π

0
Aq

(
q(π − x) − q∗(π − x)

)
cos 2xz dx.

Lemma 4.6. Let q∗ ∈ L1[0, π ] be fixed. If ‖q‖1 ≤ D, ‖q∗‖1 ≤ D, then Aq : L p
0 → L p

0 is con-

tinuous, linear and invertible, and both of Aq and A−1
q are bounded with a bound de-

pending only on D. Moreover,

‖Aq1 − Aq2‖p ≤ c(D)‖q1 − q2‖1 ≤ c(D)‖q1 − q2‖p. (4.9)
�

Proof. Let ‖h‖1 ≤ D. By the first estimate on M1 (and M),

1

π
‖(I − Aq)n+1h‖p ≤ ‖(I − Aq)n+1h‖∞ ≤ c(D)n

n! ‖h‖1 ≤ c(D)n

n! ‖h‖p, (4.10)

which implies the continuity of Aq and (by the convergence of the Neumann series) of A−1
q

from L p to L p with a norm depending only on D. By (4.6), Aq restricted to L p
0 is also an

isomorphism with the same norms. Finally, the second estimate on M1 implies (4.9). �
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Stability of Direct and Inverse Problems 2037

Lemma 4.7. [10] Let B1 and B2 be Banach spaces, and let for all q ∈ B1

Aq : B1 → B2

be a continuous, linear operator. If

(i) for some fixed q0 ∈ B1 Aq0 is one-to-one and its inverse is continuous,

(ii) the mapping q → Aq has the following property: for all h ∈ B1

‖(Aq1 − Aq2)h‖ ≤ c(q0)‖q1 − q2‖‖h‖, if ‖q1‖, ‖q2‖ ≤ ‖q0‖ + 1, (4.11)

where c(q0) is a constant independent of q,q∗ and of h,

then the set {Aq(q − q0) : q ∈ B1} contains a ball in B2, centered at the origin. �

For the sake of completeness, we provide a (new) proof with a lower bound for

the radius of the ball.

Proof. Suppose that

‖Aq0‖, ‖A−1
q0

‖ ≤ K and c(q0) ≤ K

for some K > 1, where c(q0) is the constant from (4.11). Consider two vectors q, q̃ ∈ B1

with

‖q − q0‖, ‖q̃ − q0‖ ≤ 1

2K2 .

Then

‖A−1
q0

(Aq − Aq0)‖ ≤ K2‖q − q0‖ ≤ 1

2

and

‖A−1
q ‖ = ‖

(
I + A−1

q0
(Aq − Aq0)

)−1
A−1

q0
‖ ≤ 2K.

Finally,

‖A−1
q̃ − A−1

q ‖ ≤ ‖A−1
q̃ ‖‖Aq̃ − Aq‖‖A−1

q ‖ ≤ 4K3‖q̃ − q‖.
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2038 M. Horváth and M. Kiss

Let q2 ∈ B2 with ‖q2‖ ≤ 1
8K3 . Define F (q) by

Aq(F (q) − q0) = q2,

that is, F (q) = q0 + A−1
q q2. Then F is defined on the ball ‖q − q0‖ ≤ 1

2K2 and maps into

this ball since ‖A−1
q q2‖ ≤ 1

4K2 . F is a contraction on this ball since

‖F (q̃) − F (q)‖ ≤ ‖A−1
q̃ − A−1

q ‖‖q2‖ ≤ 4K3‖q̃ − q‖‖q2‖ ≤ 1

2
‖q̃ − q‖.

By the Banach fixed point theorem, F has a fixed point q, that is, the equation

Aq(q − q0) = q2 has a solution q for every ‖q2‖ ≤ 1
8K3 . �

By the previous lemma, we obtain the following special cases:

Corollary 4.8. Fix q∗ ∈ L1. Define the operators Aq as in Corollary 4.2 and let ‖q‖1,

‖q∗‖1 ≤ D. Then the set {Aq(q − q∗) : q − q∗ ∈ L1
0} contains a ball of radius ≥ c(D) > 0

around the origin in L1
0. �

Corollary 4.9. Fix q∗ ∈ L1. Define the operators Aq as in Corollary 4.2 and let ‖q‖1,

‖q∗‖1 ≤ D. Let X be a function space on [0, π ] equipped with such a norm ‖ · ‖X that

the operators Aq are isomorphism on (X ∩ L1
0, ‖ · ‖X) with a bound depending only on D.

Then the set {Aq(q − q∗) : q − q∗ ∈ X ∩ L1
0} contains the intersection of X and a ball of

radius ≥ c(D) > 0 around the origin in L1
0. �

Proof. We know from the previous corollary that the set {Aq(q − q∗) : q − q∗ ∈ L1
0} con-

tains a ball of radius ≥ c(D) > 0 around the origin in L1
0. Let h be an element of this

ball, then h = Aq(q − q∗) for some q − q∗ ∈ L1
0. If also h ∈ X, then (q − q∗) ∈ X for Aq is an

isomorphism on X ∩ L1
0. �

5 Derivative with Respect to the Potential

Let y1 and y2 are two solutions of (1.1) such that

(
y1(0, λ)

y′
1(0, λ)

)
=

(
1

0

)
and

(
y2(0, λ)

y′
2(0, λ)

)
=

(
0

1

)
.
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Statement 5.1. [13, 22, 27] For q ∈ L1(0, π)

∂yj

∂q
(x) = yj(t)[y1(t)y2(x) − y2(t)y1(x)]χ(0,x)(t) j = 1, 2, (5.1)

∂y′
j

∂q
(x) = yj(t)[y1(t)y′

2(x) − y2(t)y′
1(x)]χ(0,x)(t) j = 1, 2. (5.2)

�

Lemma 5.2. Let λ = z2 ≥ −D, ‖q‖1 ≤ D. Then

|y1(x, λ)| ≤ c(D), (5.3)

|y2(x, λ)| ≤ c(D)

1 + |z| . (5.4)
�

Proof. By a well-known representation

y1(x, λ) = cos xz +
∫ x

0
K1(x, t) cos tz dt, (5.5)

y2(x, λ) = sin xz

z
+

∫ x

0
K2(x, t)

sin tz

z
dt, (5.6)

where the kernel K1, K2 are continuous and |Ki(x, t)| ≤ c(D), see [10], Lemma 5.1. Thus,

| cos xz| ≤ c(D) and sin xz
z ≤ c(D)

1+|z| gives the statement. �

Using this lemma, an elementary estimate of the supremum of the derivative

yields that

Corollary 5.3.

|y2(x, λ, q) − y2(x, λ, q∗)| ≤ c(D)

1 + |λ| ‖q − q∗‖1. (5.7)
�

Statement 5.4. [13, 22, 27] Let q ∈ L1(0, π), λn = λn(q) ∈ σ(α, β, q). Then λn is an analytic

function of q and

∂λn

∂q
= g2

n(t), (5.8)

where gn is the normed eigenfunction corresponding to λn. �
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Lemma 5.5. Suppose ‖q‖1 ≤ D. Then

∫ π

0
y2

2(x, λ, q) dx < c(D)

∫ π

0
y2

2(x, λ, 0) dx, (5.9)∫ π

0
y2

2(x, λ, q) dx > ε(D)

∫ π

0
y2

2(x, λ, 0) dx, (5.10)

for some numbers c(D) and ε(D) > 0, independent of q and of λ. �

Proof. Taking into account that v(x, q) = y2(π − x, q(π − x)), we can substitute h(x) = 1

and q(π − x) instead of q and q∗ into (4.7) and using the L∞ → L∞ continuity of the

operator Aq:

∫ π

0
y2

2(x, λ) dx ≤ ‖Aq‖
∫ π

0

(
sin xz

z

)2

dx. (5.11)

Since Aq : L∞ → L∞ is an isomorphism bounded by a constant c(D), there exists h ∈ L∞

with Aq(π−x)h(π − x) = 1. Substituting it into (4.7) gives

∫ π

0

(
sin xz

z

)2

dx ≤ ‖A−1
q ‖

∫ π

0
y2

2(x, λ) dx, (5.12)

which proves the lemma. �

Corollary 5.6. Let λ ∈ R, ‖q‖1 ≤ D. Then

|y2(x, λ, q)|2
‖y2(x, λ, q)‖2

2

<

{
c(D), if λ ≥ 0,

c(D)(1 + |z|), if λ < 0.
(5.13)

�

Proof.

|y2(x, λ, q)|
‖y2(x, λ, q)‖2

≤ c(D)

ε(D)

‖ sin xz‖∞
‖ sin xz‖2

, x ∈ [0, π ], (5.14)

which is bounded if λ → 0 or λ → +∞, and O(|z| 1
2 ) in the case of λ → −∞. �
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Stability of Direct and Inverse Problems 2041

By v(x, λ, q) = y2(π − x, λ, q(π − x)) and by
∣∣ sin xz

z

∣∣ ≤ c(D)
1+|z| for λ ≥ −D, we have:

Corollary 5.7. For λ ≥ −D, ‖q‖1 ≤ D

ε(D)

1 + |λ| <

∫ π

0
v2(x, λ, q) dx <

c(D)

1 + |λ| . (5.15)
�

Theorem 5.8. Denote by λn the nth element of σ(α, 0). If p, q ∈ L1, ||p||1, ||q||1 ≤ D, N ≥ 0

and λn(q + t(p− q)) ≥ −N2 for every t ∈ (0, 1), then

|λn(p) − λn(q)| < c(D)(N + 1)||p− q||1, (5.16)

where c(D) is independent of α, n, N, p, and q. �

Proof.

|λn(p) − λn(q)| ≤
∫ 1

0
| d

dt
λn(q + t(p− q))| dt, (5.17)

and taking into account the bound of Corollary 5.6

| d

dt
λn(q + t(p− q))| = |

∫ π

0
g2

n(x, q + t(p− q))(p− q) dx|
< c(D)(N + 1)||p− q||1,

which implies the statement. �

Theorem 5.9. Denote by λn the nth element of σ(α, 0). If λn(q) ≥ −D, p, q ∈ L1 and ||p||1,

||q||1 ≤ D then

|λn(p) − λn(q)| < c(D)||p− q||1, (5.18)

where c(D) is independent of α, p, q and n. �

Proof. Choose N = N(D) so large that 2Dc(D)(N + 1) < N2 − D for the constant c(D)

appearing in Theorem 5.8. We claim that λn(p) > −N2 at every point ‖p‖1 ≤ D (and

then Theorem 5.9 follows from Theorem 5.8). Suppose indirectly that there is a point

p for which λn(p) = −N2. If there are points in the segment (q, p) for which λn = −N2,
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2042 M. Horváth and M. Kiss

we redefine p as the point closest to q with this property. Thus, we can suppose that

λn > −N2 on (q, p). Applying Theorem 5.8, we get |λn(p) − λn(q)| ≤ c(D)(N + 1)‖p− q‖1 ≤
2Dc(D)(N + 1) ≤ N2 − D. But this contradicts to λn(q) ≥ −D and λn(p) = −N2. Thus, the

statement follows by contraposition. �

Remark. We will not use directly that the indices of λn and λ∗
n are equal, only the result

of Theorem 5.9, that is, |λn − λ∗
n| < c(D)||q − q∗||1. �

Corollary 5.10. Let λ∗
n ∈ σ(α, 0, q∗) and let λn be the corresponding element of σ(α, 0, q).

If λ∗
n ≥ −D, ||q||1, ||q∗||1 ≤ D then 0 < ε(D) ≤ 1+|λn|

1+|λ∗
n| ≤ c(D). �

Proof.

1 + |λn|
1 + |λ∗

n|
≤ 1 + |λn − λ∗

n|
1 + |λ∗

n|
≤ c(D), (5.19)

and similarly 1+|λ∗
n|

1+|λn| is also bounded. �

Lemma 5.11. Let λ, λ∗ ≥ −c(D), λ = z2, λ∗ = z∗2, q∗ = q, and ‖q‖1 ≤ D. Then

|v(x, λ) − v(x, λ∗)| ≤ |λ − λ∗| c(D)

1 + min(|λ|, |λ∗|) . (5.20)
�

Proof. Again by the well-known representation

v(π − x, λ) = sin xz

z
+

∫ x

0
K(x, t)

sin tz

z
dt, (5.21)

where the kernel K is continuous and |K(x, t)| ≤ c(D). Indeed,

∣∣∣ d

dλ

sin xz

z

∣∣∣ =
∣∣∣x cos xz − sin xz

z

2λ

∣∣∣ ≤ π
e|�z|π

1 + |λ| ≤ c(D)

1 + |λ| ,∣∣∣sin xz

z
− sin xz∗

z∗
∣∣∣ ≤ |λ − λ∗| c(D)

1 + min(|λ|, |λ∗|) ,

which, using (5.21), leads to (5.20). �
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6 The Main Tool

All estimates in the previous section were made in order to prove the following:

Lemma 6.1. If ‖q‖p, ‖q∗‖p ≤ D, λ∗
n ≥ −D, and λn are corresponding elements of

σ(α, 0, q), then

∣∣∣∣
∫ π

0
(q(x) − q∗(x))v(x, λ∗

n)v
∗(x, λ∗

n) dx

∣∣∣∣ ≤ c(D)

1 + |λ∗
n|

|λn − λ∗
n|. (6.1)

There exist further constants depending only on D such that if ‖q−q∗‖p
1+|z∗

n| ≤ c(D), then

∣∣∣∣
∫ π

0
(q(x) − q∗(x))v(x, λ∗

n)v
∗(x, λ∗

n) dx

∣∣∣∣ ≥ c(D)

1 + |λ∗
n|

|λn − λ∗
n|. (6.2)

Especially, this inequality holds either if U = ‖q − q∗‖p is appropriately small, or if

z∗
n ≥ c(D). �

Proof. If (and only if) λn and λ∗
n are both in the spectrum σ(α, 0),

0 =
∫ π

0

d

dx

[
v′(x, λn)v

∗(x, λ∗
n) − v(x, λn)v

∗′
(x, λ∗

n)
]

dx

=
∫ π

0
(λn − λ∗

n + q∗(x) − q(x))v(x, λn)v
∗(x, λ∗

n) dx,

hence

∫ π

0
(q(x) − q∗(x))v(x, λ∗

n)v
∗(x, λ∗

n) dx

=
∫ π

0
(q(x) − q∗(x))v∗(x, λ∗

n)[v(x, λ∗
n) − v(x, λn)] dx

+ (λn − λ∗
n)

∫ π

0
v∗(x, λ∗

n)[v(x, λn) − v(x, λ∗
n)] dx

+ (λn − λ∗
n)

∫ π

0
v(x, λ∗

n)[v∗(x, λ∗
n) − v(x, λ∗

n)] dx

+ (λn − λ∗
n)

∫ π

0
v2(x, λ∗

n) dx = I1 + I2 + I3 + I4.

We will give estimates for all of these terms. By Corollary 5.10, dividing each of

1 + |zn| and 1 + |z∗
n| leads to the same estimate.
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2044 M. Horváth and M. Kiss

By Lemma 5.2 and Lemma 5.11

|I1| ≤ c(D)

1 + |λ∗
n|

|λn − λ∗
n|

‖q(x) − q∗(x)‖1

1 + |z∗
n|

≤ c(D)

1 + |λ∗
n|

|λn − λ∗
n|

‖q(x) − q∗(x)‖p

1 + |z∗
n|

. (6.3)

By that again and by Theorem 5.9

|I2| ≤ c(D)

1 + |z∗
n|3

|λn − λ∗
n|2 ≤ c(D)

1 + |λ∗
n|

|λn − λ∗
n|

‖q(x) − q∗(x)‖p

1 + |z∗
n|

. (6.4)

By Lemma 5.2 and Corollary 5.3

|I3| ≤ c(D)

1 + |λ∗
n|

|λn − λ∗
n|

‖q(x) − q∗(x)‖1

1 + |z∗
n|

≤ c(D)

1 + |λ∗
n|

|λn − λ∗
n|

‖q(x) − q∗(x)‖p

1 + |z∗
n|

. (6.5)

Finally, according to Corollary 5.7

c(D)

1 + |λ∗
n|

|λn − λ∗
n| ≤ |I4| ≤ c(D)

1 + |λ∗
n|

|λn − λ∗
n|, (6.6)

which implies the formulated estimates. �

Corollary 6.2. Let λ∗
n ∈ σ(αn, 0, q∗) and let λn be the corresponding element of σ(αn, 0, q).

If ||q||1, ||q∗||1 ≤ D, 0 �= λ∗
n ≥ −D, limn→∞ λ∗

n = +∞, and limn→∞ |λ∗
n − λn| = 0, then

∣∣∣∣
∫ π

0
Aq

(
q(π − x) − q∗(π − x)

)
cos 2z∗

nx dx

∣∣∣∣ ≤ c(D)|λn − λ∗
n|.

There exist further constants depending only on D such that if ‖q−q∗‖p
|z∗

n| ≤ c(D), then

∣∣∣∣
∫ π

0
Aq

(
q(π − x) − q∗(π − x)

)
cos 2z∗

nx dx

∣∣∣∣ ≥ c(D)|λn − λ∗
n|. (6.7)

Especially, this inequality holds either if z∗
n �= 0 and U = ‖q − q∗‖p is appropriately

small, or if z∗
n ≥ c(D). �

Proof. According to Riemann’s Lemma,

∫ π

0
Aq

(
q(π − x) − q∗(π − x)

)
cos 2z∗

nx dx → 0.
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Then, by (4.8),
∫ π

0 (q − q∗) = 0 and

∫ π

0
Aq

(
q(π − x) − q∗(π − x)

)
cos 2z∗

nx dx

= −2z∗
n

2
∫ π

0
(q(x) − q∗(x))v(x, λ∗

n)v
∗(x, λ∗

n) dx, (6.8)

thus the formulated estimates follow from the previous lemma. �

Lemma 6.3. Let q, q∗ ∈ L1(0, π), λ∗
n → ∞, where λ∗

n ∈ σ(αn, 0, q∗) and let λn be the

corresponding element of σ(αn, 0, q). Then

λn − λ∗
n → 0 (n → ∞) ⇔

π∫
0

(q − q∗) = 0. (6.9)
�

Proof. By (4.8)

∫ π

0
(q − q∗) − 2λ∗

n

∫ π

0
(q(x) − q∗(x))v(x, λ∗

n)v
∗(x, λ∗

n) dx

=
∫ π

0
Aq

(
q(π − x) − q∗(π − x)

)
cos 2

√
λ∗

nx dx. (6.10)

Here the right-hand side tends to zero by the Riemann lemma and the second summand

on the left has the exact order λn − λ∗
n for large n. This proves Lemma 6.3. �

7 Proof of the General Results

Proof of Theorem 1.2. By (4.6), Aq (q(π − x) − q∗(π − x)) ∈ Lr
0. If the inverse of (1.4) is

continuous, then

‖q − q∗‖r ≤ c(D)‖Aq
(
q(π − x) − q∗(π − x)

) ‖r

≤ c(D)C

(∑
n

∣∣∣∣
∫ π

0
Aq

(
q(π − x) − q∗(π − x)

)
cos 2

√
λ∗

nx dx

∣∣∣∣
s
) 1

s

≤ c(D)C

(∑
n

|λn − λ∗
n|s

) 1
s

, (7.1)
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which implies the continuity of (1.8) at q = q∗. In contrast, if the inverse mapping is not

bounded, we can choose a sequence hk ∈ Lr
0 such that ‖hk‖r = 1 but

lim
k→+∞

(∑
n

∣∣∣∣
∫ π

0
hk(x) cos 2

√
λ∗

nx dx

∣∣∣∣
s
) 1

s

= 0. (7.2)

Now Corollary 4.9 implies that for appropriately small γ = γ (D) > 0 there exist poten-

tials qk ∈ L1, qk − q∗ ∈ Lr
0 such that

Aqk

(
qk(π − x) − q∗(π − x)

) = γ hk(x). (7.3)

We can choose γ (D) > 0 so small that (6.7) holds for all qk. Then

lim
k→+∞

(∑
n

|λk,n − λ∗
n|s

) 1
s

≤ c(D,U ) lim
k→+∞

(∑
n

∣∣∣∣
∫ π

0
γ hk(x) cos 2

√
λ∗

nx dx

∣∣∣∣
s
) 1

s

= 0, (7.4)

but

‖qk − q∗‖r ≥ c(D)‖Aq
(
qk(π − x) − q∗(π − x)

) ‖r = γ c(D) > 0, (7.5)

thus (1.8) is not continuous. �

Proof of Theorem 1.1. For s = ∞ the statement follows from Theorem 5.9. Assume now

s < ∞. If the mapping (1.4) is continuous, then

(∑
n

|λn − λ∗
n|s

) 1
s

≤
⎛
⎝ ∑

|z∗
n|≤c(D)

|λn − λ∗
n|s

⎞
⎠

1
s

+
⎛
⎝ ∑

z∗
n≥c(D)

|λn − λ∗
n|s

⎞
⎠

1
s

≤ c(D)
(
#{|z∗

n| ≤ c(D)}) 1
s ‖q − q∗‖1 +

+
⎛
⎝ ∑

z∗
n≥c(D)

∣∣∣∣
∫ π

0
Aq

(
q(π − x) − q∗(π − x)

)
cos 2

√
λ∗

nx dx

∣∣∣∣
s
⎞
⎠

1
s

≤ c(D)
(
#{|z∗

n| ≤ c(D)}) 1
s ‖q − q∗‖1 +

+ c(D)C‖Aq
(
q(π − x) − q∗(π − x)

) ‖r

≤ c(D)
(
#{|z∗

n| ≤ c(D)}) 1
s ‖q − q∗‖r +

+ c(D)C‖q − q∗‖r . (7.6)

In the second sum, we applied Corollary 6.2 and Lemma 6.3.
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To complete the first part, we need only the following

Statement 7.1.

(
#{|z∗

n| ≤ c(D)}) 1
s ≤ c(D)C , (7.7)

where C is the norm of the mapping (1.4). �

Proof. Observe that if k is an integer and |2z∗
n − k| ≤ 1

2 then

∣∣∣∣
∫ π

0
cos kx cos 2xz∗

n dx

∣∣∣∣ = 1

2

∣∣∣∣ 1

2z∗
n + k

+ 1

2z∗
n − k

∣∣∣∣ | sin π(2z∗
n − k)|

≥ 1

4

| sin π(2z∗
n − k)|

|2z∗
n − k| ≥ 1

2
(7.8)

�

by the concavity of the sine function on [0, π
2 ]. For fixed k

(
#
{
|2z∗

n − k| ≤ 1

2

}) 1
s ≤ 2

⎛
⎜⎝ ∑

|2z∗
n−k|≤ 1

2

|〈cos kx, ϕn〉|s
⎞
⎟⎠

1
s

≤ 2

(∑
n

|〈cos kx, ϕn〉|s
) 1

s

≤ 2C‖ cos kx‖r ≤ 4C ,

hence

#{|z∗
n| ≤ c(D)} ≤

∑
|k|≤c(D)

#
{
|2z∗

n − k| ≤ 1

2

}

≤ c(D)(4C )s ≤ (c(D)C )s.

To prove the second part, if the mapping (1.4) is not bounded, there is a sequence

hk ∈ Lr
0 such that limk→∞ ‖hk‖r = 0 but

(∑
n

∣∣∣∣
∫ π

0
hk(x) cos 2

√
λ∗

nx dx

∣∣∣∣
s
) 1

s

≥ 1 (7.9)
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holds. If ‖hk‖r (and then ‖hk‖1) is small enough, by Corollary 4.9 there are potentials

qk ∈ L1, qk − q∗ ∈ Lr
0 such that

Aqk

(
qk(π − x) − q∗(π − x)

) = hk(x). (7.10)

Then by Corollary 6.2 and Lemma 6.3,

(∑
n

|λk,n − λ∗
n|s

) 1
s

≥ 1

c(D)

(∑
n

∣∣∣∣
∫ π

0
Aqk

(
qk(π − x) − q∗(π − x)

)
cos 2

√
λ∗

nx dx

∣∣∣∣
s
) 1

s

(7.11)

≥ 1

c(D)

(7.12)

but

lim
k→+∞ ‖qk − q∗‖r ≥ c(D)‖Aqk

(
qk(π − x) − q∗(π − x)

) ‖r = 0, (7.13)

thus (1.5) is not continuous. �

8 The Proof of Theorems 1.3–1.10

Proof of Theorem 1.3. The linear operator (1.4) is bounded by c(D) as an L1 → l∞ map-

ping, and by the Bessel system property of C (	), is bounded by M
1
2 as an L2 → l2

mapping. From the M. Riesz convexity theorem [24], it follows that the operator has

to be bounded by c(D)
1
p M

1
p′ as an L p → l p′

mapping, if 1 ≤ p ≤ 2. Hence, the statement

follows from Theorem 1.1. �

Proof of Theorem 1.4. The lower frame condition with constant mon (1.3) ensures that

statement B of Theorem 1.2 holds with r = s = 2 and C = m. Thus, the theorem follows

from (1.10). �

Proof of Theorem 1.5. Condition (1.17) ensures that (1.13) is bounded by C from l1 to

L∞, while the frame property of (1.3) gives its continuity from l2 to L2, with bound 1
m.

Then by the M. Riesz convexity theorem, (1.13) is l p → L p′
continuous. Thus, the state-

ment follows from Theorem 1.2. �
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Stability of Direct and Inverse Problems 2049

Proof of Theorem 1.6. Condition (1.19) ensures the boundedness of F −1ϕn’s in L p′
,

which is equivalent to the continuity of the inverse of (1.4) from l1
0 to L p′

, hence

Theorem 1.2 gives the norm estimate. �

Proof of Theorem 1.7. By the frame property of (1.3), the operator T−1 in (1.13) is conti-

nuous from l2 to L2; the uniform boundedness of the inverse frame implies its continuity

from l1 to L∞. By interpolation (1.13) is continuous from l p to L p′
.

Suppose that ‖q − q∗‖p′ → 0 implies
∑ |λn − λ∗

n|p → 0. Then by Theorem 1.1, the

operator T is bounded from L p′
to l p and hence T is an isomorphism of L p′

on to a (closed)

subspace of l p. But this is impossible if 1 < p < 2, see the monography of Banach [1]

concerning the linear dimension. It is impossible for p = 1, for l1 is separable, while L∞

is not. �

Proof of Theorem 1.8. This theorem is not a formal consequence of Theorem 1.2, but

we can prove it with similar arguments. Assume that
∑ |〈h, ϕn〉| < ∞ for some h ∈ L1

0.

Corollary 4.9 implies that for appropriately small γ = γ (D) > 0 there exists a potential

q ∈ L1, q − q∗ ∈ L1
0 such that

Aq
(
q(π − x) − q∗(π − x)

) = γ h(x). (8.1)

We can choose γ (D) > 0 so small that (6.7) holds for q. Then by Corollary 6.2 and

Lemma 6.3,

‖(�	(q))‖1 ≤ c(D,U )γ

∥∥∥∥
(∫ π

0
h(x) cos 2

√
λ∗

nx dx
)∥∥∥∥

1
< ∞.

If h /∈ L p′
, then q − q∗ ∈ L p′

either, thus
∑

n |λn − λ∗
n| < ∞ does not imply q − q∗ ∈ L p′

.

Otherwise, if the finiteness of
∑ |〈h, ϕn〉| implies that h ∈ L p′

0 , then, in particular, the

elements of the dual basis for n ≥ 1 are also in h ∈ L p′
0 . Assume in contrast with the

statement of the theorem that
∑

n |λn − λ∗
n| → 0 implies ‖q − q∗‖p′ → 0. This is statement

A of Theorem 1.2 with r = p′ and s = 1, thus also statement B holds. If we substitute the

elements of the dual basis to (1.9), we get these bounded, in contrast with the conditions

of the theorem. �

Lemma 8.1. Suppose that

‖h‖r ≤ c
(∑

|〈h, ϕn〉|s
) 1

s
h ∈ Lr

0. (8.2)

Then (with a possibly different constant) the same inequality holds for every h ∈ Lr . �
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Proof. Let h = h0 + γ with h0 ∈ Lr
0 and γ ∈ R. Now 〈h, ϕ0〉 = πγ implies |γ | ≤

1/π‖Th‖s. This implies ‖Th0‖s ≤ ‖Th‖s + |γ |‖T1‖s ≤ c‖Th‖s and hence ‖h‖r ≤ ‖h0‖r +
‖γ ‖r ≤ c(‖Th0‖s + |γ |) ≤ c‖Th‖s. Thus, (8.2) holds for all h ∈ Lr . �

Proof of Theorem 1.9. From the Bessel property of ϕn we infer that the operator T in

(1.4) is continuous from L2 to l2. The L1 to l∞ continuity being immediate, we get by

interpolation that T is L p to l p′
continuous.

Suppose that
∑

n |λn − λ∗
n|p′ → 0 does imply ‖q − q∗‖p → 0. Then by Theorem 1.2

‖h‖p ≤ c
(∑

|〈h, ϕn〉|p′)1/p′
h ∈ L p

0 . (8.3)

By Lemma 8.1, the same inequality holds for every h ∈ L p. This implies that T is an

isomorphism of L p on to a (closed) subspace of l p′
. But this is impossible if 1 < p < 2,

see Banach [1]. For p = 1, the contradiction follows from the next lemma. �

Lemma 8.2. Let the sequence λ∗
n be bounded from below, μn = 2

√
λ∗

n and d > 0. Then

‖h‖1 ≤ c‖(〈h, cos μnx〉)‖∞ could not hold for all h ∈ L1[0, d]. �

Proof. Suppose d = 1, for other values d the same proof works with obvious modifica-

tions. We shall construct a sequence hn(x) ∈ L1 such that |〈hn, cos μ jx〉| is bounded but

‖hn‖1 → ∞. Consider the Rademacher system:

R0(x) =
{

1 if 0 ≤ x < 1
2

−1 if 1
2 ≤ x < 1,

R0(x + 1) = R0(x), Rn(x) = R0(2nx). (8.4)

If μ is real, let 2k0 ≤ μ < 2k0+1. Using Rk
(
x + 1

2k+1

) = −Rk(x),

∫ 1

0
Rk(x) cos μx dx =

∫ 1
2k+1

0
Rk(x) cos μx dx

−
∫ 1− 1

2k+1

0
Rk(x) cos μ

(
x + 1

2k+1

)
dx,
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2

∣∣∣∣
∫ 1

0
Rk(x) cos μx dx

∣∣∣∣ ≤ |
∫ 1

2k+1

0
Rk(x) cos μx dx|

+
∣∣∣∣∣
∫ 1

1− 1
2k+1

Rk(x) cos μx dx

∣∣∣∣∣
+
∣∣∣∣∣
∫ 1− 1

2k+1

0
Rk(x)

(
cos μx − cos μ

(
x + 1

2k+1

))
dx

∣∣∣∣∣
≤ 1

2k + μ
1

2k+1 ≤ 2

2k−k0
.

If k < k0,

∣∣∣∣
∫ 1

0
Rk(x) cos μx dx

∣∣∣∣ ≤
2k+1∑
j=1

∣∣∣∣∣
∫ j

2k+1

j−1
2k+1

Rk(x) cos μx dx

∣∣∣∣∣ ≤ 2k+2

μ
≤ 4

2k0−k .

Let hn(x) = ∑n
k=0 Rk(x). Then

∣∣∣∣
∫ 1

0
hn(x) cos μx dx

∣∣∣∣ ≤
∞∑

k=0

∣∣∣∣
∫ 1

0
Rk(x) cos μx dx

∣∣∣∣ ≤
∞∑

k=0

5

2k = 10.

For a purely imaginary μ,

∣∣∣∣
∫ 1

0
Rk(x) cos μx dx

∣∣∣∣ ≤
∣∣∣∣∣
∫ 1

1− 1
2k

Rk(x) cosh |μ|x dx

∣∣∣∣∣ ≤ cosh |μ|
2k ,

thus

∣∣∣∣
∫ 1

0
hn(x) cos μx dx

∣∣∣∣ ≤ 2 cosh |μ|,

which is also bounded, if λ∗
n are bounded from below. However, Rn(x)’s as random vari-

ables, are independent and identically distributed with expectation zero and variance

one. According to the central limit theorem,

P
(∑n

k=0 Rk√
n+ 1

< t
)

→ �(t),
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where �(t) is the distribution function of the standard normal distribution. In particular

P
(√

n+ 1 ≤ hn < 2
√

n+ 1
) → �(2) − �(1) > 0,

hence

∫ 1

0
|hn(x)| dx ≥

∫
{√n+1≤hn<2

√
n+1}

|hn(x)| dx

≥ √
n+ 1 P

(√
n+ 1 ≤ hn < 2

√
n+ 1

)
,

which tends to infinity while n → ∞. �

Proof of Theorem 1.10. The next lemma shows that the system (1.3) is a frame in

L2[0, π ], and then the statement appears as a special case of Theorems 1.3 and 1.4. �

Lemma 8.3. Assume that the system (1.21) is a frame (resp., a Riesz basis) in L2[−π, π ].
Then both (1.3) and the system

S(	) = {
sin 2

√
λ∗

nx : n ≥ 1
}

(8.5)

are frames (resp., Riesz bases) in L2[0, π ]. If the elements of the inverse frame of (1.21)

are bounded by C in a p-norm, then the elements of the inverse frame of (1.3) and of (8.5)

are both bounded by 2C in the same norm. �

Proof. Let us denote the elements of e(	), C (	), S(	) by en (n ∈ Z), ϕn (n ≥ 0), sn (n ≥ 1).

Let the (supposed) frame operators be Fe, Fc, and Fs, respectively. If h ∈ L2[0, π ], let

us denote its even and odd extensions by he and ho, that is, let he(x) = h(|x|), ho(x) =
sgn(x)h(|x|). Then

Fe(he) =
∑
n∈Z

〈he, en〉en = 4

⎛
⎝∑

n≥0

〈h, ϕn〉ϕn

⎞
⎠

e

= 4(Fch)e,

Fe(ho) =
∑
n∈Z

〈ho, en〉en = −4

⎛
⎝∑

n≥1

〈h, sn〉sn

⎞
⎠

o

= −4(Fsh)o,
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Stability of Direct and Inverse Problems 2053

thus

F −1
e (he) = 1

4
(F −1

c h)e, F −1
e (ho) = −1

4
(F −1

s h)o.

This implies that both Fc and Fs are frame operators with

‖Fc‖ ≤ 1

4
‖Fe‖, ‖F −1

c ‖ ≤ 4‖F −1
e ‖,

‖Fs‖ ≤ 1

4
‖Fe‖, ‖F −1

s ‖ ≤ 4‖F −1
e ‖.

Moreover,

‖F −1
c ϕn‖p = 2−1/p‖ (F −1

c ϕn
)
e ‖p = 22−1/p‖F −1

e (ϕn)e‖p

≤ 21−1/p|F −1
e en + F −1

e e−n‖p ≤ 22−1/pC ,

and similarly,

‖F −1
s sn‖p ≤ 22−1/pC . �

9 Finitely Many Known Eigenvalues

Proof of Theorem 1.13. From
∫ π

0 Aq(q − q∗) = 0, we obtain

∣∣∣∣
∫ π

0

[∫ x

0
Aq(q(π − t) − q∗(π − t)) dt

]
· sin 2

√
λ∗

nx dx

∣∣∣∣
=

∣∣∣∣∣
∫ π

0
Aq(q(π − x) − q∗(π − x))

cos 2
√

λ∗
nx

2
√

λ∗
n

dx

∣∣∣∣∣ ≤ c(D)√|λ∗
n|

|λn − λ∗
n|.

Using the fact that (8.5) is a frame and its inverse frame is bounded by C in L∞,

∣∣∣∣
∫ x

0
Aq(q − q∗)

∣∣∣∣ ≤ 2C
∑

n

∣∣∣∣
∫ π

0

∫ x

0
Aq(q − q∗) · sin 2

√
λ∗

nx dx

∣∣∣∣
≤ C

∑
n

c(D)√|λ∗
n|

|λn − λ∗
n|.

Comparing that with the next lemma, the proof will be complete. �
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2054 M. Horváth and M. Kiss

Lemma 9.1. Let h ∈ L1
0[0, π ]. Then

1

c(D)
sup

x∈[0,π ]

∣∣∣ ∫ x

0
h
∣∣∣ ≤ sup

x∈[0,π ]

∣∣∣ ∫ x

0
Aqh

∣∣∣ ≤ c(D) sup
x∈[0,π ]

∣∣∣ ∫ x

0
h
∣∣∣. (9.1)

�

Proof. Let us denote H(x) = ∫ x
0 h. By (4.6) Aq∗h ∈ L1

0, hence

∫ t0

0
Aqh = H(t0) −

∫ π

t0

∫ π

x
M(x, t)h(t) dt dx

= H(t0) +
∫ π

t0
H(t)

[
M(t, t) +

∫ t

t0
Mt(x, t) dx

]
dt

= (I + B)H(t0).

It is known that
∫ t

t0
Mt(x, t) dx is continuous (see Marchenko [16] and Horváth [10]) and

then the integral operator B has a kernel uniformly bounded by a constant c0(D). Using

a standard argument, we get by induction on n that

‖Bn‖∞ ≤ (πc0(D))n

n! .

Consequently, the Neumann series (I + B)−1 = I − B + B2 − . . . converges in the ∞-norm

and ‖(I + B)−1‖∞ ≤ c(D). This proves Lemma 9.1. �

Consider the case when we know the eigenvalues λ∗
n ∈ σ(αn, 0, q∗), of which the

first N may contain an error ε, while the others can contain unknown errors tending

to zero.

Proof of Theorem 1.14. By Theorem 1.13 and a Cauchy–Schwartz inequality,

sup
0≤x≤π

∣∣∣∣
∫ x

0
(q − q∗)

∣∣∣∣ ≤ C
∑

n

c(D)√|λ∗
n|

|λn − λ∗
n|

≤ C c(D)ε

N∑
n=1

1√|λ∗
n|

+ C c(D)

( ∞∑
n=N+1

1

|λ∗
n|

) 1
2
(∑

n

|λn − λ∗
n|2

) 1
2

≤ C c(D)ε

N∑
n=1

1√|λ∗
n|

+ C c(D)‖F‖ 1
2

( ∞∑
n=N+1

1

|λ∗
n|

) 1
2

.
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Stability of Direct and Inverse Problems 2055

Lemma 9.2. Let {en} be an orthonormal system in L2, and fn = en + δn, where
∑

n‖δn‖2
2 =

c2 < 1. Then for an arbitrary sequence {αn} ∈ l2,

∑
n

|αn|2 ≤ 1

(1 − c)2

∥∥∥∥∥
∑

n

αn fn

∥∥∥∥∥
2

2

. (9.2)
�

Proof.

∥∥∥∥∥
∑

n

αnδn

∥∥∥∥∥
2

≤
√∑

n

|αn|2
√∑

n

‖δn‖2
2,

�

hence

∥∥∥∥∥
∑

n

αn fn

∥∥∥∥∥
2

≥
∥∥∥∥∥
∑

n

αnen

∥∥∥∥∥
2

−
∥∥∥∥∥
∑

n

αnδn

∥∥∥∥∥
2

=
√∑

n

|αn|2 −
∥∥∥∥∥
∑

n

αnδn

∥∥∥∥∥
2

≥ (1 − c)

√∑
n

|αn|2.

Proof of Theorem 1.15. The Riesz basis property of

� = {
1, e±i

√
μnx, n ≥ 1

}

can be verified as in the beginning of Section 1.6. The remaining part of the proof is

decomposed into several steps.

Step 1. The system � is not complete in C [−π, π ].

If it were complete, then the system {1, e±inx, (N > n ≥ 1), e±i
√

μnx, (n ≥ N)} also would

be complete, since the completeness of an exponential system is unaffected if finitely

many members are replaced by other exponentials (see Young [25]). Thus every odd
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2056 M. Horváth and M. Kiss

function, in particular the function x, could be approximated uniformly by the functions

{sin x, sin 2x, . . . , sin (N − 1)x, sin
√

μnx : n ≥ N}. Consequently,

π ≈
∑
n≥N

αn sin
√

μnπ ≤
√∑

n≥N

|αn|2
√√√√∑

n≥N

O
( 1

n2

)

≤ O
(

1√
N

)√∑
n≥0

|αn|2

≤ O
(

1√
N

)
.

Here, we applied the previous lemma to show that the finite sums
∑ |αn|2 have a bound

independent of N. The resulting inequality π = O(N−1/2) is nonsense, the contradiction

proves Step 1.

Step 2. � has deficiency 1, that is,

�1 = {
1, x, e±i

√
μnx, n ≥ 1

}

is complete in C .

Indeed, the system

⎧⎨
⎩

x∫
0

f + c : f ∈ L2, c ∈ C

⎫⎬
⎭

is clearly complete in C . Approximating f by Lin(�) in L2-norm gives uniform approxi-

mation of
∫ x

0 f by Lin(�1). So Lin(�1) is indeed dense in C .

Step 3. There exists a function of bounded variation β ∈ BV[−π, π ] such that

the entire function

0 �= G(z) =
π∫

−π

eizxdβ(x)

satisfies 0 = G(0) = G(±√
μn).

Indeed, since � is not complete, there is a nontrivial functional 0 �= F ∈ C ∗ with

0 = F (1) = F (e±i
√

μnx). By the Riesz representation theorem F has the form F ( f) =∫ π

−π
f(x) dβ(x) and this verifies Step 3.
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Stability of Direct and Inverse Problems 2057

Step 4. The functions of the system biorthogonal to � have the form

1

iG ′(λ)
e−iλx

x∫
−π

eiλtdβ(t)

where λ = 0 or ±√
μn.

Indeed,
∫ π

−π
eiλtdβ(t) = 0 implies

G(z)

z − λ
= 1

z − λ

π∫
−π

ei(z−λ)x · eiλxdβ(x)

= 1

z − λ

⎡
⎣ei(z−λ)x

x∫
−π

eiλtdβ(t)

⎤
⎦

π

−π

− i
∫ π

−π

ei(z−λ)x

x∫
−π

eiλtdβ(t) dx

=
∫ π

−π

eizx · 1

i
e−iλx

x∫
−π

eiλtdβ(t) dx.

For z = λ, the left-hand side is G(z)/(z − λ) = G ′(λ) which proves Step 4.

Step 5. The biorthogonal system is uniformly bounded in C .

Indeed, apart from the factors 1/G ′(λ) the biorthogonal system is clearly uniformly

bounded; it remains to give a uniform lower estimate |G ′(λ)| ≥ c > 0. This is verified by

an infinite product representation of G. First of all, the only zeros of G are 0 and ±√
μn

and these zeros are simple (otherwise �1 is not complete in C ). Since G(z) is bounded

along the real axis, the following representation is valid:

G(z) = ceiγ z · z
∞∏
1

(
1 − z2

μn

)

with some γ ∈ R and c �= 0, see Levin [14], Chapter V. From μn = n2 + O(1), it follows that

∣∣ log |G(z)e−iγ z| − log | sin πz|∣∣
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is uniformly bounded apart from the δ-neighborhood of the zeros, that is, for z with

|z ± n| ≥ δ, |z ± √
μn| ≥ δ, where δ > 0 is an arbitrary constant, see Horváth [9], Lemma

2.6. In particular, if λ is a zero of G then

∣∣∣z − λ

G(z)
eiγ z

∣∣∣ ≤ c
∣∣∣ z − λ

sin πz

∣∣∣
except for the δ-disks around the zeros. Consider a connected neighborhood of z = λ in

the union of these disks for small δ. On the boundary of this neighborhood, we have

∣∣∣z − λ

G(z)

∣∣∣ ≤ c

independently of the zero λ. This extends by the maximum principle to the point z = λ

giving that 1/|G ′(λ)| ≤ c. This finishes the proof. �

10 Proofs for Complex Potentials

Consider again the representation

y2(x, λ) = sin
√

λx√
λ

+
x∫

0

K(x, t)
sin

√
λt√

λ
dt. (10.1)

By standard arguments borrowed from [17] and [10], Lemma 5.1 we easily obtain the

following estimates: if ‖q‖p, ‖q∗‖p ≤ D then

|K(x, t)| ≤ c(D), |K(x, t) − K∗(x, t)| ≤ c(D)‖q − q∗‖p, (10.2)∣∣∣Kx(x, t) − 1

4
q
(

x + t

2

)
+ 1

4
q
(

x − t

2

) ∣∣∣ ≤ c(D), (10.3)

∣∣∣Kx(x, t) − K∗
x(x, t) − 1

4
q
(

x + t

2

)
+ 1

4
q
(

x − t

2

)

+ 1

4
q∗

(
x + t

2

)
− 1

4
q∗

(
x − t

2

) ∣∣∣ ≤ c(D)‖q − q∗‖p, (10.4)

∣∣∣Kt(x, t) − 1

4
q
(

x + t

2

)
− 1

4
q
(

x − t

2

) ∣∣∣ ≤ c(D), (10.5)

∣∣∣Kt(x, t) − K∗
t (x, t) − 1

4
q
(

x + t

2

)
− 1

4
q
(

x − t

2

)

+ 1

4
q∗

(
x + t

2

)
+ 1

4
q∗

(
x − t

2

) ∣∣∣ ≤ c(D)‖q − q∗‖p. (10.6)
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Stability of Direct and Inverse Problems 2059

Now integrating by parts in (10.1) gives that

∣∣∣∣∣y2(x, λ) − sin
√

λx√
λ

∣∣∣∣∣ ≤ c(D)

1 + |λ|e
|�√

λ|x, (10.7)

∣∣∣y′
2(x, λ) − cos

√
λx

∣∣∣ ≤ c(D)

1 + √|λ|e
|�√

λ|x, (10.8)

|y2(x, λ) − y∗
2(x, λ)| ≤ c(D)

1 + |λ|e
|�√

λ|x‖q − q∗‖p. (10.9)

We have seen in Section 3 that |λ − λ∗| ≤ c(D)‖q − q∗‖p is impossible if λ is a multiple

eigenvalue. However, the weaker estimate |λ − λ∗| ≤ c(D) is valid:

Lemma 10.1. Let ‖q‖p, ‖q∗‖p ≤ D and λ∗ ∈ σ(0, α; q∗) is an eigenvalue corresponding

to λ ∈ σ(0, α; q) (that is, there is a continuous function λ(s) ∈ σ(0, α; qs = sq∗ + (1 − s)q)

with λ(0) = λ, λ(1) = λ∗). Then

|λ − λ∗| ≤ c(D) (10.10)

where c(D) is independent of α, q, q∗, λ, and λ∗. �

Proof. Let F (w) = F (w, s) = cos αy2(π,w; qs) + sin αy′
2(π,w; qs) be the characteristic

function whose zeros are the eigenvalues in σ(0, α; qs). Then F (w) = F0(w) + R(w) with

F0(w) = sin α cos(
√

wπ) + cos α
sin(

√
wπ)√

w
, (10.11)

R(w) = sin α

⎡
⎣K(π, π)

sin(
√

wπ)√
w

+
π∫

0

Kx(π, t)
sin(

√
wt)√

w
dt

⎤
⎦

+ cos α

π∫
0

K(π, t)
sin(

√
wt)√

w
dt. (10.12)

By (10.7) and (10.8), the remainder term can be estimated by

|R(w)| ≤ | sin α| · c0(D)
exp(|�√

w|π)√|w| + c0(D)
exp(|�√

w|π)

|w| . (10.13)

The idea is to draw a contour � around the eigenvalue λ at a distance of order c(D) such

that along �, |F0(w)| > |R(w)| for every potential qs. Then the eigenvalues corresponding

to qs cannot cross � and hence remain in the domain bounded by �, which proves the
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lemma. The construction of the contour needs elementary but tedious considerations,

we give only the rough ideas. First choose a number c(D) much larger than c0(D) in

(10.13) in a sense to be specified later and draw a circle around λ with radius R of order

c(D) such that |w| ≥ c(D) be true along the circle. If the circle crosses the domain

100√|w| > sin α >
0.01√|w|

and if | sin α|−1 ≤ c(D) then take a larger radius to avoid this domain. Now if | sin α| ≥
|w|−1/3 then

|R(w)| ≤ c(D)|w|−1/2 exp(|�√
λ|π),

|F0(w)| ≥ c|w|−1/3 exp(|�√
λ|π) if |√w − n− 1/2| > 0.1 ∀n

with a universal constant c, since the first term is dominating in F0. By small modifica-

tions in �, we can avoid the domains |√w − n− 1/2| ≤ 0.1 thus for c(D) large enough we

have |F0(w)| > |R(w)|. If |w|−1/3 ≥ | sin α| ≥ 100|w|−1/2, then we get similarly

|R(w)| ≤ c(D)|w|−1/2−1/3 exp(|�√
λ|π),

|F0(w)| ≥ c|w|−1/2 exp(|�√
λ|π) if |√w − n− 1/2| > 0.1 ∀n.

If 100|w|−1/2 ≥ | sin α| ≥ 0.01|w|−1/2, then w is large, that is, |w−1/2 − λ−1/2| ≤
c(D)|w|−3/2 ≤ |w|−1 and hence

|R(w)| ≤ c(D)|w|−1 exp(|�√
λ|π),

|F0(w) − sin α cos(
√

wπ) − cos α sin(
√

wπ)λ−1/2| ≤ |w|−1 exp(|�√
λ|π),

| sin α cos(
√

wπ) + cos α sin(
√

wπ)λ−1/2|

= |
√

sin2 α + cos2 αλ−1| · | sin(
√

wπ + γ )|
≥ c|w|−1/2 exp(|�√

λ|π) if |√w + γ /π − n| > 0.1 ∀n.

Finally, if 0.01|w|−1/2 ≥ | sin α| then the second term dominates in F0 hence

|R(w)| ≤ c(D)|w|−1 exp(|�√
λ|π),

|F0(w)| ≥ c|w|−1/2 exp(|�√
λ|π) if |√w − n| > 0.1 ∀n.
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Stability of Direct and Inverse Problems 2061

The above estimates show that if � does not get too close to the zeros of appropriate

trigonometric functions then |F0| > |R| along �. So the eigenvalues corresponding to λ

cannot cross � and the proof is complete. �

Corollary 10.2. Let ‖q‖p ≤ D and consider some eigenvalues λn ∈ σ(αn, 0; q). If �λn >

−D then

|�√λn| ≤ c(D). �

Proof. Under the linear deformation of q into the zero potential q∗ = 0, the correspon-

ding eigenvalues λ∗
n ∈ σ(αn, 0; q∗ = 0) are real and λ∗

n > −c(D) by the previous lemma.

Thus, |�λn| ≤ c(D), �λn > −D and then |�√
λn| ≤ c(D). �

Lemma 10.3. If ‖q‖p ≤ D, λ ∈ σ(α, 0; q), |�λ| ≤ D, and |λ| ≥ c(D) with a sufficiently large

constant independent of q, α, then λ is a simple eigenvalue. The multiplicity of eigenva-

lues |λ| ≤ c(D) is bounded by c1(D). �

Proof. If the characteristic function F (w) has multiple zero at λ, then

y2(π)ẏ′
2(π) − y′

2(π)ẏ2(π) = 0.

From the representation (10.1), we obtain the estimates

y2(π) = sin
√

λπ√
λ

+ O(λ−1), y′
2(π) = cos

√
λπ + O(λ−1/2),

ẏ2(π) = π cos
√

λπ

2λ
+ O(λ−3/2), ẏ′

2(π) = −π sin
√

λπ

2
√

λ
+ O(λ−1)

with implicit constants c0(D), thus

∣∣∣y2(π)ẏ′
2(π) − y′

2(π)ẏ2(π) + π

2λ

∣∣∣ ≤ c0(D)λ−3/2.

Consequently, if |λ| ≥ c(D) is sufficiently large with respect to c0(D) then λ is a simple

eigenvalue. The multiplicity of an eigenvalue |λ| ≤ c(D) can be estimated by drawing a

contour around λ as in the previous lemma and by applying the Rouché theorem. �
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Now the estimates (6.1) and (6.2) and the theorems listed in Section 3 can be proved just

like for the real potentials.
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