Diszkrét kétszintú optimalizálás

Kis Tamás ${ }^{1}$

${ }^{1}$ MTA SZTAKI

valamint
ELTE, Operációkutatási Tanszék

BME Modellalkotási Szeminárium, 2012. ősz

Outline

Bilevel optimization
Problem formulation
Linear and integer bilevel programming
Complexity
The polynomial hierarchy
Complexity of multi-level proyramming
Bilevel scheduling problems
The bilevel total weighted completion time problem
The bilevel order acceptance problem
Bilevel lot-sizing
Uncapacitated lot-sizing with backlogging
The bilevel lot-sizing problem
MIP formulations
Computational evaluation

Outline

Bilevel optimization
Problem formulation
Linear and integer bilevel programming
Complexity
The polynomial hierarchy
Complexity of multi-level programming
Bilevel scheduling problems
The bilevel total weighted completion time problem
The bilevel order acceptance problem
Bilevel lot-sizing
Uncapacitated lot-sizing with backlogging
The bilevel lot-sizing problem
MIP formulations
Computational evaluation

Outline

Bilevel optimization
Problem formulation
Linear and integer bilevel programming
Complexity
The polynomial hierarchy
Complexity of multi-level programming
Bilevel scheduling problems
The bilevel total weighted completion time problem
The bilevel order acceptance problem
Bilevel lot-sizing
Uncapacitated lot-sizing with backlogging
The bilevel lot-sizing problem
MIP formulations
Computational evaluation

Outline

Bilevel optimization
Problem formulation
Linear and integer bilevel programming
Complexity
The polynomial hierarchy
Complexity of multi-level programming
Bilevel scheduling problems
The bilevel total weighted completion time problem
The bilevel order acceptance problem

Bilevel lot-sizing

Uncapacitated lot-sizing with backlogging
The bilevel lot-sizing problem
MIP formulations
Computational evaluation

Problem formulation

- Two decision makers, Leader and Follower, who make decisions sequentially, in this order
- General form: optimistic case

$$
\begin{equation*}
\min _{x, y} f(x, y) \tag{1}
\end{equation*}
$$

subject to

$$
\begin{align*}
& L(x, y) \tag{2}\\
& y \in \arg \min _{y^{\prime}}\left(g\left(x, y^{\prime}\right) \mid F\left(x, y^{\prime}\right)\right) \tag{3}
\end{align*}
$$

- General form: pessimistic case

$$
\begin{align*}
& \min _{x} \max _{y} \quad f(x, y) \tag{4}\\
& \text { subject to }
\end{align*}
$$

$$
\begin{align*}
& L(x, y) \tag{5}\\
& y \in \arg \min _{y^{\prime}}\left(g\left(x, y^{\prime}\right) \mid F\left(x, y^{\prime}\right)\right) \tag{6}
\end{align*}
$$

Linear bilevel optimization

- 2 levels
- Variables: $x=\left(x^{1}, x^{2}\right) \in \mathbb{R}_{+}^{n_{1}+n_{2}}$
- Variables x^{i} are exclusively controlled by player i
- Formulation:

$$
\begin{equation*}
\min _{x} \quad c^{11} x^{1}+c^{12} x^{2} \tag{7}
\end{equation*}
$$

subject to

$$
\begin{align*}
& A^{11} x^{1}+A^{12} x^{2} \geq b^{1} \tag{8}\\
& x^{2} \in \arg \min _{y}^{22}\left(c^{22} y \mid A^{21} x^{1}+A^{22} y \geq b^{2}\right) \tag{9}
\end{align*}
$$

The polynomial hierarchy

Definition (Polynomial hierarchy by Karp)

Let $L \subset S^{+}$be a language over a finite alphabet. For any $k \geq 1$,

- $L \in \sum_{k}^{p}$ if and only if $\exists p_{1}, \ldots, p_{k}$ polynomials and $L^{\prime} \in \mathcal{P}$ such that for any $x \in S^{+}$

$$
x \in L \text { iff }\left(\exists y_{1}\right)_{p_{1}}\left(\forall y_{2}\right)_{p_{2}} \ldots\left(Q y_{k}\right)_{p_{k}}\left[\left(x, y_{1}, \ldots, y_{k}\right) \in L^{\prime}\right]
$$

- $L \in \Pi_{k}^{p}$ if and only if $\exists p_{1}, \ldots, p_{k}$ polynomials and $L^{\prime} \in \mathcal{P}$ such that for any $x \in S^{+}$:

$$
x \in L \text { iff }\left(\forall y_{1}\right)_{p_{1}}\left(\exists y_{2}\right)_{p_{2}} \ldots\left(Q y_{k}\right)_{p_{k}}\left[\left(x, y_{1}, \ldots, y_{k}\right) \in L^{\prime}\right]
$$

Definition (Polynomial hierarchy by Stockmeyer)
$\sum_{k}^{p}=\mathcal{N} \mathcal{P}\left(\sum_{k-1}^{p}\right)$ with $\sum_{0}^{p}=\mathcal{P}$
$\Pi_{k}^{p}=\operatorname{co-\mathcal {N}}\left(\sum_{k-1}^{p}\right)$
Theorem (Wrathal)
The two definitions are equivalent.

Complexity of multi-level programming

Theorem (Jeroslow)

Bilevel linear programming is NP-hard.
Theorem (Jeroslow)
$(k+1)$-level linear programming is Σ_{k}^{p}-hard.
Theorem (Jeroslow)
k-level integer (binary) programming is Σ_{k}^{p}-hard.
Corollary
Unless the polynomial hierarchy collapses at level 1, integer (binary) k-level programs cannot be modeled by mixed integer programs of size polynomial in the size of the input, for any $k \geq 2$.
Corollary
Unless the polynomial hierarchy collapses at level 1, linear k-level programs cannot be modeled by mixed integer programs of size polynomial in the size of the input, for any $k \geq 3$.

The bilevel total weighted completion time problem

- n jobs and m parallel, identical machines, no preemption
- Leader: assigns jobs to machines $\left(J=J_{1} \cup J_{2} \cup \cdots \cup J_{m}\right)$
- Optimistic objective: $\min \sum_{j \in J} w_{j}^{1} C_{j}$
- Pessimistic objective: $\min \max \sum_{j \in J} w_{j}^{1} C_{j}$
- Follower: sequences the assigned jobs on each machine

$$
\min \sum_{i=1}^{m} \sum_{j \in J_{i}} w_{j}^{2} C_{j}
$$

- For a given machine assignment J_{1}, \ldots, J_{m}, Follower solves m single machine problems $1 \| \sum_{j} w_{j}^{2} C_{j}$ by Smith's rule (WSPT order)
- Leader has to find the best assignment knowing the strategy of the Follower

Results on bilevel total weighted completion time problem

Restriction	Complexity	
no restriction	decision version is NP-complete	
$w^{1} \equiv 1, w^{2}$ induces	equivalent to $P \\| \sum_{j} C_{j}$	
an increasing proc. time order		
$w^{1} \equiv 1, w^{2}$ induces	reduces to a special	
A decreasing proc. time order	MAX m-CUT problem	
$w^{1} \equiv 1, w^{2}$ arbitrary	FPTAS of Sahni for $P m \\| \sum_{j} w_{j} C_{j}$	
m constant	can be generalized	

The structure of optimal solutions

Lemma
There is a global ordering of jobs such that in an optimal solution on each machine the job sequence respects the global order. In the optimistic case the global order is WSPT with respect to w^{2} and in case of ties WSPT w.r.t. w^{1}.
In the pessimistic case the global order is WSPT with respect to w^{2} and in case of ties reverse WSPT w.r.t. w^{1}.

Reduction to the MAX m-CUT problem

MAX m-CUT (optimization version)
input: the number of vertices (of a complete graph) n, edge weights c_{e} for all the $n(n-1) / 2$ edges, a number m with $m \leq n$ (all data in \mathbb{Z}_{+}) output: a partitioning of the vertices into m disjoint classes V_{1}, \ldots, V_{m} such that the total weight of edges between the classes is maximized, i.e.,

$$
\max _{\left(V_{1}, \ldots, V_{m}\right)} \sum_{k=1}^{m-1} \sum_{\ell=k+1}^{m} \sum_{i \in V_{k}, j \in V_{\ell}} c_{i j}
$$

where the maximum is over all m-partitions of the n nodes Reduction: the nodes are identified with the n tasks, and

$$
c_{j k}=p_{j} w_{k}^{1} \quad \text { if } \frac{w_{j}^{2}}{p_{j}}>\frac{w_{k}^{2}}{p_{k}} ; \text { or } \frac{w_{j}^{2}}{p_{j}}=\frac{w_{k}^{2}}{p_{k}} \text { and } \frac{w_{j}^{1}}{p_{j}} \geq \frac{w_{k}^{1}}{p_{k}}
$$

A special MAX m-CUT problem

Special weights

If $w^{1} \equiv 1$ and $\frac{w_{j}^{2}}{p_{j}}>\frac{w_{k}^{2}}{p_{k}}$ iff $p_{j}>p_{k}$, then $c_{j k}=\max \left\{p_{j}, p_{k}\right\}$
Theorem
There exists an optimal solution to MAX m-CUT such that $V_{1}=\left\{1, \ldots, k_{1}\right\}, V_{2}=\left\{k_{1}+1, \ldots, k_{2}\right\}, \ldots, V_{m}=\left\{k_{m-1}+1, \ldots, m\right\}$, where $p_{j} \geq p_{k}$ for $j<k$.
(1) (2) (6) (7)

(8)
(4)

Corollary
The MAX m-CUT problem with the above weights can be solved by dynamic programming in polynomial time

The bilevel order acceptance problem

- There are n jobs with processing times p_{j}, due-dates d_{j}, and job-weights w_{j}^{1}, w_{j}^{2}; and a single machine
- Leader: selects a subset of jobs A (accepted jobs) to maximize $\sum_{j \in A} w_{j}^{1}$
- Follower: sequences the jobs non-preemptively to minimize $\sum_{j \in A} w_{j}^{2} C_{j}$
- The solution is feasible iff the optimal solution chosen by the Follower meets the due-dates of all jobs in A
- If the Leader is optimistic, it selects A such that at least one optimal solution of the Follower meets all the due-dates
- If the Leader is pessimistic, it selects A such that all the optimal solutions of the Follower with respect to A meets all the due-dates

Results on the bilevel order acceptance problem

Restriction	Complexity
no restriction	decision version is NP-complete solvable in pseudo-poly time
$w^{1} \equiv 1$	Polynomial (generalized Moore-Hodgson alg.)

A polynomial algorithm for the $w^{1} \equiv 1$ case

The Moore-Hodgson algorithm for $1\left|\mid \sum U_{j}\right.$

1. Order the jobs in EDD order: $d_{1} \leq \ldots \leq d_{n}$
2. Starting with the first job, process the jobs one-by-one. If all jobs can be completed on time, stop. Otherwise, let k_{1} be the first job such that $\sum_{j=1}^{k_{1}} p_{j}>d_{k_{1}}$. Remove from the first k_{1} jobs the one with largest p_{j} value, and proceed with the next job.
Modification for the bilevel order acceptance problem:
3. Order the jobs in the Follower's WSPT order: $j<k$ iff $\frac{w_{j}^{2}}{p_{j}}>\frac{w_{k}^{2}}{p_{k}}$ and in case of ties if $d_{j}<d_{k}\left(d_{j}>d_{k}\right)$

Uncapacitated lot-sizing with backlogging (ULSB)

$$
\begin{equation*}
\min \left\{\sum_{t=1}^{n}\left(p_{t} x_{t}+f_{t} y_{t}+h_{t} s_{t}+g_{t} r_{t}\right) \mid(11)-(15)\right\} \tag{10}
\end{equation*}
$$

where

$$
\begin{array}{ll}
x_{t}+\left(s_{t-1}-r_{t-1}\right)=d_{t}+\left(s_{t}-r_{t}\right), & t=1, \ldots, n \\
x_{t} \leq M y_{t}, & t=1, \ldots, n \\
s_{0}=s_{n}=r_{0}=r_{n}=0, & t=1, \ldots, n \\
x_{t}, s_{t}, r_{t}, \geq 0, & t=1, \ldots, n \\
y_{t} \in\{0,1\}, &
\end{array}
$$

where

- The $p_{t}, f_{t}, h_{t}, g_{t}$ are the cost parameters, the d_{t} are the demands
- The $x_{t}, y_{t}, s_{t}, r_{t}$ are the variables

Some related work

- W. I. Zangwill, A backlogging model and a multi-echelon model of a dynamic economic lot size production system - A network approach. Management Science, 15(9):506-527, 1969.
- A. Federgruen, M. Tzur, The dynamic lot-sizing model with backlogging: A simple $O(n \log n)$ algorithm and minimal forecast horizon procedure. Naval Res. Logitics 40, 459-478, 1993.
- Y. Pochet and L. A. Wolsey. Lot-size models with backlogging: Strong reformulations and cutting planes. Mathematical Programming, 40:317-335, 1988.
- S. Kucukyavuz and Y. Pochet. Uncapacitated lot-sizing with backlogging: the convex hull. Mathematical Programming, Ser. A, 118:151-175, 2009.

Network representation of ULSB

Extreme point solutions for ULSB

Bilevel lot-sizing

Rules of the game

- Both decision makers solve an uncapacitated lot-sizing problem with backlogging
- The Leader has external demand (d_{t}^{1})
- The Leader's production $\left(x_{t}^{1}\right)$ equals the supply received from the Follower
- The Follower's demand $\left(\delta_{t}\right)$ is set by the Leader
- Both the Leader and the Follower may backlog some of its demand
- The Follower pays the backlogging cost to the Leader as penalty for late delivery
- In those periods when the Follower backlogs, there is no delivery to the Leader ($r_{t}^{2} x_{t}^{1}=0$)
- If the Follower does not backlog in some period t, then it supplies all the demands from the last supply point, i.e., $\sum_{u=t^{\prime}+1}^{t} \delta_{t}$, where t^{\prime} is the last supply point $\left(x_{t^{\prime}}^{1}>0\right)$ or $t^{\prime}=0$

Formulation

$$
\begin{equation*}
\text { Minimize } \sum_{t=1}^{n}\left(p_{t}^{1} x_{t}^{1}+f_{t}^{1} y_{t}^{1}+h_{t}^{1} s_{t}^{1}+g_{t}^{1} r_{t}^{1}-g_{t}^{2} r_{t}^{2}\right) \tag{16}
\end{equation*}
$$

subject to

$$
\begin{array}{ll}
x_{t}^{1}+s_{t-1}^{1}-r_{t-1}^{1}=d_{t}^{1}+s_{t}^{1}-r_{t}^{1}, & t=1, \ldots, n \\
r_{t}^{2}=\sum_{\tau=1}^{t}\left(\delta_{\tau}-x_{\tau}^{1}\right), & t=1, \ldots, n \\
x_{t}^{1} \leq M y_{t}^{1}, & t=1, \ldots, n \\
x_{t}^{1} \leq M\left(1-\beta_{t}^{2}\right), & t=1, \ldots, n-1 \\
s_{0}^{1}=s_{n}^{1}=r_{0}^{1}=r_{n}^{1}=0, & \\
x_{t}^{1}, r_{t}^{1}, s_{t}^{1}, \delta_{t} \geq 0, & t=1, \ldots, n \\
y_{t}^{1} \in\{0,1\}, & t=1, \ldots, n
\end{array}
$$

Formulation (cont.d)

$\left(\begin{array}{c}y^{2} \\ x^{2} \\ s^{2} \\ r^{2} \\ \beta^{2}\end{array}\right) \in \arg \min \left\{\sum_{t=1}^{n}\left(p_{t}^{2} x_{t}^{2}+f_{t}^{2} y_{t}^{2}+h_{t}^{2} s_{t}^{2}+g_{t}^{2} r_{t}^{2}\right) \mid(25)-(31)\right\}$
where $\quad x_{t}^{2}+\left(s_{t-1}^{2}-r_{t-1}^{2}\right)=\delta_{t}+\left(s_{t}^{2}-r_{t}^{2}\right), \quad t=1, \ldots, n$

$$
\begin{equation*}
x_{t}^{2} \leq M y_{t}^{2}, \quad t=1, \ldots, n \tag{26}
\end{equation*}
$$

$s_{0}^{2}=s_{n}^{2}=r_{0}^{2}=r_{n}^{2}=0$,
$x_{t}^{2}, s_{t}^{2}, r_{t}^{2} \geq 0$,
$t=1, \ldots, n$
$y_{t}^{2} \in\{0,1\}$,
$t=1, \ldots, n$

$$
\begin{array}{ll}
r_{t}^{2} \leq M \beta_{t}^{2}, & t=1, \ldots, n-1 \\
\beta_{t}^{2} \in\{0,1\} & t=1, \ldots, n-1 . \tag{29}
\end{array}
$$

Example

Optimal solution of a sample problem

t	1	2	3	4	5	6	7	8	9	10
d_{t}^{1}	71	84	43	21	4	81	59	44	32	46
x_{t}^{1}	82	73	68			82.49	57.51	55.46	21.93	44.61
s_{t}^{1}	11		25	4		1.49		11.46	1.39	
r_{t}^{1}										
δ_{t}	82	73	68	42.72	39.77	57.51	55.46	21.93	44.61	
x_{t}^{2}	82	141				140.00		122.00		
s_{t}^{2}		68				57.51		66.54	44.61	
r_{t}^{2}					42.72					

$$
\begin{array}{llll}
f^{1}=100 & p^{1}=1 & h^{1}=6 & g^{1}=18 \\
f^{2}=492 & p^{2}=1 & h^{2}=2 & g^{2}=6
\end{array}
$$

Example

Optimal solution of a sample problem

t	1	2	3	4	5	6	7	8	9	10
d_{t}^{1}	71	84	43	21	4	81	59	44	32	46
x_{t}^{1}	82	73	68			82.49	57.51	55.46	21.93	44.61
s_{t}^{1}	11		25	4		1.49		11.46	1.39	
r_{t}^{1}										
δ_{t}	82	73	68	42.72	39.77	57.51	55.46	21.93	44.61	
x_{t}^{2}	82	141				140.00		122.00		
s_{t}^{2}		68				57.51		66.54	44.61	
r_{t}^{2}					42.72					

$$
\begin{array}{llll}
f^{1}=100 & p^{1}=1 & h^{1}=6 & g^{1}=18 \\
f^{2}=492 & p^{2}=1 & h^{2}=2 & g^{2}=6
\end{array}
$$

Formulation MIP-1

Definition
Let $O P^{2}$ be the set of those ($\left.\bar{x}^{2}, \bar{y}^{2}, \bar{s}^{2}, \bar{r}^{2}, \bar{\delta}\right)$ vectors such that $\sum_{t=1}^{n} \bar{\delta}_{t}=\sum_{t=1}^{n} d_{t}^{1}$, and $\left(\bar{x}^{2}, \bar{y}^{2}, \bar{s}^{2}, \bar{r}^{2}\right)$ is an optimal solution for the ULSB of the Follower w.r.t. demand $\bar{\delta}$.
Let $Z^{\text {ULSB }}(\delta)$ denote the optimum value of ULSB for fixed $\delta>0$
Question
Does $O P^{2}$ admit a compact (extended) mixed integer formulation?
Answer
YES! Idea: use an extended formulation for ULSB with δ in the objective function only.

Formulation MIP-1 (cont.d)

Lemma

(Pochet and Wolsey (1988)) The optimum value of ULSB equals the optimum value of the following mathematical program

$$
L^{S P}(\delta)=\min \sum_{k=1}^{n}\left(\sum_{\ell=1}^{k-1} a_{k \ell} v_{k \ell}+p_{k} \delta_{k} z_{k k}+\sum_{\ell=k+1}^{n} b_{k \ell} w_{k \ell}\right)+\sum_{t=1}^{n} f_{t} z_{t t}
$$

subject to a shortest path formulation in the network below, where $a_{k \ell}=p_{k} \delta_{\ell, k-1}+\sum_{t=\ell}^{k-1} g_{t} \delta_{\ell, t}$ for $1 \leq \ell<k \leq n$, and $b_{k \ell}=p_{k} \delta_{k+1, \ell}+\sum_{t=k}^{\ell-1} h_{t} \delta_{t+1, \ell}$ for $1 \leq k<\ell \leq n$, and $\delta_{k, \ell}=\sum_{t=k}^{\ell} \delta_{t}$ for $1 \leq k \leq \ell \leq n$.

Formulation MIP-1 (cont.d)

The dual of the shortest path formulation is

$$
\begin{equation*}
D^{S P}(\delta)=\max \phi_{1}^{2} \tag{32}
\end{equation*}
$$

subject to

$$
\left.\begin{array}{lc}
\phi_{t}^{2}-\phi_{k^{\prime}}^{2} \leq a_{k, t}, & k=t, \ldots, n \tag{33}\\
\phi_{t^{\prime}}^{2}-\phi_{t^{\prime \prime}}^{2} \leq p_{t}^{2} \delta_{t}+f_{t}^{2}, & \\
\phi_{t^{\prime \prime}}^{2}-\phi_{k+1}^{2} \leq b_{t, k}, & k=t, \ldots, n
\end{array}\right\} \text { for all } t=1, \ldots, n .
$$

By the strong duality of linear programming $Z^{U L S B}(\delta)=D^{S P}(\delta)$ for any fixed $\delta \geq 0$.
Lemma
$\left(\hat{x}^{2}, \hat{y}^{2}, \hat{s}^{2}, \hat{r}^{2}, \hat{\delta}\right) \in O P^{2}$ if and only if $\sum_{t=1}^{n} \delta_{t}=\sum_{t=1}^{n} d_{t}^{1}$, and there exists $\hat{\phi}^{2}$ such that ($\hat{x}^{2}, \hat{y}^{2}, \hat{s}^{2}, \hat{r}^{2}, \hat{\beta}, \hat{\delta}, \hat{\phi}^{2}$) satisfies the constraints (25)-(31), (33), and the equation

$$
\begin{equation*}
\sum_{t=1}^{n}\left(p_{t}^{2} x_{t}^{2}+f_{t}^{2} y_{t}^{2}+h_{t}^{2} s_{t}^{2}+g_{t}^{2} r_{t}^{2}\right)=\phi_{1}^{2} \tag{34}
\end{equation*}
$$

Formulation MIP-1 (cont.d)

The complete formulation:
MIP-1 : $\min \left\{\sum_{t=1}^{n}\left(p_{t}^{1} x_{t}^{1}+f_{t}^{1} y_{t}^{1}+h_{t}^{1} s_{t}^{1}+g_{t}^{1} r_{t}^{1}-g_{t}^{2} r_{t}^{2}\right) \left\lvert\, \begin{array}{l}(17)-(19), \\ (21)-(23), \\ (25)-(31), \\ (33),(34)\end{array}\right.\right\}$.

Lemma

We have the following correspondence between the feasible solutions of the bilevel lot-sizing problem and that of MIP-1:
(i) Any feasible solution of MIP-1 can be projected onto a feasible solution of the bilevel lot-sizing problem of the same value.
(ii) Conversely, any feasible solution of the bilevel lot-sizing problem can be extended to a feasible solution of MIP-1 of the same value.

Formulation MIP-2

- Again, based on a shortest path formulation
$\alpha_{i j k}=\left\{\begin{array}{l}1 \text { the requests } \delta_{i}, \ldots, \delta_{k} \text { are produced in } j \in\{i, \ldots, k\} \\ 0 \text { otherwise }\end{array}\right.$
- If $\alpha_{i j k}=1$, then $s_{i-1}^{2}=s_{k}^{2}=0$, and $r_{i-1}^{2}=r_{k}^{2}=0$.
- Cost associated with $\alpha_{i j k}$:

$$
c_{i j k}=a_{j, i}+f_{j}+p_{j} \delta_{j}+b_{j, k}
$$

Formulation MIP-2 (cont.d)

$$
\text { MIP-2 : } \quad \min \sum_{t=1}^{n}\left(p_{t}^{1} x_{t}^{1}+f_{t}^{1} y_{t}^{1}+h_{t}^{1} s_{t}^{1}+g_{t}^{1} r_{t}^{1}-g_{t}^{2} r_{t}^{2}\right)
$$

subject to the constraints of the Leader, and

$$
\begin{aligned}
& r_{t}^{2} \leq M\left(1-\beta_{t}^{2}\right), \quad t=1, \ldots, n-1 \\
& \beta_{t}^{2}=\sum_{i \leq t<j \leq k} \alpha_{i, j, k}, \quad t=1, \ldots, n-1 \\
& \sum_{i \leq t \leq k} \sum_{i \leq j \leq k} \alpha_{i, j, k}=1, \quad t=1, \ldots, n \\
& a_{j, i}+f_{j}+p_{j} \delta_{j}+b_{j, k}+\phi_{i-1} \geq \phi_{k}, \quad 1 \leq i \leq j \leq k \leq n \\
& a_{j, i}+f_{j}+p_{j} \delta_{j}+b_{j, k}+\phi_{i-1} \leq \phi_{k}-M^{\prime}\left(1-\alpha_{i, j, k}\right), \quad 1 \leq i \leq j \leq k \leq n \\
& \phi_{0}=0 \\
& \alpha_{i, j, k} \in\{0,1\}, \quad 1 \leq i \leq j \leq k \leq n
\end{aligned}
$$

Extreme Point Solutions

Definition

A solution to the bilevel lot-sizing problem is an extreme point solution if the Follower's part is an extreme point solution of ULSB with demands δ_{t}.
Assumption $g_{t}^{2}+h_{t}^{2}>0$ for all $t=1, \ldots, n-1$.
This assumption excludes that a solution with $r_{t}^{2} s_{t}^{2}>0$ is optimal for the Follower.
Lemma
Under the assumption, if the bilevel optimization problem admits an optimal solution, then it admits an extreme point optimal solution.

Strengthening the formulations

- Bounds on variables
$Z_{t}=\min _{u \geq t+1}\left(p_{u}+\sum_{v=t}^{u-1} g_{v}\right)$ is the minimum cost incurred by backlogging a unit of production from period t to a later period. $S_{t}=\min _{1 \leq u<t}\left(p_{u}+\sum_{v=u}^{t-1} h_{v}\right)$ is the minimum cost of stocking a unit production from an earlier period to t.

Lemma

The backlogged quantities r_{t} and the stock levels s_{t} in any extreme point optimal solution of ULSB satisfy

$$
\begin{gather*}
\left(Z_{t}-p_{t}\right) r_{t} \leq f_{t}, \text { for } t=1, \ldots, n-1 \tag{B}\\
\left(S_{t}-p_{t}\right) S_{t-1} \leq f_{t}, \text { for } t=1, \ldots, n-1 \tag{B}
\end{gather*}
$$

- Cuts

Lemma
Extreme point solutions satisfy

$$
\begin{equation*}
s_{t-1}^{2} \leq M\left(1-y_{t}^{2}-\beta_{t}^{2}\right), \quad t=2, \ldots, n \tag{C}
\end{equation*}
$$

Computational experiments

- For each $n \in\{10,15,20,25,30,40,50\}, 100$ random instances with parameters

$$
\begin{array}{llll}
f_{t}^{1} \leftarrow U[100,200] & p_{t}^{1} \leftarrow U[1,5] & h_{t}^{1} \leftarrow U[2,20] & g_{t}^{1} \leftarrow U[4,40] \\
f_{t}^{2} \leftarrow U[250,1000] & p_{t}^{2} \leftarrow U[2,10] & h_{t}^{2} \leftarrow U[1,10] & g_{t}^{2} \leftarrow U[2,20] \\
d_{t}^{1} \leftarrow U[0,100] & & &
\end{array}
$$

- Implementation in FICO XPRESS Mosel environment
- Tests performed on a workstation with Intel Xeon CPU (2.5 GHz), Linux operating system

Results

		opt	LB gap (\%)		UB gap (\%)		time (sec)		
		max	avg	max	avg	max	avg		
$\stackrel{\bar{\prime}}{\bar{\Sigma}}$	$n=10$		100	0.00	0.00	0.00	0.00	0.49	0.16
	$n=20$	100	0.00	0.00	0.00	0.00	9.91	1.14	
	$n=30$	100	0.00	0.00	0.00	0.00	188.00	16.75	
	$n=40$	88	17.36	0.89	16.99	0.47	1200.44	329.86	
	$n=50$	53	15.09	2.91	12.38	1.88	1200.90	749.97	
$\begin{aligned} & \infty \\ & \stackrel{\infty}{\vdots} \\ & \end{aligned}$	$n=10$	100	0.00	0.00	0.00	0.00	0.53	0.16	
	$n=20$	100	0.00	0.00	0.00	0.00	13.83	1.19	
	$n=30$	100	0.00	0.00	0.00	0.00	357.02	22.00	
	$n=40$	90	19.68	0.79	16.99	0.46	1200.30	322.78	
	$n=50$	59	14.41	2.51	11.85	1.94	1200.58	714.31	
$\frac{0}{\square}$	$n=10$	100	0.00	0.00	0.00	0.00	0.61	0.18	
	$n=20$	100	0.00	0.00	0.00	0.00	8.41	1.20	
	$n=30$	100	0.00	0.00	0.00	0.00	248.62	16.07	
	$n=40$	92	16.99	0.60	17.82	0.46	1200.30	248.81	
	$n=50$	51	15.19	2.77	11.81	1.88	1200.65	730.48	
$\begin{aligned} & \infty \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	$n=10$	100	0.00	0.00	0.00	0.00	0.76	0.27	
	$n=20$	100	0.00	0.00	0.00	0.00	8.82	1.54	
	$n=30$	100	0.00	0.00	0.00	0.00	158.35	14.74	
	$n=40$	96	17.02	0.46	16.99	0.44	1200.26	227.71	
	$n=50$	65	12.11	1.97	11.51	1.83	1200.55	645.94	
\bigcirc	$n=10$	100	0.00	0.00	0.00	0.00	35.65	17.93	
$\stackrel{0}{\Sigma}$	$n=20$	0	70.73	43.06	2974.59	1515.28	1200.00	1200.00	
$\begin{aligned} & \underset{\sim}{N} \\ & N \\ & \end{aligned}$	$n=10$	100	0.00	0.00	0.00	0.00	46.83	10.57	
	$n=20$	0	59.32	17.79	192.80	108.28	1200.00	1200.00	

