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Based on the relation between the m-function and the spectral function we construct
an inverse quantum scattering procedure at fixed energy which can be applied to spher-
ical radial potentials vanishing beyond a fixed radius a. To solve the Gelfand–Levitan–
Marchenko integral equation for the transformation kernel, we determine the input sym-
metrical kernel by using a minimum norm method with moments defined by the input
set of scattering phase shifts. The method applied to the box and Gauss potentials needs
further practical developments regarding the treatment of bound states.
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1. Introduction

Starting from the partial wave radial Schrödinger equation with unknown potential

q(r) vanishing beyond the finite radius r = a < ∞, we transform both the wave

function ϕl and the radial variable r to arrive at the standard Sturm–Liouville

equation.

1.1. Schrödinger equation on the finite interval 0 ≤ r ≤ a < ∞

Let us consider the radial Schrödinger equation

−ϕ′′
l (r) +

(

l(l + 1/2)

r2
+ q(r) − k2

)

ϕl(r) = 0 (1)

with the boundary conditions ϕl(r → 0) ≈ rl+1, and ϕl(r → ∞) ≈ sin(kr−lπ/2+δl)

with angular momentum quantum numbers l = 0, 1, 2, . . . . Here f ≈ g means that
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there exists a constant c 6= 0 such that f(r) = cg(r)(1 + o(1)). In Eq. (1) q(r)

is the ‘effective’ potential which is related to the ‘physical’ potential V (r) by the

relation q(r) = V (r)/(~2/2m) with m being the reduced mass. We shall call q(r) also

potential or inverse potential if we speak, respectively, of the exact (test) potential

or of the one constructed by the inverse procedure.

If the potential q(r) is zero beyond a certain radius r = a < ∞,

q(r ≥ a) = 0, (2)

then the wave function can be written as a linear combination of the two indepen-

dent free solutions:

ϕl(r ≥ a) ≈
√

r
(

Jl+ 1

2

(kr) − tan(δl(k))Yl+ 1

2

(kr)
)

. (3)

The input quantities for the inverse procedure are the set of phase shifts {δl(k)}
which determine the logarithmic derivatives d

dr ln ϕl(a), l = 0, 1, . . . , L ≈ ka

where the maximal angular momentum L is related to the wave number k and

the range a of the potential.

1.2. Transformed Schrödinger equation on the half line 0 ≤ x ≤ ∞

Performing the transformations

ϕl(r) =
√

ryl(x), r = a exp(−x), 0 ≤ r ≤ a (4)

one obtains the transformed Schrödinger equation

−y′′
l (x) + Q(x)yl(x) = −(l + 1/2)2 yl(x) (5)

with the transformed potential1

Q(x) = r2(q(r) − k2), 0 ≤ x ≤ ∞. (6)

Formally, Eq. (5) is an eigenvalue equation on the half line with ‘eigenvalues’ at

λ = −(l + 1
2
)2. The initial slope of these ‘eigenfunctions’ is known to be:

y′
l(0)

yl(0)
=

1

2
− a

ϕ′
l(a)

ϕl(a)
= −ka

J ′
l+1/2

(ka) − tan δlY
′
l+1/2

(ka)

Jl+1/2(ka) − tan δlYl+1/2(ka)
. (7)

Also, Eq. (5) can be considered as a Sturm–Liouville equation

−y′′(x) + Q(x)y(x) = λ y(x) (8)

whose inverse problem (that is, uniqueness of Q by the spectral function) is solved

for a long time (see e.g. Refs. 2 and 3).

Let us remark that for bound states supported by the transformed Q(x) the

eigenvalues are negative, λ < 0, and we know from the above treatment that the

values λ = −(l + 1/2)2 are associated with different initial boundary conditions

depending on l.
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2. Inverse Spectral Problem

The inverse spectral problem will be solved using the given set of scattering phase

shifts {δl}, in order to recover the unknown potential q(r).

2.1. Spectral functions

The inverse spectral problem for Eq. (8) is well known from the work of Levitan.2

Let us consider the spectral problem given by the initial boundary conditions

Yλ(0) = 1 and Y ′
λ(0) = 0 . (9)

To this spectral problem there exits a spectral function ρ(λ), λ ∈ R such that

any element f ∈ L2(0,∞, dx) can be transformed into the space with elements

F̃ ∈ L2(−∞,∞, dρ) by a unitary operator, i.e.

∫ ∞

0

|f(x)|2 dx =

∫ ∞

−∞

|F̃ (λ)|2 dρ(λ) , (10)

where

F̃ (λ) =

∫ ∞

0

f(x)Y (x, λ) dx and f(x) =

∫ ∞

−∞

F̃ (λ)Y (x, λ) dρ(λ) , (11)

with Y (x, λ) = Yλ(x) being the solution function of the Sturm–Liouville equation

(8) with boundary conditions (9).

If Q(x) ≡ 0 then the (free) solution corresponding to (9) is obtained from (8)

as Yλ(x) = cos
(√

λx
)

and the related (free) spectral function is given by

ρ0(λ) =







2

π

√
λ, λ ≥ 0 ,

0, λ < 0 .

(12)

2.2. Completeness relations

The completeness relations are as follows:

δ(x − t) =

∫ ∞

−∞

Y (x, λ)Y (t, λ) dρ(λ) , (13)

δ(x − t) =

∫ ∞

−∞

cos(
√

λx) cos(
√

λt) dρ0(λ) . (14)

These relations together with the Sturm–Liouville equation (8) can be used to solve2

the inverse spectral problem, i.e. to determine Q(x), if ρ(λ) is given.
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2.3. The m-function and its connection to the spectral function

In what follows we suppose that

rq(r) ∈ L1(0, a)

which implies by (6) that

Q(x) ∈ L1(0,∞).

Let y(x) = y(x, λ) be the L2-solution of (8); from Q ∈ L1 it follows that the

operator (8) is in the limit point case, and then the L2-solution of (8) is unique

up to a constant factor (for every λ not belonging to the spectrum). The Weyl–

Titchmarsh m-function is defined by

m(λ) =
y′(0, λ)

y(0, λ)
. (15)

Since

yl(x) = y(x,−(l + 1/2)2) ≈ exp(−(l + 1/2)x) x → ∞ ,

we have yl ∈ L2(0,∞), so from (3) and (4) we infer that

m(−(l + 1/2)2) =
y′(0,−(l + 1/2)2)

y(0,−(l + 1/2)2)
= −ka

J ′
l+1/2

(ka) − tan δlY
′
l+1/2

(ka)

Jl+1/2(ka) − tan δlYl+1/2(ka)
. (16)

The basis of our inversion method is the use of the theorem2 that establishes a

connection between the m-function and the spectral function:

1

m(λ)
=

∫ ∞

−∞

dρ(t)

λ − t
. (17)

Since the spectral function uniquely determines the potential,2,3 our task is to

recover ρ(t) from the given m(λ)’s.

2.4. The GLM equation and the inverse potential

By the usual method [see e.g. Ref. 2] we arrive at the definition

F (x) =

∫ ∞

−∞

cos(
√

λx) dσ(λ), with σ(λ) = ρ(λ) − ρ0(λ) , (18)

from which the input symmetrical kernel is obtained as

F (x, t) =

∫ ∞

−∞

cos(
√

λx) cos(
√

λt) dσ(λ) =
1

2
(F (x + t) + F (|x − t|)) . (19)
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Thus the spectral function determines the input kernel. Knowing the input

kernel one can determine the transformation kernel K(x, t) by solving the Gelfand–

Levitan–Marchenko (GLM) equation:

0 = F (x, t) + K(x, t) +

∫ x

0

K(x, s)F (s, t)ds (0 ≤ t ≤ x) . (20)

From the transformation kernel one obtains the (transformed) potential as

Q(x) = 2
d

dx
K(x, x) , (21)

which is related, at the fixed energy E = ~
2

2mk2, to the inverse potential by the rule

q (r = a exp(−x)) =
Q(x)

r2
+ k2 . (22)

3. Solution Method

3.1. Setting up a moment problem

Introduce the moments

µl =

∫ ∞

0

F (x) exp(−(l + 1/2)x)dx l = 0, 1, . . . (23)

The integral is convergent if there are no eigenvalues of (8) and (9) with λ ≤ −1/4.

The moments µl can be explicitly expressed by the phase shifts:

Lemma 1. If the spectrum of the problem −y”+Q(x)y = λy, y′(0) = 0 is contained

in (−1/4,∞), then in (23) we have

µl =
l + 1/2

ka

Jl+1/2(ka) − tan δlYl+1/2(ka)

J ′
l+1/2

(ka) − tan δlY ′
l+1/2

(ka)
− 1 (24)

=
Jl+3/2(ka) − tan δlYl+3/2(ka)

J ′
l+1/2

(ka) − tan δlY ′
l+1/2

(ka)
. (25)

If there are eigenvalues λj ≤ −1/4 then for the function

F̃ (x) =

∫ ∞

−1/4+0

cos
√

λx dσ(λ) (26)

we have

F̃ (x) = F (x) −
∑

λj≤−1/4

cosh
√

−λjx · (%(λj + 0) − %(λj − 0)) , (27)

∫ ∞

0

F̃ (x) exp(−(l + 1/2)x) dx = µl −
∑

λj≤−1/4

l + 1/2

(l + 1/2)2 + λj

· (%(λj + 0) − %(λj − 0)) , (28)

where the quantities µl satisfy (24), (25).
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Proof. Suppose first that there are no eigenvalues ≤ −1/4. We know from

Levitan,2 Chapter II that the convergence

∫ M

−1/4+0

cos
√

λx dσ(λ) → F (x) M → ∞

is locally bounded in x. Consequently

∫ N

0

F (x) exp(−(l + 1/2)x) dx

= lim
M→∞

∫ M

−1/4+0

[

∫ N

0

cos
√

λx exp(−(l + 1/2)x) dx

]

dσ(λ)

=

∫ ∞

−1/4+0

[

∫ N

0

cos
√

λx exp(−(l + 1/2)x) dx

]

dσ(λ)

=

∫ ∞

−1/4+0

[

exp((i
√

λ − l − 1/2)x)

2(i
√

λ − l − 1/2)
+

exp((−i
√

λ − l − 1/2)x)

2(−i
√

λ − l − 1/2)

]N

x=0

dσ(λ)

=

∫ ∞

−1/4+0

l + 1/2

(l + 1/2)2 + λ
dσ(λ)

+

∫ ∞

−1/4+0

√
λ sin

√
λN − (l + 1/2) cos

√
λN

(l + 1/2)2 + λ
exp(−(l + 1/2)N) dσ(λ)

= I1 + I2 .

Since σ(λ) is bounded (see (46) below), an integration by parts in I2 gives that

I2 = O(N exp(−(l + δ)N) → 0 N → ∞

for some δ > 0. This implies that
∫ ∞

0

F (x) exp(−(l + 1/2)x)dx =

∫ ∞

−1/4+0

l + 1/2

(l + 1/2)2 + λ
dσ(λ).

From the formula (17) we derive by (16) that

∫ ∞

0

F (x) exp(−(l + 1/2)x)dx = (l + 1/2)

(

1

m0(−(l + 1/2)2)
− 1

m(−(l + 1/2)2)

)

= −(l + 1/2)
yl(0)

y′
l(0)

− 1 =
l + 1/2

ka

Jl+1/2(ka) − tan δlYl+1/2(ka)

J ′
l+1/2

(ka) − tan δlY ′
l+1/2

(ka)
− 1

which is (24). From the identity

ν

r
Jν(r) − J ′

ν(r) = Jν+1(r)
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we get

l + 1/2

ka
Jl+1/2(ka) − J ′

l+1/2(ka) = Jl+3/2(ka)

and analogously with Y instead of J , hence (24) implies (25). Now if there are

eigenvalues ≤ 1/4, then we start with (26) and obtain

∫ ∞

0

F̃ (x) exp(−(l + 1/2)x)dx =

∫ ∞

−1/4+0

l + 1/2

(l + 1/2)2 + λ
dσ(λ)

= (l + 1/2)

(

1

m0(−(l + 1/2)2)
− 1

m(−(l + 1/2)2)

)

−
∑

λj≤−1/4

l + 1/2

(l + 1/2)2 + λj
· (%(λj + 0) − %(λj − 0))

which is (28).

3.2. Minimum norm solutions

In what follows we look for solutions of the moment problem (23) or (28) which are

the most ”economic” in the following sense:

Lemma 2. If the functions ϕn ∈ L2(0,∞), n = 0, . . . , N are linearly independent

then the solution of the moment problem

µn =

∫ ∞

0

hϕn n = 0, . . . , N (29)

of the smallest norm ‖h‖L2
can be given by the formula

h =

N
∑

n=0

cnϕn (30)

where the coefficients cn satisfy

N
∑

n=0

cn < ϕn, ϕi >L2
= µi i = 0, . . . , N. (31)

Proof. Substituting (30) into (29) we get (31). Since the ϕn are independent, the

Gram matrix (< ϕn, ϕi >)N
i,n=0 is nonsingular, so (31) has a unique solution. This

means that the problem (29) has a unique solution in the linear hull L of the

ϕn, 0 ≤ n ≤ N and it is given by (30), (31). For any other solution of (29) the

L-component satisfies (30), (31) and the component orthogonal to L will increase

the L2-norm.



September 23, 2008 9:43 WSPC/147-MPLB 01692
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Corollary. If F (x) = O(exp(d0x)) with some constant d0 < 1/2 then the moment

problem
∫ ∞

0

F (x) exp(−(l + 1/2)x) dx = µl l = 0, . . . , N (32)

has a unique solution which minimizes the expression
∫ ∞

0

F 2(x) exp(−(d0 + 1/2)x) dx. (33)

This solution has the form

F (x) =

N
∑

n=0

cn exp((d0 − n)x), (34)

N
∑

n=0

cn

n + l + 1/2− d0

= µl l = 0, . . . , N. (35)

Proof. Denote

ϕn(x) = exp((1/2(d0 − 1/2) − n)x),

then
∫ ∞

0

F (x) exp(−(l + 1/2)x) dx =

∫ ∞

0

F (x) exp(−1/2(d0 + 1/2)x)ϕl(x) dx.

Hence Lemma 2 applies with h(x) = F (x) exp(−1/2(d0 + 1/2)x) and with

< ϕn, ϕi >=

∫ ∞

0

exp((d0 − 1/2− n − i)x) dx =
1

n + i + 1/2− d0

.

This corollary motivated us to seek for F (x) in the form (34) also in the gen-

eral case if F (x) = O(exp(d0x)) with an arbitrary positive constant d0. Now the

expansion (34) can be interpreted as

F (x) =
∑

n≤d0−1/2

2cn cosh((d0 − n)x) + F̃ (x) (36)

F̃ (x) =
∑

n>d0−1/2

cn exp((d0 − n)x) −
∑

n≤d0−1/2

cn exp((n − d0)x) (37)

in analogy with (27). The moment problem (28) has the form
∫ ∞

0

F̃ (x) exp(−(l + 1/2)x) dx

= µl −
∑

n≤d0−1/2

2cn(l + 1/2)

(l + 1/2)2 − (d0 − n)2
, 0 ≤ l ≤ N . (38)
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Substituting (37) into the integral of (38) we get the system (35) again. Thus the

formulae (34), (35) are used to approximate F for arbitrary d0 > 0.

Another way to approximate F (x) = O(exp(d0x)) is the “Ansatz”

F (x) = c0 exp(d0x) + c1 + c2 exp(−x) + . . . + cN exp(−(N − 1)x) . (39)

This can be written in the form

F (x) = 2c0 cosh(d0x) + F̃ (x) (40)

F̃ (x) = −c0 exp(−d0x) + c1 + . . . + cN exp(−(N − 1)x) , (41)

so the moment problem (28) has the form

∫ ∞

0

F̃ (x) exp(−(l + 1/2)x) dx = µl −
2c0(l + 1/2)

(l + 1/2)2 − d2
0

l = 0, . . . , N . (42)

If d0 < 1/2, this is equivalent to (23). Substituting (41) into (42) gives

c0

l + 1/2− d0

+

N
∑

n=1

cn

n + l − 1/2
= µl l = 0, . . . , N . (43)

Lemma 3. Suppose that

F (x) = c0 exp(d0x) + ˜̃F (x), ˜̃F (x) exp(−x/4) ∈ L2(0,∞) . (44)

Then the moment problem

∫ ∞

0

˜̃F (x) exp(−(l + 1/2)x) dx = µl −
c0

l + 1/2− d0

l = 0, . . . , N − 1 (45)

has a unique solution for which

∫ ∞

0

˜̃F
2

(x) exp(−x/2) dx

is minimal; this solution has the form

˜̃F (x) = c1 + c2 exp(−x) + . . . + cN exp(−(N − 1)x) ,

with

N
∑

n=1

cn

n + l − 1/2
= µl −

c0

l + 1/2− d0

, l = 0, . . . , N − 1 .

Proof. Apply Lemma 2 with ϕl(x) = exp(−(l + 1/4)x) and h(x) = ˜̃F (x) ×
exp(−x/4).



September 23, 2008 9:43 WSPC/147-MPLB 01692
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3.3. Looking for the ground state

Both representations (34) and (39) contain the unknown parameter d0 > 0 where

λ0 = −d2
0 is the ground state of the operator. The problem is how to get the ground

state from the phase shifts. A heuristic method is based on the following fact:

Lemma 4. F (0) = 0 .

Proof. By definition, F (0) = 0 means that
∫ ∞

−∞

dσ(λ) = 0.

From Levitan,2 (2.1.8) we infer

%(λ) =
2

π

√
λ + %(−∞) + o(1) λ → +∞ . (46)

Thus, if %(λ) is continuous in λ0,

∫ λ0

−∞

dσ = %(λ0) − %(−∞) − 2

π

√
λ0 = o(1) → 0 λ0 → ∞ .

By the representation (34) or (39), F (0) = 0 means that

c0 + c1 + . . . + cN = 0 . (47)

In both cases every ci is a function of the ground state parameter d0. Our strategy

is to solve Eq. (47) in the variable d0. In the case (39) the Eq. (47) is particularly

simple: it is linear in d0 (though the summands ci are not linear):

Lemma 5. Let γ0, . . . , γN be different, b0, . . . , bN , L0, . . . , LN be arbitrary real

numbers. Then for the solution of the linear system

N
∑

j=0

xj

Lj + γi
= bi i = 0, . . . , N , (48)

the expression x0 + . . . + xN is linear in Lj if the Lk, k 6= j are fixed.

Proof. It is enough to prove the linearity of X = x0 + . . . + xN in the variable L0.

Putting x0 = X − x1 − . . . − xN into (48) gives

X

L0 + γi
+

N
∑

j=1

xj

[

1

Lj + γi
− 1

L0 + γi

]

= bi,

or

X +

N
∑

j=1

xj
L0 − Lj

Lj + γi
= bi(L0 + γi) i = 0, . . . , N.
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Introducing the new variables x̃j = xj(L0 − Lj) we get

X +

N
∑

j=1

x̃j

Lj + γi
= bi(L0 + γi) i = 0, . . . , N.

Solving this system by the Cramer’s rule we see that X(= x0 + . . . + xN ) and

x̃j(= xj(L0 − Lj)) are linear in L0.

Corollary. If F (x) is defined by (39) and (43) then

F (0) = c0 + . . . + cN

is a linear function of d0.

4. Examples

4.1. Test results for box potential of strength q0 and range a

In this section we apply the method defined by (34), (35) to the box potential

V (r) =

{

0.5 if 0 ≤ r ≤ a =
√

2 ,

0 else .
(49)

The results are shown in Fig. 1 and Table 1 at the particular scattering energy

of E = 0.5 au. We have used eleven exact phase shifts (L = 10) as input data

and obtained the values |∑ ci| = 7.9476E − 05 for the approximate solution (47)

and
√
−λ0 = 0.3881 for the bound state position supported by the transformed

potential Q(x). The values of the moments µl and the expansion coefficients cl are

also listed in table 1. We can observe some convergence of the these values but

also a strong parity dependence of alternate sign which puts forward the neccessity

of deep theoretical and numerical analysis of the proposed method. Nevertheless,

in Fig. 1 we see that the method is capable of reproducing the constant potential

within almost the whole range of interval 0 < r < a except for a narrow region

at the origin where the break down is attributed to numerical imprecision of the

extraction of the bound state value λ0 of Q(x) from the input phase shifts.

4.2. Test results for Gauss potential

As a next test example we consider the Gauss potential of the form

V (r) = −2e−r∗r/0.2 . (50)

The results are shown in Fig. 2 and Table 2 at the particular scattering en-

ergy of E = 1.125 au. We have used eight phase shifts as input data and ob-

tained the values |∑ ci| = 0.000778349535 for the approximate solution of (47) and
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Fig. 1. Values of inversion potential V (r) = q(r)/2 at various points of r. The results denoted
by dots are obtained with inversion of eleven phase shifts listed in Table 1 at the fixed energy of
Ecm = 0.5 au (k = 1 au).

Table 1. Original phase shifts δl produced by the box potential (49) at scattering energy
E = 0.5 au (k = 1 au). Moments µl (24), coefficients cl coordinate x potential Q(x), coordinate
r, inverse potential V (r) = q(r)/2.

l δl µl cl r V (r) x Q(x)

0 −0.26787108 2.46301475 0.294588221 0.04 0.51 3.50 −0.88E-03

1 −0.0412087867 0.158049407 −8.32712136E-006 0.10 0.49 2.66 −0.49E-02

2 −0.00266860754 0.061258996 −0.142407159 0.15 0.50 2.24 −0.11E-01

3 −8.9958849E-005 0.0329292625 −0.72507853 0.30 0.50 1.54 −0.45E-01

4 −1.87764359E-006 0.0206405363 3.95075817 0.46 0.50 1.12 −0.11

5 −2.6793723E-008 0.0141723626 −15.5544656 0.61 0.50 0.84 −0.19

6 −2.78409534E-010 0.0103412551 38.154116 0.70 0.50 0.70 −0.24

7 −2.20235589E-012 0.007882243 −57.9791576 0.81 0.50 0.56 −0.32

8 −1.37123257E-014 0.00620882469 52.9974668 0.99 0.50 0.35 −0.49

9 −6.8964531E-017 0.00501805571 −26.6661648 1.14 0.50 0.21 −0.65

10 −2.86070009E-019 0.00414035976 5.67043232 1.41 0.50 0.00 −1.00

√
−λ0 = 2.0853656 for the bound state position supported by the transformed po-

tential Q(x). The values of the moments µl and expansion coefficients cl are listed

in table 2 and we observe here also some parity dependence (alternating sign) of the

method. In Fig. 2 we see also that the method reproduces well the Gauss potential

within the interval 0.2 < r < a = 2.2, except a for small region around the origin.
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Table 2. Original phase shifts δl produced by the Gauss potential (50) at scattering energy
E = 1.125 au (k = 1.5 au). Moments µl (24), coefficients cl, coordinate r, inverse potential
V (r) = q(r)/2, coordinate x potential Q(x).

l δl µl cl r V (r) x Q(x)

0 0.232176185 −0.959479958 1.00099009 0.1 −0.38E+01 3.08 −0.57E-01

1 0.0153019948 −1.95222072 −0.0079578094 0.2 −0.36E+01 2.37 −0.23E+00

2 0.000655156119 2.22067925 0.14751958 0.4 −0.17E+01 2.65 −0.64E+00

3 2.07843498E-005 0.546233968 −1.2520096 0.59 −0.66E+00 1.26 −0.10E+01

4 5.17332799E-007 0.276018431 0.887810522 0.82 −0.13E+00 0.94 −0.16E+01

5 1.05616589E-008 0.17171037 −0.147292003 1.21 0.99E-02 0.55 −0.33E+01

6 1.83660135E-010 0.118605312 −1.21488495 1.6 0.29E-02 0.28 −0.57E+01

7 2.9692562E-012 0.0873778751 0.586602528 2.1 −0.33E-03 0 −0.99E+01
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0 0.5 1 1.5 2
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Fig. 2. Gauss potential results for the inversion of eight phase shifts at Ecm = 1.125 au (k =
1.5 au) using the inversion method of this work.
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1. M. Horváth, Inverse scattering with fixed energy and an inverse eigenvalue problem on
the half-line, Trans. Amer. Math. Soc. 358(11) (2006) 5161–5177.

2. B. M. Levitan, Inverse Sturm–Liouville Problems (VNU Science Press, Utrecht, The
Netherlands, 1987); M. Tinkham, Group Theory and Quantum Mechanics (McGraw-
Hill, New York, 1964).

3. B. M. Levitan and I. S. Sargsjan, Introduction to the Spectral Theory: Self Adjoint

Ordinary Differential Operators. Translated from the Russian by Amiel Feinstein,
Translations of Mathematical Monographs, Vol. 39 (American Mathematical Society,
Providence, R.I., 1975).


