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Problem formulation

I Two decision makers, Leader and Follower, who make decisions
sequentially, in this order

I General form: optimistic case

min
x,y

f (x , y) (1)

subject to
L(x , y) (2)
y ∈ arg min

y ′
(g(x , y ′) | F (x , y ′)) (3)

I General form: pessimistic case

min
x

max
y

f (x , y) (4)

subject to
L(x , y) (5)
y ∈ arg min

y ′
(g(x , y ′) | F (x , y ′)). (6)



Linear bilevel optimization

I 2 levels
I Variables: x = (x1, x2) ∈ Rn1+n2

+

I Variables x i are exclusively controlled by player i
I Formulation:

min
x

c11x1 + c12x2 (7)

subject to
A11x1 + A12x2 ≥ b1 (8)
x2 ∈ arg min

y
(c22y | A21x1 + A22y ≥ b2). (9)



The polynomial hierarchy

Definition (Polynomial hierarchy by Karp)
Let L ⊂ S+ be a language over a finite alphabet. For any k ≥ 1,

I L ∈
∑p

k if and only if ∃p1, . . . ,pk polynomials and L′ ∈ P such
that for any x ∈ S+

x ∈ L iff (∃y1)p1 (∀y2)p2 . . . (Qyk )pk [(x , y1, . . . , yk ) ∈ L′]
I L ∈ Πp

k if and only if ∃p1, . . . ,pk polynomials and L′ ∈ P such that
for any x ∈ S+:
x ∈ L iff (∀y1)p1 (∃y2)p2 . . . (Qyk )pk [(x , y1, . . . , yk ) ∈ L′]

Definition (Polynomial hierarchy by Stockmeyer)∑p
k = NP(

∑p
k−1) with

∑p
0 = P

Πp
k = co −NP(

∑p
k−1)

Theorem (Wrathal)
The two definitions are equivalent.



Complexity of multi-level programming

Theorem (Jeroslow)
Bilevel linear programming is NP-hard.

Theorem (Jeroslow)
(k + 1)-level linear programming is Σp

k -hard.

Theorem (Jeroslow)
k-level integer (binary) programming is Σp

k -hard.

Corollary
Unless the polynomial hierarchy collapses at level 1, integer (binary)
k-level programs cannot be modeled by mixed integer programs of
size polynomial in the size of the input, for any k ≥ 2.

Corollary
Unless the polynomial hierarchy collapses at level 1, linear k-level
programs cannot be modeled by mixed integer programs of size
polynomial in the size of the input, for any k ≥ 3.



The bilevel total weighted completion time problem

I n jobs and m parallel, identical machines, no preemption
I Leader: assigns jobs to machines (J = J1 ∪ J2 ∪ · · · ∪ Jm)

I Optimistic objective: min
∑

j∈J w1
j Cj

I Pessimistic objective: min max
∑

j∈J w1
j Cj

I Follower: sequences the assigned jobs on each machine

min
m∑

i=1

∑
j∈Ji

w2
j Cj

I For a given machine assignment J1, . . . , Jm, Follower solves m
single machine problems 1||

∑
j w2

j Cj by Smith’s rule (WSPT
order)

I Leader has to find the best assignment knowing the strategy of
the Follower



Results on bilevel total weighted completion time
problem

Restriction Complexity
no restriction decision version is NP-complete
w1 ≡ 1, w2 induces equivalent to P||

∑
j Cj

an increasing proc. time order
w1 ≡ 1, w2 induces reduces to a special
A decreasing proc. time order MAX m-CUT problem
w1 ≡ 1, w2 arbitrary FPTAS of Sahni for Pm||

∑
j wjCj

m constant can be generalized



The structure of optimal solutions

Lemma
There is a global ordering of jobs such that in an optimal solution on
each machine the job sequence respects the global order.
In the optimistic case the global order is WSPT with respect to w2

and in case of ties WSPT w.r.t. w1.
In the pessimistic case the global order is WSPT with respect to w2

and in case of ties reverse WSPT w.r.t. w1.



Reduction to the MAX m-CUT problem

MAX m-CUT (optimization version)
input: the number of vertices (of a complete graph) n, edge weights
ce for all the n(n−1)/2 edges, a number m with m ≤ n (all data in Z+)
output: a partitioning of the vertices into m disjoint classes
V1, . . . ,Vm such that the total weight of edges between the classes is
maximized, i.e.,

max
(V1,...,Vm)

m−1∑
k=1

m∑
`=k+1

∑
i∈Vk ,j∈V`

cij

where the maximum is over all m-partitions of the n nodes
Reduction: the nodes are identified with the n tasks, and

cjk = pjw1
k if

w2
j

pj
>

w2
k

pk
; or

w2
j

pj
=

w2
k

pk
and

w1
j

pj
≥

w1
k

pk



A special MAX m-CUT problem

Special weights

If w1 ≡ 1 and w2
j

pj
>

w2
k

pk
iff pj > pk , then cjk = max{pj ,pk}

Theorem
There exists an optimal solution to MAX m-CUT such that
V1 = {1, . . . , k1},V2 = {k1 + 1, . . . , k2}, . . . ,Vm = {km−1 + 1, . . . ,m},
where pj ≥ pk for j < k.
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Corollary
The MAX m-CUT problem with the above weights can be solved by
dynamic programming in polynomial time



The bilevel order acceptance problem

I There are n jobs with processing times pj , due-dates dj , and
job-weights w1

j ,w
2
j ; and a single machine

I Leader: selects a subset of jobs A (accepted jobs) to maximize∑
j∈A w1

j
I Follower: sequences the jobs non-preemptively to minimize∑

j∈A w2
j Cj

I The solution is feasible iff the optimal solution chosen by the
Follower meets the due-dates of all jobs in A

I If the Leader is optimistic, it selects A such that at least one
optimal solution of the Follower meets all the due-dates

I If the Leader is pessimistic, it selects A such that all the optimal
solutions of the Follower with respect to A meets all the
due-dates



Results on the bilevel order acceptance problem

Restriction Complexity
no restriction decision version is NP-complete

solvable in pseudo-poly time
w1 ≡ 1 Polynomial (generalized Moore-Hodgson alg.)



A polynomial algorithm for the w1 ≡ 1 case

The Moore-Hodgson algorithm for 1||
∑

Uj

1. Order the jobs in EDD order: d1 ≤ . . . ≤ dn

2. Starting with the first job, process the jobs one-by-one. If all jobs
can be completed on time, stop. Otherwise, let k1 be the first job
such that

∑k1
j=1 pj > dk1 . Remove from the first k1 jobs the one

with largest pj value, and proceed with the next job.

Modification for the bilevel order acceptance problem:

1. Order the jobs in the Follower’s WSPT order: j < k iff w2
j

pj
>

w2
k

pk

and in case of ties if dj < dk (dj > dk )



Uncapacitated lot-sizing with backlogging (ULSB)

min

{
n∑

t=1

(ptxt + ftyt + htst + gt rt ) | (11)− (15)

}
(10)

where

xt + (st−1 − rt−1) = dt + (st − rt ), t = 1, . . . ,n (11)
xt ≤ Myt , t = 1, . . . ,n (12)
s0 = sn = r0 = rn = 0, (13)
xt , st , rt ,≥ 0, t = 1, . . . ,n (14)
yt ∈ {0,1}, t = 1, . . . ,n (15)

where
I The pt , ft , ht , gt are the cost parameters, the dt are the demands
I The xt , yt , st , rt are the variables



Some related work

I W. I. Zangwill, A backlogging model and a multi-echelon model
of a dynamic economic lot size production system – A network
approach. Management Science, 15(9):506–527, 1969.

I A. Federgruen, M. Tzur, The dynamic lot-sizing model with
backlogging: A simple O(n log n) algorithm and minimal forecast
horizon procedure. Naval Res. Logitics 40, 459–478, 1993.

I Y. Pochet and L. A. Wolsey. Lot-size models with backlogging:
Strong reformulations and cutting planes. Mathematical
Programming, 40:317–335, 1988.

I S. Kucukyavuz and Y. Pochet. Uncapacitated lot-sizing with
backlogging: the convex hull. Mathematical Programming, Ser.
A, 118:151–175, 2009.



Network representation of ULSB
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Extreme point solutions for ULSB
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Bilevel lot-sizing

Rules of the game
I Both decision makers solve an uncapacitated lot-sizing problem

with backlogging
I The Leader has external demand (d1

t )
I The Leader’s production (x1

t ) equals the supply received from the
Follower

I The Follower’s demand (δt ) is set by the Leader
I Both the Leader and the Follower may backlog some of its

demand
I The Follower pays the backlogging cost to the Leader as penalty

for late delivery
I In those periods when the Follower backlogs, there is no delivery

to the Leader (r2
t x1

t = 0)
I If the Follower does not backlog in some period t , then it supplies

all the demands from the last supply point, i.e.,
∑t

u=t′+1 δt , where
t ′ is the last supply point (x1

t′ > 0) or t ′ = 0



Formulation

Minimize
n∑

t=1

(
p1

t x1
t + f 1

t y1
t + h1

t s1
t + g1

t r1
t − g2

t r2
t
)

(16)

subject to

x1
t + s1

t−1 − r1
t−1 = d1

t + s1
t − r1

t , t = 1, . . . ,n (17)

r2
t =

∑t
τ=1(δτ − x1

τ ), t = 1, . . . ,n (18)

x1
t ≤ My1

t , t = 1, . . . ,n (19)

x1
t ≤ M(1− β2

t ), t = 1, . . . ,n − 1 (20)

s1
0 = s1

n = r1
0 = r1

n = 0, (21)

x1
t , r

1
t , s

1
t , δt ≥ 0, t = 1, . . . ,n (22)

y1
t ∈ {0,1}, t = 1, . . . ,n (23)



Formulation (cont.d)



y2

x2

s2

r2

β2


∈ arg min

{
n∑

t=1

(
p2

t x2
t + f 2

t y2
t + h2

t s2
t + g2

t r2
t
)
| (25)− (31)

}

(24)
where x2

t + (s2
t−1 − r2

t−1) = δt + (s2
t − r2

t ), t = 1, . . . ,n (25)

x2
t ≤ My2

t , t = 1, . . . ,n (26)

s2
0 = s2

n = r2
0 = r2

n = 0, (27)

x2
t , s

2
t , r

2
t ≥ 0, t = 1, . . . ,n (28)

y2
t ∈ {0,1}, t = 1, . . . ,n (29)

r2
t ≤ Mβ2

t , t = 1, . . . ,n − 1 (30)

β2
t ∈ {0,1} t = 1, . . . ,n − 1. (31)



Example

Optimal solution of a sample problem

t 1 2 3 4 5 6 7 8 9 10

d1
t 71 84 43 21 4 81 59 44 32 46

x1
t 82 73 68 82.49 57.51 55.46 21.93 44.61

s1
t 11 25 4 1.49 11.46 1.39

r 1
t

δt 82 73 68 42.72 39.77 57.51 55.46 21.93 44.61
x2

t 82 141 140.00 122.00
s2

t 68 57.51 66.54 44.61
r 2
t 42.72

f 1 = 100 p1 = 1 h1 = 6 g1 = 18
f 2 = 492 p2 = 1 h2 = 2 g2 = 6
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Formulation MIP-1

Definition
Let OP2 be the set of those (x̄2, ȳ2, s̄2, r̄2, δ̄) vectors such that∑n

t=1 δ̄t =
∑n

t=1 d1
t , and (x̄2, ȳ2, s̄2, r̄2) is an optimal solution for the

ULSB of the Follower w.r.t. demand δ̄.
Let Z ULSB(δ) denote the optimum value of ULSB for fixed δ > 0

Question
Does OP2 admit a compact (extended) mixed integer formulation?

Answer
YES! Idea: use an extended formulation for ULSB with δ in the
objective function only.



Formulation MIP-1 (cont.d)

Lemma
(Pochet and Wolsey (1988)) The optimum value of ULSB equals the
optimum value of the following mathematical program

LSP(δ) = min
n∑

k=1

(
k−1∑
`=1

ak`vk` + pkδk zkk +
n∑

`=k+1

bk`wk`

)
+

n∑
t=1

ftztt

subject to a shortest path formulation in the network below, where
ak` = pkδ`,k−1 +

∑k−1
t=` gtδ`,t for 1 ≤ ` < k ≤ n, and

bk` = pkδk+1,` +
∑`−1

t=k htδt+1,` for 1 ≤ k < ` ≤ n, and δk,` =
∑`

t=k δt
for 1 ≤ k ≤ ` ≤ n.

1 1' 1'' 2 2' 2'' 3 3' 3'' 4
v11 z11 w11 v22 z22 w22 v33 z33 w331 1

v21
v31 v32

w12 w23
w13



Formulation MIP-1 (cont.d)
The dual of the shortest path formulation is

DSP(δ) = maxφ2
1 (32)

subject to

φ2
t − φ2

k ′ ≤ ak,t , k = t , . . . ,n
φ2

t′ − φ2
t′′ ≤ p2

t δt + f 2
t ,

φ2
t′′ − φ2

k+1 ≤ bt,k , k = t , . . . ,n

 for all t = 1, . . . ,n. (33)

By the strong duality of linear programming Z ULSB(δ) = DSP(δ) for
any fixed δ ≥ 0.

Lemma
(x̂2, ŷ2, ŝ2, r̂2, δ̂) ∈ OP2 if and only if

∑n
t=1 δt =

∑n
t=1 d1

t , and there
exists φ̂2 such that (x̂2, ŷ2, ŝ2, r̂2, β̂, δ̂, φ̂2) satisfies the constraints
(25)-(31), (33), and the equation

n∑
t=1

(
p2

t x2
t + f 2

t y2
t + h2

t s2
t + g2

t r2
t
)

= φ2
1. (34)



Formulation MIP-1 (cont.d)

The complete formulation:

MIP-1 : min


n∑

t=1

(
p1

t x1
t + f 1

t y1
t + h1

t s1
t + g1

t r1
t − g2

t r2
t
) (17)-(19),

(21)-(23),
(25)-(31),
(33),(34)

 .

Lemma
We have the following correspondence between the feasible solutions
of the bilevel lot-sizing problem and that of MIP-1:

(i) Any feasible solution of MIP-1 can be projected onto a feasible
solution of the bilevel lot-sizing problem of the same value.

(ii) Conversely, any feasible solution of the bilevel lot-sizing problem
can be extended to a feasible solution of MIP-1 of the same
value.



Formulation MIP-2
I Again, based on a shortest path formulation

αijk =

{
1 the requests δi , . . . , δk are produced in j ∈ {i , . . . , k}
0 otherwise

I If αijk = 1, then s2
i−1 = s2

k = 0, and r2
i−1 = r2

k = 0.
I Cost associated with αijk :

cijk = aj,i + fj + pjδj + bj,k

i-1 i+1
αi, i +1 , k

k

αi, i, k

αi, k, k

i



Formulation MIP-2 (cont.d)

MIP-2 : min
n∑

t=1

(
p1

t x1
t + f 1

t y1
t + h1

t s1
t + g1

t r1
t − g2

t r2
t
)

subject to the constraints of the Leader, and

r2
t ≤ M(1− β2

t ), t = 1, . . . ,n − 1

β2
t =

∑
i≤t<j≤k

αi,j,k , t = 1, . . . ,n − 1

∑
i≤t≤k

∑
i≤j≤k

αi,j,k = 1, t = 1, . . . ,n

aj,i + fj + pjδj + bj,k + φi−1 ≥ φk , 1 ≤ i ≤ j ≤ k ≤ n
aj,i + fj + pjδj + bj,k + φi−1 ≤ φk −M ′(1− αi,j,k ), 1 ≤ i ≤ j ≤ k ≤ n
φ0 = 0,
αi,j,k ∈ {0,1}, 1 ≤ i ≤ j ≤ k ≤ n.



Extreme Point Solutions

Definition
A solution to the bilevel lot-sizing problem is an extreme point solution
if the Follower’s part is an extreme point solution of ULSB with
demands δt .
Assumption g2

t + h2
t > 0 for all t = 1, . . . ,n − 1.

This assumption excludes that a solution with r2
t s2

t > 0 is optimal for
the Follower.

Lemma
Under the assumption, if the bilevel optimization problem admits an
optimal solution, then it admits an extreme point optimal solution.



Strengthening the formulations

I Bounds on variables
Zt = minu≥t+1(pu +

∑u−1
v=t gv ) is the minimum cost incurred by

backlogging a unit of production from period t to a later period.
St = min1≤u<t (pu +

∑t−1
v=u hv ) is the minimum cost of stocking a

unit production from an earlier period to t .

Lemma
The backlogged quantities rt and the stock levels st in any extreme
point optimal solution of ULSB satisfy

(Zt − pt )rt ≤ ft , for t = 1, . . . ,n − 1 (B)

(St − pt )st−1 ≤ ft , for t = 1, . . . ,n − 1 (B)

I Cuts

Lemma
Extreme point solutions satisfy

s2
t−1 ≤ M(1− y2

t − β2
t ), t = 2, . . . ,n (C)



Computational experiments

I For each n ∈ {10,15,20,25,30,40,50}, 100 random instances
with parameters

f 1
t ← U[100,200] p1

t ← U[1,5] h1
t ← U[2,20] g1

t ← U[4,40]

f 2
t ← U[250,1000] p2

t ← U[2,10] h2
t ← U[1,10] g2

t ← U[2,20]

d1
t ← U[0,100]

I Implementation in FICO XPRESS Mosel environment
I Tests performed on a workstation with Intel Xeon CPU (2.5 GHz),

Linux operating system



Results
opt LB gap (%) UB gap (%) time (sec)

max avg max avg max avg
M

IP
-1

n = 10 100 0.00 0.00 0.00 0.00 0.49 0.16
n = 20 100 0.00 0.00 0.00 0.00 9.91 1.14
n = 30 100 0.00 0.00 0.00 0.00 188.00 16.75
n = 40 88 17.36 0.89 16.99 0.47 1200.44 329.86
n = 50 53 15.09 2.91 12.38 1.88 1200.90 749.97

M
IP

-1
B

n = 10 100 0.00 0.00 0.00 0.00 0.53 0.16
n = 20 100 0.00 0.00 0.00 0.00 13.83 1.19
n = 30 100 0.00 0.00 0.00 0.00 357.02 22.00
n = 40 90 19.68 0.79 16.99 0.46 1200.30 322.78
n = 50 59 14.41 2.51 11.85 1.94 1200.58 714.31

M
IP

-1
C

n = 10 100 0.00 0.00 0.00 0.00 0.61 0.18
n = 20 100 0.00 0.00 0.00 0.00 8.41 1.20
n = 30 100 0.00 0.00 0.00 0.00 248.62 16.07
n = 40 92 16.99 0.60 17.82 0.46 1200.30 248.81
n = 50 51 15.19 2.77 11.81 1.88 1200.65 730.48

M
IP

-1
C

B n = 10 100 0.00 0.00 0.00 0.00 0.76 0.27
n = 20 100 0.00 0.00 0.00 0.00 8.82 1.54
n = 30 100 0.00 0.00 0.00 0.00 158.35 14.74
n = 40 96 17.02 0.46 16.99 0.44 1200.26 227.71
n = 50 65 12.11 1.97 11.51 1.83 1200.55 645.94

M
IP

-2 n = 10 100 0.00 0.00 0.00 0.00 35.65 17.93
n = 20 0 70.73 43.06 2974.59 1515.28 1200.00 1200.00

M
IP

-2
B n = 10 100 0.00 0.00 0.00 0.00 46.83 10.57

n = 20 0 59.32 17.79 192.80 108.28 1200.00 1200.00
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