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Abstract. Using the method of C. Vörös, we establish several results on hyperbolic plane geometry,
related to triangles and circles. We present a model independent construction for Malfatti’s problem

and several (more then fifty) trigonometric formulas for triangles.

1. Introduction

As J. W. Young, the editor of the book [11], wrote in his introduction: There are fashions in
mathematics as well as in clothes – and in both domains they have a tendency to repeat themselves. During
the last decade, “hyperbolic plane geometry” aroused much interest and was investigated vigorously by
a considerable number of mathematicians, as we can see from the large number of Google Scholar items
given for the same expression as key words ( 192,000 results in (0.05 sec)). Despite the large number of
items, the number of hyperbolic trigonometric formulas that can be collected from them is fairly small,
they can be written on a page of size B5. (We also present such a collection in the second half of this
introduction.) This observation is very surprising if we compare it to the fact that already in 1889, a
very extensive and elegant treatise of spherical trigonometry was written by John Casey [5]. For this, the
reason, probably, is that the discussion of a problem in hyperbolic geometry is less pleasant than in the
spherical one.

On the other hand, in the 19th century, an excellent mathematician – Cyrill Vörös1 in Hungary made
a big step to solve this problem. He introduced a method for the measurement of distances and angles in
the case that the considered points or lines, respectively, are not real. Unfortunately, since he published
his works mostly in Hungarian or in Esperanto, his method is not well-known to the mathematical
community.

To fill this gap, we use the concept of distance extracted from his work and, translating the standard
methods of Euclidean plane geometry into the hyperbolic plane, apply it for various configurations. We
give a model independent construction for the famous problem of Malfatti (discussed in [8]) and prove
more than fifty interesting formulas connected with the geometry of hyperbolic triangles. By the notion of
distance introduced by Vörös, we obtain results on hyperbolic plane geometry which are not well-known.

1.1. Well-known formulas on hyperbolic trigonometry. In this paper, we use the following nota-
tions. The points A,B,C denote the vertices of a triangle. The lengths of the edges opposite to these
vertices are a, b, c, respectively. The angles at A,B,C are denoted by α, β, γ, respectively. If the triangle
has a right angle, it is always at C. The symbol δ denotes half of the area of the triangle; more precisely,
we have 2δ = π − (α+ β + γ).

• Connections between the trigonometric and hyperbolic trigonometric functions:

sinh a =
1

i
sin(ia), cosh a = cos(ia), tanh a =

1

i
tan(ia)

• Law of sines:

(1) sinh a : sinh b : sinh c = sinα : sinβ : sin γ

• Law of cosines:

(2) cosh c = cosh a cosh b− sinh a sinh b cos γ

• Law of cosines on the angles:

(3) cos γ = − cosα cosβ + sinα sinβ cosh c

Date: 25 April, 2014.
2010 Mathematics Subject Classification. 51M10, 51M15.
Key words and phrases. cycle, hyperbolic plane, inversion, Malfatti’s construction problem, triangle centers.
1Cyrill Vörös (1868 –1948), piarist, teacher

1
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• The area of the triangle:

(4) T := 2δ = π − (α+ β + γ) or tan
T

2
=
(
tanh

a1
2

+ tanh
a1
2

)
tanh

ma

2

where ma is the height of the triangle corresponding to A and a1, a2 are the signed lengths of the
segments into which the foot point of the height divide the side BC.

• Heron’s formula:

(5) tan
T

4
=

√
tanh

s

2
tanh

s− a

2
tanh

s− b

2
tanh

s− c

2

• Formulas on Lambert’s quadrangle: The vertices of the quadrangle are A,B,C,D and the
lengths of the edges are AB = a,BC = b, CD = c and DA = d, respectively. The only angle
which is not right-angle is BCD] = φ. Then, for the sides, we have:

tanh b = tanh d cosh a, tanh c = tanh a cosh d,

and

sinh b = sinh d cosh c, sinh c = sinh a cosh b,

moreover, for the angles, we have:

cosφ = tanh b tanh c = sinh a sinh d sinφ =
cosh d

cosh b
=

cosh a

cosh c
,

and

tanφ =
1

tanh a sinh b
=

1

tanh d sinh c
.

2. The distance of the points and on the lengths of the segments

First we extract the concepts of the distance of real points following the method of the book of Cyrill
Vörös ([17]). We extend the plane with two types of points, one type of the points at infinity and the
other one the type of ideal points. In a projective model these are the boundary and external points of
a model with respect to the embedding real projective plane. Two parallel lines determine a point at
infinity and two ultraparallel lines an ideal point which is the pole of their common transversal. Now the
concept of the line can be extended; a line is real if it has real points (in this case it also has two points
at infinity and the other points on it are ideal points being the poles of the real lines orthogonal to the
mentioned one). The extended real line is a closed compact set with finite length. We also distinguish the
line at infinity which contains precisely one point at infinity and the so-called ideal line which contains
only ideal points. By definition the common lengths of these lines are πki, where k is a constant of the
hyperbolic plane and i is the imaginary unit. In this paper we assume that k = 1. Two points on a
line determine two segments AB and BA. The sum of the lengths of these segments is the lengths of
the line AB + BA = πi. We define the length of a segment as an element of the linearly ordered set
C̄ := R+ R · i. Here R = R ∪ {±∞} is the linearly ordered set of real numbers extracted with two new
numbers with the ”real infinity” ∞ and its additive inverse −∞. The infinities can be considered as new
”numbers” having the properties that either ”there is no real number greater or equal to ∞” or ”there is
no real number less or equal to −∞”. We also introduce the following operational rules: ∞ +∞ = ∞,
−∞+ (−∞) = −∞, ∞+ (−∞) = 0 and ±∞+ a = ±∞ for real a. It is obvious that R is not a group,
the rule of associativity holds only such expressions which contain at most two new objects. In fact,
0 = ∞+(−∞) = (∞+∞)+ (−∞) = ∞+(∞+(−∞)) = ∞ is a contradiction. We also require that the
equality ±∞ + bi = ±∞ + 0i holds for every real number b and for brevity we introduce the respective
notations ∞ := ∞ + 0i and −∞ := −∞ + 0i. We extract the usual definition of hyperbolic function
based on the complex exponential function by the following formulas

cosh(±∞) := ∞, sinh(±∞) := ±∞, and tanh(±∞) := ±1.

We also assume that ∞ ·∞ = (−∞) · (−∞) = ∞, ∞ · (−∞) = −∞ and α · (±∞) = ±∞.

Assuming that the trigonometric formulas of hyperbolic triangles are also valid with ideal vertices
the definition of the mentioned lengths of the complementary segments of a line are given. For instance,
consider a triangle with two real vertices (B and C) and an ideal one (A), respectively. The lengths of
the segments between C and A are b and b′, the lengths of the segments between B and A are c and c′

and the lengths of that segment between C and B which contains only real points is a, respectively. Let
the right angle be at the vertex C and denote by β the other real angle at B. (See in Fig. 1.)
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Figure 1. Length of the segments between a real and an ideal point

With respect to this triangle we have tanh b = sinh a · tanβ and since A is an ideal point, the parallel
angle corresponding to the distance BC = a less or equal to β. Hence tanβ > 1/ sinh a implying that
tanh b > 1. Hence b is a complex number. Let the polar of A is EF , then it is the common perpendicular
of the lines AC and AB. The quadrangle CFEB has three right angle. Denote by b1 the length of that
segment CF which contains real points only. Then we get

tanβ =
1

tanh b1 sinh a
,

meaning that

sinh a tanβ =
1

tanh b1
= tanh b.

Similarly we have that tanh b′ = sinh a · tan(π− β) = − sinh a · tanβ implying that | tanh b′| > 1 hence b′

is complex. Now we have that

tanh b′ = − 1

tanh b1
.

Using the formulas between the trigonometric and hyperbolic trigonometric functions we get that

1

i
tan ib =

i

tan ib1
,

implying that

tan ib = − tan
(π
2
− ib1

)
so

b = −2n− 1

2
πi+ b1.

Analogously we get also that

b′ = −2m+ 1

2
πi− b1.

Here n and m are arbitrary integers. On the other hand if b1 = 0 then AC = CA and so b = b′ meaning
that 2n − 1 = 2m + 1. For the half length of the complete line we can choose an odd multiplier of the
number πi/2. The most simple choosing is when we assume that n = 0 and m = −1. Thus the lengths
of the segments AC and CA can be defined as

b = b1 +
π

2
and b′ = −b1 +

π

2
hold, respectively.

We now define all of the possible lengths of a segment on the basis of the type of the line contains
them.

2.1. The points A and B are on a real line. We can distinguish six subcases. The definitions
of the respective cases can be found in Table 1. In this table d means a real (positive) distance of
the corresponding usual real elements which are a real point or the real polar line of an ideal point,
respectively. Every box in the table contains two numbers which are the lengths of the two segments
determined by the two points. For example, the distance of a real and an ideal point is a complex number.
Its real part is the distance of the real point to the polar of the ideal point with a sign, this sign is positive
in the case when the polar line intersects the segment between the real and ideal points, and is negative
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B
(AB) is real real infinite ideal

real
AB = d

BA = −d+ πi
AB = ∞
BA = −∞

AB = d+ π
2 i

BA = −d+ π
2 i

A infinite
AB = ∞
BA = −∞

AB = ∞
BA = −∞

ideal
AB = d+ πi
BA = −d

Table 1. Distances on the real line.

B
(AB) is at infinity infinite ideal

A infinite
AB = 0
BA = πi

AB = π
2 i

BA = π
2 i

ideal
AB = 0
BA = πi

Table 2. Distances on the line at infinity.

otherwise. The imaginary part of the length is (π/2)i, implying that the sum of the lengths of two
complementary segments of this projective line has total length πi. Consider now an infinite point. This
point can also be considered as the limit of real points or limit of ideal points of this line. By definition
the distance from a point at infinity of a real line to any other real or infinite point of this line is ±∞
according to that it contains or not ideal points. If, for instance, A is an infinite point and B is a real
one, then the segment AB contains only real points has length ∞. It is clear that with respect to the
segments on a real line the length-function is continuous.

2.2. The points A and B are on a line at infinity. We can check that the length of a segment for
which A or B is an infinite point is indeterminable. To see this, let the real point C be a vertex of a
right-angled triangle which other vertices A and B are on a line at infinity with infinite point B. Then
we get that cosh c = cosh a · cosh b for the corresponding sides of this triangle. But from the result of the
previous subsection

cosh a = cosh∞ = ∞ and cosh b = cosh
(
0 +

π

2
i
)
= cos

(
−π

2

)
= 0,

showing that their product is undeterminable. On the other hand if we consider the polar of the ideal
point A we get a real line through B. The length of a segment connecting the (ideal) point A and one
of the points of its polar is (π/2)i. This means that we can define the length of a segment between A
and B also as this common value. Now if we want to preserve the additivity property of the lengths of
segments on a line at infinity, too then we must give the pair of values 0, πi for the lengths of segment
with ideal ends. The Table 2 collects these definitions.

A

B
C B

1

cb

a

A
1

1

1

1
a

b
c

Figure 2. The length of an ideal segment



5

a

a

b

b

p

M M

m

m

A

a
1

Figure 3. Angles at an ideal point

2.3. The points A and B are on an ideal line. This situation contains only one case: A, B and AB
are ideal elements, respectively. Use the notation of Fig.1. Then cosα = cosh a · sinβ, and since β is
greater than the parallel angle corresponding to the segment a we get that cosh a · sinβ > 1 so cosα > 1.
Hence α is an imaginary number. From the Lambert’s quadrangle BCEF we get

cosh a sinβ = cosh p,

thus cosh p = cosα and so α = 2nπ ± pi. Now an elementary analysis of the figure shows that the
continuity property requires the choice n = 0. If we also assume that we choose the negative sign then
the measure is α = −pi = p/i, where p is the length of that segment of the common perpendicular which
points are real.

Consider now an ideal line and its two ideal points A and B, respectively. The polars of these points
intersect each other in a real point B1. Consider a further real point C of the line BB1 and denote by
A1 the intersection point of the polar of A and the real line AC (see Fig. 2).

Observe that A1B1 is perpendicular to AC thus we have tanh b1 = tanh a1 · cos γ. On the other hand
a = ±a1 + (πi)/2 and b = ±b1 + (πi)/2 implying that tanh b = tanh a · cos γ. Hence the angle between
the real line CB and the ideal line AB can be considered to π/2, too. Now from the triangle ABC we
get that

cosh c =
cosh b

cosh a
=

±i sinh b1
±i sinh a1

=
sinh b1
sinh a1

= sin
(π
2
− φ

)
= cosφ,

where φ is the angle of the two polars. From this we get c = 2nπ ± φ/i = 2nπ ∓ φi. We choose n = 0
since at this time φ = 0 implies c = 0 and the positive sign because the length of the line is πi.

The length of an ideal segment on an ideal line is the angle of their polars multiplied by the imaginary
unit i.

a
real at infinity ideal

real

M
real infinite ideal
φ

π − φ
0
π

p
i

π − p
i

M
infinite ideal

π
2
π
2

∞
−∞

M
ideal

π
2 + a1

i
π
2 − a1

i

b at infinity

M
ideal
∞
−∞

M
ideal
∞
−∞

ideal

M
ideal

p
i

π − p
i

Table 3. Angles of lines.
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2.4. Angles of lines. Similarly we can deduce the angle between arbitrary kind of lines. We can find
it in Table 3, where a and b are the given lines, M = a ∩ b is their intersection point, m is the polar of
M and A and B is the poles of a and b, respectively. The numbers p and a1 represent real distances,
respectively, can be seen on Fig. 3. The general connection between the angles and distances is the
following:

Every distance of a pair of points is the measure of the angle of their polars multiplied by i. The
domain of the angle can be chosen on such a way, that we are going through the segment by a moving
point and look at the domain which described by the moving polar of this point.

2.5. The extracted hyperbolic theorem of Sines. We note that with the above definition of the
length of a segment the known formulas of hyperbolic trigonometry extracted to the formulas of general
objects with infinite or ideal vertices. For example, we prove the hyperbolic theorem of Sines which has
the following form for a right-angled triangle

sinh a = sinh c · sinα.

C

C

B B

A

A

p

p

A

A

D

D

E

Ed

d

a G

d

e

B

x

h

g

F

f

p
B

x

H

O,1 2

3

45

6

7

tanh a

tanh b

tanh r

Figure 4. Hyperbolic theorem of sines with non-real vertices

First we prove that cases when the sides of the triangle lie on real lines, respectively. We assume that
the right angle is at C and the side which opposite to a vertex noted to the same small letter as of the
vertex. The angle at A or B is α or β, respectively. We remark that the angle at C is real because of our
definition on the extracted angles (see Table 3).

• IfA is an infinite pointB and C are real ones then the product sinh c·sinα = ∞·0 is indeterminable
and we can consider that the equality is true. The relation sinh b · sinβ = ∞ · sinβ = ∞ is also
true by our agreement. If A,B are at infinity then α = β = 0 and we can consider that holds the
equality, too.

• In the case, when B,C are real points and A is an ideal point, let the polar of A is pA. Then by
definition sinh c = sinh(dB+(iπ/2)) = cosh(dB) sinh(iπ/2) = i cosh(dB) where dB is the distance
of B and pa and sinα = sin(d/i) = i(1/i) sin(−id) = −i sinh(d) where d is the length of the
segment between the lines of the sides AC and BC. If pA intersects AC and BC in the points D
and E, respectively then BCDE is a quadrangle with three right angles and with the sides a, x,
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d and dB (see the left figure in Fig. 4). This implies that sinh c sinα = cosh(dB) sinh(d) = sinh a,
as we stated.

• If C is a real point A is at infinity and B is an ideal point, then α = 0 and the right-hand side
sinh c ·sinα is undeterminable. If we consider sinh c ·sinβ = ∞ sinβ it is infinite by our agreement
and the statement is true, again.

• Very interesting the last case when C is a real point, A and B are ideal points, respectively, and
the line AB is a real line (see the right-hand side picture in Fig. 4). Then sinh a = i cosh g,
sinh c = sinh(−e) and sinα = −i sinh d thus sinh c sinα = i sinh e sinh d and the theorem holds if
and only if in the real pentagon CDEFG with five right angles holds that sinh e sinh d = cosh g.
In Statement 1 we can find the proof of this nice connection among the sides of a pentagon with
five right angles.

Statement 1. Denote by a, b, c, d, e the edge lengths of the successive sides of a pentagon with five right
angles on the hyperbolic plane. Then we have the following formulas:

cosh d = sinh a sinh b sinh c =
cosh a√

sinh2 a sinh2 b− 1
sinh e =

cosh b√
sinh2 a sinh2 b− 1

.

We prove the statement using Weierstrass homogeneous coordinates of the hyperbolic plane. Before
the proof we recall the formula of (usual) distance of points with respect to such homogeneous coor-
dinates. Consider the hyperboloid model of the hyperbolic plane H embedded into a 3-dimensional
pseudo-Euclidean space with indefinite inner product with signature (−,−,+). The points of the plane
can be considered as the unit sphere of this space containing those elements which scalar square is equal
to 1 and last coordinates are positives, respectively. It can be seen that the distance between two points
X = (x, y, z)T and X ′ = (x′, y′, z′)T holds the following formula:

cosh |XX ′| = −xx′ − yy′ + zz′.

Consider now the projection of H into the plane z = 1 from the origin. Then we get a projective
(Cayley-Klein) model of H with the usual metric.

Proof. Assume that a pentagon 12345 with five right angles lies in this model as in Fig. 4 (bottom)
the vertex 1 is the origin and the edges 12 and 51 lies on the first two axes of the coordinate system.
Now we have to determine the length of the edge 34 using as parameter the respective lengths a and
b of the edges 12 and 51. To this we can determine the coordinates of the points III, IV of H which
mapped into the points 3,4, respectively. Consider the point X and its image 3. We have to determine
first the Euclidean distance ρ := |03| and the angle φ := (2O3)] and then the coordinates of X are
sinh ρ cosϕ, sinh ρ sinφ, cosh ρ, respectively. If the hyperbolic length of 12 and 51 are a and b, respectively,
then their Euclidean distances are tanh a and tanh b, respectively. Obvious that the line 34 intersects
the axes in such points 6 and 7, whose distances from the origin are 1/ tanh a and 1/ tanh b, respectively.
From this we get that

cosh ρ =
cosh2 a tanh b√

cosh2 a tanh2 b− 1
sinh ρ =

√
sinh2 a cosh2 a tanh2 b+ 1√

cosh2 a tanh2 b− 1

and

cosφ =

√
sinh2 a cosh2 a tanh2 b√

sinh2 a cosh2 a tanh2 b+ 1
sinφ =

1√
sinh2 a cosh2 a tanh2 b+ 1

.

From these quantities we get

x =
sinh a cosh a tanh b√
cosh2 a tanh2 b− 1

, y =
1√

cosh2 a tanh2 b− 1
, z =

cosh2 a tanh b√
cosh2 a tanh2 b− 1

,

and similarly for the pre-image X ′ of the point 4 we get

x′ =
1√

cosh2 b tanh2 a− 1
y′ =

sinh b cosh b tanh a√
cosh2 b tanh2 a− 1

z′ =
cosh2 b tanh a√

cosh2 b tanh2 a− 1
.

Finally the inner product of these vectors gives the first required formula

cosh d = cosh |XX ′| = sinh a sinh b.

The other two formulas of the statement are simple consequences of this first one. 2
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In the second case we assume that either there is an ideal line or there is a line at infinity among
the lines of the sides. Since C is a real point, the line which could be non-real one is the line of the
hypotenuse AB. Now if it is at infinity and at least one vertex of it is an infinite point the statement
evidently true. Assume that A, B and its line are ideal elements, respectively. Then the length c is
equal to (π/2)i the angle α is equal to (π/2) + d/i where d is the distance between C and the polar of
B and the length of a is equal to d + (π/2)i, respectively. The equality sinh(π/2)i · sin((π/2) + d/i) =
(1/i) sin(−(π/2)) cos(d/i) = −(1/i) cosh d = i cosh d = sinh(d+(π/2)i) proves the statement in this case,
too.

3. Power, inversion and centres of similitude

It is not clear who investigated first the concept of inversion with respect to hyperbolic geometry. A
synthetic approach can be found in [13] using reflections in Bachmann’s metric plane. To our purpose it
is more convenient to use an analytic approach in which the concepts of centres of similitude and axis of
similitude can be defined. We consider – as an analogy – the spherical approach of these concepts can be
found in Chapter VI and Chapter VII in [5].

3.1. Spherical concept. It can be proved (§97. in [5]) that if an arc of a great circle (line) passing
through a fixed point O cuts a fixed small circle in the variable points A,B, then

tan
1

2
OA · tan 1

2
OB

is constant. This product is called the spherical power of O with respect to circle. It is positive or
negative, according to whether O is exterior or interior to the circle. If from any point O outside a small
circle two great circle arcs are drawn to it, of which one, OD, is a tangent, and the other a secant, meeting
the small circle in the points A,B; then

tan2
1

2
OD = tan

1

2
AO · tan 1

2
OB.

If we have two small circles on the sphere then the locus of points P for which the tangent segments to
these circles are equal is a great circle called the radical circle (axis of power) of them. The radical circles
of any two of three small circles are concurrent. The common point is the power point of the three small
circles. This is the centre of the circle orthogonal to each of them.

For two small circles there are two centres of similitude. These are the points on the line connecting
their centres, which divide the segment joining the centers of the two circles externally or internally in
the spherical ratio of the sines of the radii. The common tangent lines to the circles pass through the
centres of similitude, namely, the direct common tangent lines through the external centre and the inverse
common tangent lines through the internal center. If the two small circles have intersecting interiors, the
internal center of similitude exists, but inverse common tangent lines do not exist. If through a centre of
similitude we draw a secant cutting the circles, then the pairs of points M,M ′;N,N ′ of Fig.5 are said to
be homothetic and M,N ′; M ′, N are inverse.

SS

M

M
,

,

,

N

N

Figure 5. Centres of similitude



9

Then for the homothetic points M,M ′ the ratio

tan
SM

2
: tan

SM ′

2

is independent of M (see §97. in [5]). Moreover, also

tan
SM

2
tan

SN ′

2
= tan

SM ′

2
· tan SN

2

is independent of M (see Cor. in §97. in [5]). Let us have three small circles c1, c2, c3. For k, l ∈ {1, 2, 3},
we denote by Oi

kl, or Oo
kl the inner, or outer centers of similitude of ck and cl. Then the following four

triples of points are collinear:

{Oo
12, O

o
23, O

o
31}, {Oo

12, O
i
23, O

i
31}, {Oi

12, O
o
23, O

i
31}, {Oi

12, O
i
23, O

o
31}.

All the four lines containing these triples of points are called axes of similitude of the circles c1, c2, c3.
Cf. §98 in [5]. Consequently if a variable circle touches two fixed circles, the line passing through the
points of contact passes through a fixed point, namely, a centre of similitude of the two fixed circles; for
the points of contact are centres of similitude. Moreover if a variable circle touches the two fixed circles,
then the length of the tangent segment drawn to it from the respective center of similitude, for which the
chord joining the two points of contact, passes, is constant. Thus if being given a fixed point S and any
curve γ, on the sphere, if on the line segment joining S to any point M of γ a point N ′ is taken, such
that tan(|SM |/2) tan(|SM ′|/2) is constant, the locus of N ′ is called the inverse of γ.

3.2. Hyperbolic concept. Returning to the hyperbolic case we have a new situation, namely two lines
do not intersect in every case. For example, if we consider three points A,B,C on a line (with this order)
then the ratio defined by

sinhAC

sinhBC
is equal to

sinhAC

sinhBC
=

sinh (AB +BC)

sinhBC
= coshAB + cothBC sinhAB,

and by the assumption cothBC > 1 it is greater then eAB . Therefore a ratio can be attained by a real
point C only if this ratio is greater than eAB . (Obviously, this quantity depends on the distance of the
points A,B). On the other hand every number greater or equal to 1 could be the ratio of hyperbolic
sines of the radii of circles with centers A and B, respectively. Using the extracted concepts of lengths
of segments this problem solved.

First we prove a lemma on which based our theory.

Lemma 1. The product tanh(PA)/2 · tanh(PB)/2 is constant if P is a fixed (but arbitrary) point (real,
at infinity or ideal), P,A,B are collinear and A,B are on a cycle of the hyperbolic plane (meaning that
in the fixed projective model of the real projective plane it has a proper part).

Proof. To prove this we have to consider three cases with respect to the type of the cycle with the
necessary subcases with respect to the possible types of the points P,A,B.

(A): In the case of a circle we have more cases.
• P is a real point A,B are real points. In this case the center O of the circle is real and we
can consider the real line through O and perpendicular to the line AB. The intersection of
these lines is the real point C. Consider the triangles ACO and PCO, respectively. These
have a common side OC and a respective right angle at C. For the pair of points choose such
segments from the pair of possible segments, that the relation AB = AC ∪CB be valid (see
Fig. 6). From the Pythagorean Theorem we have coshAC/ coshCP = coshOA/ coshPO.
Hence

tanh
AP

2
tanh

BP

2
= tanh

AC + CP

2
tanh

BC − PC

2
= tanh

AC + CP

2
tanh

(AC − CP )

2
=

=
sinh AC+CP

2

cosh AC+CP
2

sinh AC−CP
2

cosh AC−CP
2

=
coshAC − coshCP

coshAC + coshCP
=

coshOA− coshPO

coshOA+ coshPO
=

= tanh
OA+ PO

2
tanh

OA− PO

2
= constant = c.
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Figure 6. Power of a point into a cycle

We note that the absolute value of c is less or equal to 1 and the sign of c depends only
on the fact that P is a point in the interior or a point of the exterior of the given circle.
Additionally it is equal to zero if and only if either P = A or P = B, holds.

• P is an infinite point A,B are real points. According to our agreements on the length of a
segment and using of the symbols ±∞ the required product is either 1 or −1.

• Finally if P is an ideal point and A,B are real points, then using the enumeration above
originating from the extracted Pythagorean Theorem we get that

c = tanh
OA+ PO

2
tanh

OA− PO

2
= tanh

OA+ d+ (π/2)i

2
tanh

OA− d− (π/2)i

2
=

=
coshOA− cosh(d+ (π/2)i)

coshOA+ cosh(d+ (π/2)i)
=

coshOA+ sinh d

coshOA− sinh d
,

showing that the absolute value of c is greater than 1, and the sign of c depends on the ratio
of the radius of the circle and the distance d (between the polar of P and the center of the
circle).

(B): In the case of paracycle the point O is at infinite. In Fig.6 we can see that if P is real then
there is an unique paracycle through P with the same pencil of parallel lines. Now if C ̸= P we
have the following calculation:

tanh
AP

2
tanh

BP

2
= tanh

AC + CP

2
tanh

BC − PC

2
= tanh

AC + CP

2
tanh

(AC − CP )

2
=

=
sinh AC+CP

2

cosh AC+CP
2

sinh AC−CP
2

cosh AC−CP
2

=
coshAC − coshCP

coshAC + coshCP
=

coshAC
coshCP − 1
coshAC
coshCP + 1

.

But using the equality on the diameter and height of a segment of a paracycle (see also eg. [9])
we get

coshAC

coshCP
=

eCF

eCD
= eCF−CD = ePG = coshEP

showing that it is independent from the position of the secant AB. For C = P this value is ±1
and it is the result in that case, too, if P is at infinity. The absolute value of c is less then 1 for
real P and greater than 1 for ideal P .

(C): In the case of hypercycle we have again more cases. First we assume that A,B and P are
real points, respectively. O is an ideal point and C is the halving point of the segment AB
(AB = AC ∪ CB = AP ∪ PB as on Fig. 7). Let FG be the basic line of the hypercycle with
distance b. Then all of the radiuses are orthogonal to FG. The minimal distance of a point of
the segment AB from the line FG attained at the radius through E (and C). As in the case of
paracycles we get that

tanh
AP

2
tanh

BP

2
=

coshAC
coshCP − 1
coshAC
coshCP + 1

,

and from the quadrangle AFGC with three right-angle we get that

coshAC

coshCP
=

sinhAF

sinhGC
:
sinhPR

sinhGC
=

sinh b

sinh d
,
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Figure 7. Power of a point into a hypercycle

where d is the distance of the point P from the basic line of the hypercycle. Thus the latter term
is independent from the choice of the points A,B on the hypercycle implying that the examined
value has the same property. Denote by c this constant. Of course b ≷ d implies that c ≷ 0 and
the absolute value of c is less than 1. If A,B are real points and P at infinity then c = ±1. The
result in the case when A,B, P are distinct, non-ideal points and at least one among is at infinity
can be gotten analogousy.

Finally, we have to consider all cases when at least one point is ideal (and by our assumption
at least one from A and B is real). Of course, from the definitions of the length of a general
segment we can use complex numbers as in (A) to prove our statement. For instance, assume
that P and O are ideal points such that the line PO is also ideal and A, B are a real points (see
Fig. 8). The examined expression is

c = tanh
AP

2
tanh

BP

2
=

coshAC − coshCP

coshAC + coshCP
=

sinhAF − sinhPR

sinhAF + sinhPR
=

sinh b− sinh iφ

sinh b+ sinh iφ
=

=
i sinh b+ sinφ

i sinh b− sinφ
.

where φ is the angle of the respective polars of P and R. This proves the statement, again. The
remaining cases can be proved analogously and we omit their proofs.

2

On the basis of Lemma 1 we can define the power of a point with respect to a given cycle.

Definition 1. The power of a point P with respect to a given cycle is the value

c := tanh
1

2
PA · tanh 1

2
PB,

where the points A, B are on the cycle, such that the line AB passes through the point P . With respect
to Lemma 1 this point could be real, infinite or ideal one. The axis of power of two cycles is the locus
of points having the same powers with respect to the cycles.

The usual statements are valid on the Euclidean or spherical power is valid also in the hyperbolic
plane. The power of a point can be positive, negative or complex. (For example, in the case when A,B
are real points we have the following possibilities: it is positive if P is a real point and it is in the exterior
of the cycle; it is negative if P is real and it is in the interior of the cycle, it is infinite if P is a point at
infinity, or complex if P is an ideal point.)

We can also introduce the concept of similarity center of cycles.
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Figure 8. Power with ideal point P .

Definition 2. The centres of similitude of two cycles with non-overlapping interiors are the common
points of their pairs of tangents touching directly or inversely (i.e., they do not separate, or separate the
circles), respectively. The first point is the external center of similitude the second one is the internal
center of similitude.

For intersecting cycles separating tangent lines do not exist, but the internal center of similitude is
defined as on the sphere, but replacing sin by sinh. More precisely we have

Lemma 2. Two points S, S′ which divide the segments OO′ and O′O, joining the centers of the two
cycles in the hyperbolic ratio of the hyperbolic sines of the radii r, r′ are the centers of similitude of the
cycles. By formula, if

sinhOS : sinhSO′ = sinhO′S′ : sinhS′O = sinh r : sinh r′

then the points S, S′ are the centers of similitude of the given cycles.

Proof. Consider a line through the point S which intersects the cycles in M and M ′. Consider also
the triangles OMS and O′M ′S, respectively. Since OSM] = O′SM ′] from our assumption (using the
general hyperbolic theorem of sines) follows the other equality OMS] = O′M ′S]. This implies that a
tangent from S to one of the cycles is also a tangent to the other one. This means that S (and analogously
S′) is a center of similitude of the cycles. 2

We also have the following

Lemma 3. If the secant through a centre of similitude S meets the cycles in the corresponding points
M,M ′ then tanh 1

2SM and tanh 1
2SM

′ are in a given ratio.

Proof. First we have to prove the hyperbolic analogy of the formula known as “Napier’s analogy” (see in
[5]) in spherical trigonometry. Consider the identity

tanh
a+ b

2
coth

c

2
=

tanh a
2 coth

c
2 + tanh b

2 coth
c
2

1 + tanh a
2 tanh

b
2

and substitute to this equality the equalities

tanh
a

2
coth

c

2
=

sin(α+ δ)

sin(γ + δ)
tanh

b

2
coth

c

2
=

sin(β + δ)

sin(γ + δ)
,

where 2δ is the defect of the triangle defined by 2δ = π− (α+β+ γ). (This equality can be shown in the
following way. Add to the hyperbolic theorem of cosine for angle cosα = − cosβ cos γ + sinβ sin γ cosh a
the identity cos(β + γ) = cosβ cos γ − sinβ sin γ and use the formulas on the half of a distance then we

get sinh a
2 =

√
(sin δ sin(α+ δ))/(sinβ sinC). Similarly, we get that

cosh
a

2
=
√
(sin(β + δ) sin(γ + δ))/(sinβ sin γ)
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and the required equality follows.) Then we get

tanh
a+ b

2
coth

c

2
=

sin(α+ δ) + sin(β + δ)

sin(γ + δ) + sin δ
=

cos α−β
2

cos α+β
2

,

or equivalently

tanh
a+ b

2
=

cos α−β
2

cos α+β
2

tanh
c

2
.

Using this formula we have that

tanh
1

2
SM : tanh

1

2
SM ′ = tanh

1

2
(SO + r) : tanh

1

2
(SO′ + r′) = const.

2

We now give the discussion of the cases for the possible centers of similitude. We have six possibilities.

(i): The two cycles are circles. To get the centers of similitude we have to solve an equation in x.
Here d means the distance of the centers of the circles, r ≤ R denotes the respective radii, and x
is the distance of the center of similitude to the center of the circle with radius r.

sinh(d± x) : sinhx = sinhR : sinh r

from which we get that

cothx =
sinhR∓ cosh d sinh r

sinh r sinh d
or equivalently

ex =

√
cothx+ 1

cothx− 1
=

√
sinhR∓ cosh d sinh r + sinh r sinh d

sinhR∓ cosh d sinh r − sinh r sinh d
=

√
(sinhR)/(sinh r)∓ e∓d

(sinhR)/(sinh r)∓ e±d

The two centers corresponding to the two cases of possible signs. If we assume that

ex =

√
(sinhR)/(sinh r)− e−d

(sinhR)/(sinh r)− ed

then the center is an ideal point, point at infinity or a real point according to the cases

sinhR/ sinh r < ed, sinhR/ sinh r = ed, or sinhR/ sinh r > ed,

respectively. The corresponding center is the external center of similitude. In the other case we
have

ex =

√
(sinhR)/(sinh r) + ed

(sinhR)/(sinh r) + e−d
,

and the corresponding center is always a real point. This is the internal center of similitude.
(ii): One of the cycles is a circle and the other one is a paracycle. The line joining their centers

(which we call axis of symmetry) is a real line, but the respective ratio is zero or infinite. To
determine the centres we have to decide the common tangents and their points of intersections,
respectively. The external centre is a real, infinite ar ideal point and the internal centre is a real
point.

(iii): One of the cycles is a circle and the other one is a hypercycle. The axis of symmetry is a real
line such that the ratio of the hyperbolic sines of the radii is complex. The external center is a
real, infinite or ideal point, the internal one is always real point. Each of them can be determined
as in the case of two circles.

(iv): Each of them is a paracycle. The axis of symmetry is a real line and the internal centre is a
real point. The external centre is an ideal point.

(v): One of them is a paracycle and the other one is a hypercycle. The axis of symmetry (in the
Poincaré model, with the hypercycle replaced by the circular line containing it, and the axis
containing the two apparent centers) is a real line. The internal centre is a real point. The
external centre is a real, infinite or ideal point.

(vi): Both of them are hypercycles. The axis of symmetry (in the Poincaré model, with the hyper-
cycle replaced by the circular line containing it, and the axis containing the two apparent centers)
can be a real line, ideal line or a line at infinity. For the internal centre we have three possibilities
as above as well as for the external centre.
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Since using the extended concepts two points always determine a line and two lines always determine
a point, all concepts defined on the sphere also can be used on the hyperbolic plane. Thus we use the
concepts of ”axis of similitude”, ”inverse and homothetic pair of points”, ”homothetic to and inverse of
a curve γ with respect to a fixed point S (which ”can be real point, a point at infinity, or an ideal point,
respectively”) as in the case of the sphere. More precisely we have:

Lemma 4. The six centers of similitude of three cycles taken in pairs lie three by three on four lines,
called axes of similitude of the cycles.

Proof. If A,B,C their centers and a, b, c the corresponding radii of the cycles, A′, B′, C ′ the internal
centers of similitude, and A′′, B′′, C ′′ the externals; then we have by definitions (see [17] p.70 or [16])

(ABC ′′) := sinhAC ′′ : sinhC ′′B = sinh a : sinh b,

and similarly

(BCA′′) = sinh b : sinh c, (CAB′′) = sinh c : sinh a.

Hence

(ABC ′′)(BCA′′)(CAB′′) = 1.

Now the convers of the Menelaos-theorem is also valid (see [16] p.169) implying that the points A′′, B′′, C ′′

are collinear. Similarly, it may be shown that any two internal centers and an external center lie on a
line. 2

From Lemma 3 immediately follows that if the other corresponding intersection points of a line through
S with the cycles is N,N ′ then tanh 1

2SM · tanh 1
2SN

′ is independent from the choosing of the line (see
Fig.5). Thus being given a fixed point S (which is the center of the cycle for which we would like to
invert) and any curve γ, on the hyperbolic plane, if on the halfline joining S (the endpoint of the halfline)
to any point M of γ a point N ′ is taken, such that

tanh
SM

2
· tanh SN ′

2

is constant, the locus of N ′ is called the inverse of γ. We also use the name cycle of inversion for the
locus of the points whose squared distance from S is

tanh
SM

2
· tanh SN ′

2
.

Among the projective elements of the pole and its polar either one of them is always real or both of them
are at infinity. Thus in a construction the common point of two lines is well-defined, and in every situation
it can be joined with another point; for example, if both of them are ideal points they can be given by
their polars (which are constructible real lines) and the required line is the polar of the intersection point
of these two real lines. Thus the lengths in the definition of the inverse can be constructed. This implies
that the inverse of a point can be constructed on the hyperbolic plane, too.

Remark. Finally we remark that all of the concepts and results of inversion with respect to a sphere of the
Euclidean space can be defined also in the hyperbolic space, the ”basic sphere” could be a hypersphere,
parasphere or sphere, respectively. We can use also the concept of ideal elements and the concept of
elements at infinity, if it is necessary. It can be proved (using Poincaré’s ball-model) that every hyperbolic
plane of the hyperbolic space can be inverted to a sphere by such a general inversion. This map sends
the cycles of the plane to circles of the sphere.

3.3. Applications of the theory for constructions. In the books [17] and [16] there are many appli-
cations to the concept of general points, general lines and general distances. For example in [17] we can
find the complete characterization of generalized conic sections and in [16] we can write the extracted
theorems of Ceva and Menelaos, respectively. In this section we give some further applications some of
them have analogous on the sphere but the knowledge of the author there is not known as a hyperbolic
theorem and others are completely new observations.

3.3.1. Construction of Gergonne. Gergonne’s construction (see e.g. [7] and see in Fig. 4) solve the
following problem in the Euclidean plane:

Construct a circle touching three given circles of the Euclidean plane.

A nice construction is the following:
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• Draw the point P of power of the given circles c1, c2, c3 and an axis of similitude of certain three
centres of similitude.

• Join the poles P1, P2, P3 of this axis of similitude with respect to the circles c1, c2, c3 with the
point P by straight lines. Then the lines PPi cut the circles ci in two points Qi1 and Qi2.

• A suitable choice Q1j(1), Q2j(2), Q3j(3) will give the touching points of some sought circle and
c1, c2, c3. More exactly, there are two such choices Q1j(1), Q2j(2), Q3j(3) and Q1k(1), Q2k(2), Q3k(3),
satisfying j(i) ̸= k(i) for 1 ≤ i ≤ 3, where |PPij(i)| ≤ |PPik(i)|.

By the results of the preceding section we can say this construction on the hyperbolic plane too. We
note that in the paper [8] this construction was proved by the conformal model. In this section we can
give a proof without using any models.

s

P

c

1

1

1

1c

2

c3

c
,

c
,,

P

Q

Q
k(1)

Q
1j(1)

S12

S23
S13

P
2

P
3

Figure 9. The construction of Gergonne

In Fig.9 the axis of similitude contains the three outer centers of similitude, in which case, choosing for
Qij(i) the intersection points closer to P , we obtain the common outward touching cycle, and for choosing
the farther intersection points to P we obtain the common touching cycle that contains c1, c2, c3. We
denoted these circles in Fig.9 by c′ and c′′, respectively.

Choosing, e.g., for c1, c3 and c2, c3 the inner centers of similitude, and then for c1, c2 the outer center
of similitude, we obtain another axis of similitude (by permuting the indices we obtain still two more
similar cases). Then defining the points Pi and Pij(i) analogously like above, if PQ1j(1) ≤ PQ1k(1),
PQ2j(2) ≤ PQ2k(2), and PQ3j(3) ≥ PQ3k(3), then the circle Q1j(1)Q2j(2)Q3j(3) touches c1, c2, c3, contains
c3 and touches c1, c2 externally, while the circle Q1k(1)Q2k(2)Q3k(3) touches c1, c2, c3, contains c1, c2, and
touches c3 externally.

Summing up: there are eight cycles touching each of c1, c2, c3.

An Euclidean proof of the pertinence of this construction on circles can be rewritten also by hyperbolic
terminology.

Gergonne’s construction. Consider the cycles c′ and c′′ touching c1, c2 and c3, in any of the four above
described cases; in Fig. c′ touches each of c1, c2, c3 externally, and c′′ touches each of c1, c2, c3 internally.
Then the line joining the touching points Qij(i) and Qik(i) passes through one of the centers of similitude
P of c′ and c′′. Thus P is the point of power of c1, c2 and c3. On the other hand, two of the three given
cycles (say c1 and c2) give a touching pair with respect to c′ and c′′, hence its outer center of similitude
S12 has the same power with respect to c′ and c′′. So the three outer centers of similitude S12, S13 and
S23 are on the axis of power of c′ and c′′. (It is also (by definition) an axis of similitude with respect
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to c1, c2 and c3, say s. For c′, c′′ being another pair of touching circles, in the other three cases, the
respective changes have to be made in the choice.) Since the pole Qi (with respect to the cycle ci) of the
line joining Qij(i) and Qik(i) is the intersection point of the common tangents of c′ and ci at Qij(i), and
c′′ and ci at Qik(i), respectively, it is also on s. By the theorem of pole-polar we get that the pole Pi of
s with respect to ci lies on the line Qij(i)Qik(i). This proves the construction. 2

3.3.2. Steiner’s construction on Malfatti’s construction problem. Malfatti (see [12]) raised and solved the
following problem: construct three circles into a triangle so that each of them touches the two others from
outside moreover touches two sides of the triangle too.

The first nice moment was Steiner’s construction. He gave an elegant method (without proof) to
construct the given circles. He also extended the problem and his construction to the case of three given
circles instead of the sides of a triangle (see in [14], [15]). Cayley referred to this problem in [3] as Steiner’s
extension of Malfatti’s problem. We note that Cayley investigated and solved its generalization in [3], he
called it also Steiner’s extension of Malfatti’s problem. His problem is to determine three conic sections
so that each of them touches the two others, and also touches two of three more given conic sections.
Since the case of circles on the sphere is a generalization of the case of circles of the plane (as it can be
seen easily by stereographic projection) Cayley indirectly proved Steiner’s second construction. We also
have to mention Hart’s nice geometric proof for Steiner’s construction which was published in [10]. (It
can be found in various textbooks e.g. [4] and also on the web.)

In the paper [8] we presented a possible form of Steiner’s construction which best meet the original
problem. We note (see the discussion in the proof) that our theorem has a more general form giving all
possible solutions of the problem, however for simplicity we restrict ourself to the most plausible case,
when the cycles touch each other from outside. In [8] we used the fact that cycles represented by circles
in the conformal model of Poincaré. The Euclidean constructions on circles of this model gives hyperbolic
constructions on cycles in the hyperbolic plane. To do these constructions manually we have to use special
rulers and calipers to draw the distinct types of cycles. For brevity, we think for a fixed conformal model
of the embedding Euclidean plane and preserve the name of the known Euclidean concepts with respect
to the corresponding concept of the hyperbolic plane, too. We now interpret this proof without using
models, too.

c 1

1

1

1

1,3

1,2

c2

2

2
2,3

2,3

c3

3

3

c

c

c

k
k

,

k

P

l

m

mm

Figure 10. Steiner’s construction.

Theorem 1 ([8]). Steiner’s construction can be done also in the hyperbolic plane. More precisely, for
three given non-overlapping cycles there can be constructed three other cycles, each of them touches the
two other ones from outside and also touches two of the three given cycles from outside.

Proof. Denote by ci the given cycles. Now the steps of Steiner’s construction are the following.
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(1) Construct the cycle of inversion ci,j , for the given cycles ci and cj , where the center of inversion
is the external centre of similitude of them. (I.e., the center of ci,j is the center of the above
inversion, and ci, cj are images of each other with respect to inversion with respect to cij . Observe
that cij separates ci and cj .)

(2) Construct cycle kj touching two cycles ci,j , cj,k and the given cycle cj , in such a way that kj , cj
touch from outside, and kij , cij (or cjk) touch in such a way that kj lies on that side of cij (or
cik) on which side of them cj lies.

(3) Construct the cycle li,j touching ki and kj through the point Pk = kk ∩ ck.
(4) Construct Malfatti’s cycle mj as the common touching cycle of the four cycles li,j , lj,k, ci, ck.

The first step is the hyperbolic interpretation of the analogous well-known Euclidean construction on
circles.

To the second step we follow Gergonne’s construction which we did in the previous section. The third
step is a special case of the second one. (A given cycle is a point now.) Obviously the general construction
can be done in this case, too.

The fourth step is again the second one choosing three arbitrary cycles from the four ones since the
quadrangles determined by the cycles have incircles.

Finally we have to prove that this construction gives the Malfatti’s cycles. As we saw the Malfatti’s
cycles are exist (see in [8] Theorem 1). We also know that in an embedding hyperbolic space the examined
plane can be inverted to a sphere. The trigonometry of the sphere is absolute implying that the possibility
of a construction which can be checked by trigonometric calculations, is independent of the fact that the
embedding space is a hyperbolic space or a Euclidean one. Of course, the Steiner construction is just such
a construction, the touching position of circles on the sphere can be checked by spherical trigonometry.
So we may assume that the examined sphere is a sphere of the Euclidean space and we can apply Cayley’s
analytical research (see in [3]) in which he proved that Steiner’s construction works on a surface of second
order. Hence the above construction produces the required touches. 2

4. Applications for triangle centers

In this section we give formulas on triangle centers using the analogies between the spherical and
hyperbolic geometry. The extracted concept of distances give the possibility to avoid the lengthy discus-
sions of the existence, respectively. We substitute the concept of circle with to concept of cycle, and also
use the concepts of similarity and inversion introduced in the previous section. The notation of this sub-
section follows the previous part of this paper: the vertices of the triangle are A,B,C, the corresponding
angles are α, β, γ and the lengths of the sides opposite to the vertices are a, b, c, respectively. We also
use the notion 2s = a + b + c for the perimeter of the triangle. Let denote R, r, rA, rB , rC the radius
of the circumscribed cycle, the radius of the inscribed cycle (shortly incycle), and the radiuses of the
escribed cycles opposite to the vertices A,B,C, respectively. We do not assume that the points A,B,C
are real and the distances are positive numbers. In most cases the formulas are valid for ideal elements
and elements at infinity and when the distances are complex numbers, respectively. The only exception
when the operation which needs to the examined formula is understandable. Before the examination of
hyperbolic triangle centers we collect some further important formulas on hyperbolic triangles. We can
consider them in our extracted manner.

4.1. Staudtian of a hyperbolic triangle: The Staudtian of a hyperbolic triangle something-like similar
(but definitely distinct) to the concept of the Euclidean area. In spherical trigonometry the twice of this
very important quantity called by Staudt the sine of the trihedral angle O − ABC and later Neuberg
suggested the names (first) “Staudtian” and the “Norm of the sides”, respectively. We prefer in this
paper the name “Staudtian” as a token of our respect for the great geometer Staudt. Let

n = n(ABC) :=
√

sinh s sinh(s− a) sinh(s− b) sinh(s− c),

then we have

(6) sin
α

2
sin

β

2
sin

γ

2
=

n2

sinh s sinh a sinh b sinh c
.

The proof of this equality is the following. From (2) we get

cosh c = cosh a cosh b− sinh a sinh b cos γ = cosh(a− b) + sinh a sinh b(1− cos γ),
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implying first that

sin2
γ

2
=

1− cos γ

2
=

− cosh(a− b) + cosh c

2 sinh a sinh b
=

sinh a−b+c
2 sinh −a+b+c

2

sinh a sinh b
=

=
sinh(s− a) sinh(s− b)

sinh a sinh b
,

and the statement follows immediately. Similarly we also have that

cosh c = cosh a cosh b− sinh a sinh b cos γ = cosh(a− b)− sinh a sinh b(1 + cos γ),

implying that

cos2
γ

2
=

1 + cos γ

2
=

1

2

cosh(a+ b)− cosh c

sinh a sinh b
=

sinh s sinh(s− c)

sinh a sinh b
.

This observation leads to the following formulas on the Staudtian:

(7) sinα =
2n

sinh b sinh c
, sinβ =

2n

sinh a sinh c
, sin γ =

2n

sinh a sinh b
.

From the first equality of (7) we get that

(8) n =
1

2
sinα sinh b sinh c =

1

2
sinhhC sinh c,

where hC is the height of the triangle corresponding to the vertex C. As a consequence of this concept we
can give homogeneous coordinates for the points of the plane with respect to a basic triangle as follows:

Definition 3. Let ABC be a non-degenerated reference triangle of the hyperbolic plane. If X is an
arbitrary point we define its coordinates by the ratio of the Staudtian

X := (nA(X) : nB(X) : nC(X))

where nA(X), nB(X) and nC(X) means the Staudtian of the triangle XBC, XCA and XAB, respectively.
This triple of coordinates is the triangular coordinates of the point X with respect to the triangle ABC.

Consider finally the ratio of section (BXAC) where XA is the foot of the transversal AX on the line
BC. If n(BXAA), n(CXAA) mean the Staudtian of the triangles BXAA, CXAA, respectively then using
(8) we have

(BXAC) =
sinhBXA

sinhXAC
=

1
2 sinhhC sinhBXA

1
2 sinhhC sinhXAC

=
n(BXAA)

n(CXAA)
=

=
1
2 sinh c sinhAXA sin(BAXA)]
1
2 sinh b sinhAXA sin(CAXA)]

=
sinh c sinhAX sin(BAXA)]
sinh b sinhAX sin(CAXA)]

=
nC(X)

nB(X)
,

proving that

(9) (BXAC) = nC(X) : nB(X), (CXBA) = nA(X) : nC(X), (AXCB) = nB(X) : nA(X).

4.2. Angular Staudtian of a hyperbolic triangle. In hyperbolic trigonometric formulas we also have
a duality between side-lengths and angles. Thus naturally giving the idea to define the “dual concept” of
the Staudtian. We call the getting quantity the angular Staudtian of the triangle defined by the equality:

N = N(ABC) :=
√
sin δ sin(δ + α) sin(δ + β) sin(δ + γ).

On the angular Staudtian we have analogous formulas as on the Staudtian. Use now the law of cosines
on the angles. Then we have

cos γ = − cosα cosβ + sinα sinβ cosh c

and adding to this equation the addition formula of the cosine function we get that

sinα sinβ(cosh c− 1) = cos γ + cos(α+ β) = 2 cos
α+ β + γ

2
cos

α+ β − γ

2
.

From this we get that

(10) sinh
c

2
=

√
sin δ sin (δ + γ)

sinα sinβ
.

Analogously we get that

sinα sinβ(cosh c+ 1) = cos γ + cos(α− β) = 2 cos
α− β + γ

2
cos

−α+ β + γ

2
,
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implying that

(11) cosh
c

2
=

√
sin (δ + β) sin (δ + α)

sinα sinβ
.

From these we get

(12) cosh
a

2
cosh

b

2
cosh

c

2
=

N2

sinα sinβ sin γ sin δ
.

Finally we also have that

(13) sinh a =
2N

sinβ sin γ
, sinh b =

2N

sinα sin γ
, sinh c =

2N

sinα sinβ
,

and from the first equality of (13) we get that

(14) N =
1

2
sinh a sinβ sin γ =

1

2
sinhhC sin γ,

where hC is the height of the triangle corresponding to the vertex C. The connection between the two
Staudtians gives by the formula

(15) 2n2 = N sinh a sinh b sinh c.

In fact, from (7) and (13) we get that

sinα sinh a =
4nN

sinβ sin γ sinh b sinh c

implying that

sinα sinβ sin γ sinh a sinh b sinh c = 4nN.

On the other hand from (7) we get immediately that

sinα sinβ sin γ =
8n3

sinh2 a sinh2 b sinh2 c

and thus

2n2 = sinh a sinh b sinh cN,

as we stated. The connection between the two types of the Staudtian can be understood if we dived to
the first equality of (7) by the analogous one in (19). Then we have

sinα

sinh a
=

n

N

sinβ

sinh b

sin γ

sinh c

which using the hyperbolic theorem of sines leads to the equality

(16)
N

n
=

sinα

sinh a
.

4.3. On the centroid (or median point) of a triangle. We denote the medians of the triangle by
AMA, BMB and CMC , respectively. The feet of the medians MA,MB and MC . The existence of their
common point M follows from the Menelaos-theorem. For instance if AB, BC and AC are real lines and
the points A,B and C are ideal points then we have that AMC = MCB = d = a/2 implies that MC is
the middle point of the real segment lying on the line AB between the intersection points of the polars
of A and B with AB, respectively (see Fig. 11).

The fact that the centroid is exist implies new real statements, e.g. Consider a real hexagon with
six right angles. Then the lines containing the middle points of a side and perpendicular to the opposite
sides of the hexagon are concurrent.

Theorem 2. We have the following formulas connected with the centroid:

• Property of equal Staudtians.

(17) nA(M) = nB(M) = nC(M)

• The ratio of section (AMAM) depends on the vertex.

(18)
sinhAM

sinhMMA
= 2 cosh

a

2
,

sinhBM

sinhMMB
= 2 cosh

b

2
,

sinhCM

sinhMMC
= 2 cosh

c

2
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Figure 11. Centroid of a triangle with ideal vertices.

• The ratio of section (AMMA) is independent from the vertex.

(19)
sinhAMA

sinhMMA
=

sinhBMB

sinhMMB
=

sinhCMC

sinhMMC
=

n

nA(M)
.

• The “center of gravity” property of M . If y is any line of the plane then we have

(20) sinh d′M =
sinh d′A + sinh d′B + sinh d′C√

1 + 2(1 + cosh a+ cosh b+ cosh c)
.

where d′A, d
′
B, d

′
C , d

′
M mean the signed distances of the points A,B,C,M to the line y, respec-

tively.
• The “minimality” property of M . If Y is any point of the plane then we have

(21) coshYM =
coshY A+ coshY B + coshY C

n
nA(M)

=
coshY A+ coshY B + coshY C√
1 + 2(1 + cosh a+ cosh b+ cosh c)

.

Remark. Using the first order approximation of the hyperbolic functions by their Taylor polynomial of
order 1, we get from this formula the following one:

d′M =
d′A + d′B + d′C

3

which associates the centroid with the physical concept of center of gravity and shows that the center of
gravity of three equal weights at the vertices of a triangle is at M .

Remark. The minimality property of M for Y = M says that

coshMA+ coshMB + coshMC =
√
1 + 2(1 + cosh a+ cosh b+ cosh c).

This implies that

coshY A+ coshY B + coshY C = (coshMA+ coshMB + coshMC) coshYM.

From the second-order approximation of coshx we get that

3 +
1

2

(
Y A2 + Y B2 + Y C2

)
=

(
3 +

1

2

(
MA2 +MB2 +MC2

))(
1 +

1

2
YM2

)
.

From this (take into consideration only such terms which order are less or equal to 2) we get an Euclidean
identity characterizing the centroid:

Y A2 + Y B2 + Y C2 = MA2 +MB2 +MC2 + 3YM2.

As a further consequence we can see immediately that the value coshY A+coshY B+coshY C is minimal
if and only if Y is the centroid.
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Proof. The property (17) is a simple consequence of (9). Thus the centroid is the unit point with respect
to the triangular coordinate system. Let the feet of the perpendiculars from M and the altitudes are
XA, XB , XC , and HA,HB , HC , respectively. (19) follows from (17) since

sinhAMA

sinhMMA
=

sinhAHA

sinhMXA
=

n

nA(M)
=

n

nB(M)
=

sinhBMB

sinhMMB
.

From (1) we get
sinhMMA

sinhMC
=

sinMACM]
sinCMAA]

and
sinhAM

sinhMC
=

sinACM]
sinCAMA]

implying
sinhAM

sinhMMA
=

sinACM] sinCMAA]
sinMACM] sinCAMA]

=
sinACM]
sinMACM]

sinh b

sinh a
2

.

On the other hand the equalities

sinACM]
sinCMCA]

=
sinh c

2

sinh b
and

sinBCM]
sinBMCA]

=
sinh c

2

sinh a

imply the equalities
sinACM]
sinMACM] =

sinACM]
sinBCM] =

sinh a

sinh b
.

Hence we get
sinhAM

sinhMMA
=

sinh a

sinh b

sinh b

sinh a
2

= 2 cosh
a

2

proving (18). To prove (21), observe that in the triangle ABC holds the equality

(22) cosh a+ cosh b = 2 cosh
c

2
coshCMC .

In fact, the law of cosines (2) with respect to the triangles ACMC and BCMC gives the equalities

cosh a = cosh
c

2
coshMMC − sinh

c

2
sinhMMC cosCMCB]

and

cosh b = cosh
c

2
coshMMC − sinh

c

2
sinhMMC cosCMCA] =

= cosh
c

2
coshMMC + sinh

c

2
sinhMMC cosCMCB].

Adding these equalities we give the required one. Hence we have

coshY A+ coshY B = 2 cosh
c

2
coshYMC .

Consider now the triangles Y CM and YMCM , respectively. Using the law of cosines as in the previous
formula we have that

coshY C = coshMY coshMC − sinhMY sinhMC cosYMC]
and

coshYMC = coshMY coshMCM + sinhMY sinhMCM cosYMC].
From these equations we get

sinhMCM coshY C + sinhMC coshYMC =

= coshYM(coshMC sinhMCM + coshMCM sinhMC) = coshYM sinhMCC.

Now

coshY A+ coshY B = 2 cosh
c

2

(
coshYM sinhMCC

sinhMC
− sinhMCM coshY C

sinhMC

)
=

=
sinhMC

sinhMCM

(
coshYM sinhMCC

sinhMC
− sinhMCM coshY C

sinhMC

)
= coshYM

sinhMCC

sinhMCM
− coshY C,

proves the first equality of (21). The second equality in (21) can be gotten from the equations

sinhCMC

sinhMMC
=

n

nA(M)
,

sinh(CMC −MMC)

sinhMMC
= 2 cosh

c

2
, cosh a+ cosh b = 2 cosh

c

2
coshCMC ,

eliminating CMC and MMC between these equations. We leave the calculation to the reader.

Finally, consider the minimality property (21) in the case when Y is an ideal point and A,B,C are real
ones, respectively. Now M is also a real point and we have to consider the polar of Y which is a real line
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y. Denote by the real (and positive) geometric distances of the points A,B,C,M to y is dA, dB , dC , dM ,
respectively. (21) says that

cosh
(
dM + εM i

π

2

)
=

cosh
(
dA + εAi

π
2

)
+ cosh

(
dB + εBi

π
2

)
+ cosh

(
dC + εCi

π
2

)√
1 + 2(1 + cosh a+ cosh b+ cosh c)

,

where εM is a sign depending on the positions of Y , M and YM := y ∩ YM on its line YM . It is + if
the segment MYM ⊂ MY and − if this relation does not hold. (Similar definition are valid for εA, εB
and εC , respectively.) It is clear that these signs give the same value if the corresponding points lie on
the same half-plane of the line y. Thus if we fixed the sign of one of the points (which distinct to zero)
then the other signs have to be determined uniquely, too. Hence we have the equality

εM sinh dM =
εA sinh dA + εB sinh dB + εC sinh dC√

1 + 2(1 + cosh a+ cosh b+ cosh c)

or equivalently

sinh d′M =
sinh d′A + sinh d′B + sinh d′C√

1 + 2(1 + cosh a+ cosh b+ cosh c)

as we stated in (20). 2

Corollary 1. Assume that every two pairs of points which contain points at infinite have equal distances.
We note that by our definition it is hold and the common value is ∞. We also assumed that ∞/∞ = 1.
Then it follows the congruency of asymptotic triangles with three vertices at infinity. Really, assume that
the vertices A,B or C tend to a points at infinity IA, IB or IC , respectively, and at the same time M
tends to the point M∞. Assume also that the limit process sends XA, XB , XC to XIA , XIB and XIC ,
respectively. Then (by the notation of the previous subsection) (8) yields that

1 = lim
nA(M)

nB(M)
=

1

2
lim

sinhMXA

sinhMXB
lim

sinh a

sinh b
=

lim sinhMXA

lim sinhMXB
=

sinhM∞XIA

sinhM∞XIB

implying that M∞ is not only the centroid of the triangle IAIBIC but it is also the center of the incircle
of this triangle. Hence that medians are also bisectors and altitudes implying that MA = XA, MB = XB

and MC = XC , respectively. Thus the triangle has a rotational symmetry of angle 2π/3 at the center M .
From this immediately follows the fact: Every two triangle with three vertices at infinity are congruent.

4.4. On the center of the circumscribed cycle. Denote by O and R the center and the radius of the
circumscribed cycle of the triangle ABC, respectively. The midpoint of the sides AB, BC and AC are
MC , MA and MB , respectively. In the extracted plane O always exists and could be a real point, point at
infinity or ideal point, respectively. Since we have two possibilities to choose the segments AB, BC and
AC on their respective lines, we also have four possibilities to get a circumscribed cycle. One of them
corresponds to the segments with real lengths and the others can be gotten if we choose one segment with
real length and two segments with complex lengths, respectively. If A,B,C are real points the first cycle
could be circle, paracycle or hypercycle, but the other three are always hypercycles, respectively. For
example, let a′ = a = BC is a real length and b′ = −b+πi, c′ = −c+πi are complex lengths, respectively.
Then we denote by OA the corresponding (ideal) center and by RA the corresponding (complex) radius.
We also note that the latter three hypercycle have geometric meaning. These are those hypercycles which
fundamental lines contain a pair from the midpoints of the edge-segments and contain that vertex of the
triangle which is the meeting point of the corresponding edges.

Theorem 3. The following formulas are valid on the circumradiuses R, RA, RB and RC , respectively.

• Formulas by the angular Staudtian of the triangle are:

(23) tanhR =
sin δ

N
, tanhRA =

sin(δ + α)

N
, tanhRB =

sin(δ + β)

N
, tanhRC =

sin(δ + γ)

N
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• Formulas by the lengths of the edges are:

tanhR = tanh
a

2
tanh

b

2
tanh

c

2
cos

α+ β + γ

2
=

2 sinh a
2 sinh

b
2 sinh

c
2

n
(24)

tanhRA = tanh
a

2
coth

b

2
coth

c

2
cos

−α+ β + γ

2
=

2 sinh a
2 cosh

b
2 cosh

c
2

n

tanhRB = coth
a

2
tanh

b

2
coth

c

2
cos

α− β + γ

2
=

2 cosh a
2 sinh

b
2 cosh

c
2

n

tanhRC = coth
a

2
coth

b

2
tanh

c

2
cos

α+ β − γ

2
=

2 cosh a
2 cosh

b
2 sinh

c
2

n

• The ratio of the triangular coordinates of the circumcenter O is:

(25) nA(0) : nB(O) : nC(O) = cos(δ + α) sinh a : cos(δ + β) sinh b : cos(δ + γ) sinh c

Proof. Assume that the radius CO divides the angle γ at C into the angles γ1 and γ2, respectively (see
Fig. 11). Then we have OCA] = OAC] = γ1, OCB] = OBC] = γ2, hence OAB] = α − γ1 and
OBA] = β − γ2. Since OAB] = OBA] we get that OAB] = 1

2 (α+ β − γ) = π/2− (δ + γ).

A B

C

O

M
C

g
1

g
2

Figure 12. The circumcenter.

From this we get

tanh
c

2
= tanhR cos(π/2− (δ + γ)) = tanhR sin(δ + γ).

From (10) and (11) we get

tanh
c

2
=

√
sin δ sin(δ + γ)

sin(δ + β) sin(δ + α)

implying

tanhR =

√
sin δ

sin(δ + α) sin(δ + β) sin(δ + γ)
.

From this the first equality in (23) immediately follows. Substituting α′ = α, β′ = −β + π, γ′ = −γ + π
into the first equation of (23) and using that δ′ = (π−(α−β−γ+2π))/2 = (−α+β+γ−π)/2 = −(δ+α)
we get the formula of (23) on RA:

tanhRA =

√
− sin(δ + α)

sin(−δ) sin(π − δ − β − α) sin(π − δ − γ − α)
=

√
sin(δ + α)

sin δ sin(δ + γ) sin(δ + β)
=

sin(δ + α)

N
.

Analogously as of (16) or (17) we have the formulas

sinh
a

2
=

√
sin δ sin (δ + α)

sin γ sinβ
and sinh

b

2
=

√
sin δ sin (δ + β)

sinα sin γ
,

and

cosh
a

2
=

√
sin (δ + β) sin (δ + γ)

sin γ sinβ
and cosh

b

2
=

√
sin (δ + γ) sin (δ + α)

sinα sin γ
.
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Thus we have

sinh a
2

cosh b
2 cosh

c
2

=

√
sin2 α sin δ

sin(δ + γ) sin(δ + α) sin(δ + β)
= sinα tanhR

giving the formula

(26) tanhR =
sinh a

2

sinα cosh b
2 cosh

c
2

.

Similarly we get

sinh
a

2
sinh

b

2
sinh

c

2
=

√
sin3 δ sin(δ + α) sin(δ + β) sin(δ + γ)

sin2 α sin2 β sin2 γ
=

sin2 δ cothR

sinα sinβ sin γ
,

and with the same manner we have

cosh
a

2
cosh

b

2
cosh

c

2
=

√
sin2(δ + α) sin2(δ + β) sin2(δ + γ)

sin2 α sin2 β sin2 γ
=

sin δ coth2 R

sinα sinβ sin γ
.

Dividing by the two equalities we get the first equality of the first row in (24):

tanhR = tanh
a

2
tanh

b

2
tanh

c

2
sin δ.

Using (7) and (14) we also have that

(27) sinα sinβ sin γ =
8n3

sinh2 a sinh2 b sinh2 c
=

8n3N2

4n4
=

2N2

n

giving immediately the second equality of the first row in (24)

sinh
a

2
sinh

b

2
sinh

c

2
=

sin2 δ cothR

sinα sinβ sin γ
=

n sin2 δ cothR

2N2
=

n tanhR

2
.

Substituting the complementary lengths and (the same) angles (if it is necessary) to these equations we
get the results of the remaining rows in (24).

By (8) we have that

n(AOB) =
1

2
sin

α+ β − γ

2
sinhR sinh c

and

n(BOC) =
1

2
sin

−α+ β + γ

2
sinhR sinh a.

Hence

nA(0) : nB(O) : nC(O) = sin
−α+ β + γ

2
sinh a : sin

α− β + γ

2
sinh b : sin

α+ β − γ

2
sinh c,

as we stated in (25). 2

Remark. The first order Taylor polynomial of the hyperbolic functions of distances leads to a correspon-
dence between the hyperbolic Staudtians and the Euclidean area T leading to further Euclidean formulas.
More precisely we have

(28) n = T and N =
T sinα

a
=

Ta

2Ra
=

T

2R
.

Hence we give from (27) the following formula:

sinα sinβ sin γ =
2N2

n
=

2T 2

4R2T
=

T

2R2

or equivalently the known Euclidean dependence of these quantities:

T = 2R2 sinα sinβ sin γ.

Remark. Use (21) for the point O. Then we have√
1 + 2(1 + cosh a+ cosh b+ cosh c) coshOM = coshOA+ coshOB + coshOC = 3 coshR,

Implying the approximation of second order (as in the remark before the proof) we get the equation

3

(
1 +

R2

2

)
=
√

9 + a2 + b2 + c2
(
1 +

OM2

2

)
= 3

√
1 +

a2 + b2 + c2

9

(
1 +

OM2

2

)
.
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The functions on the right hand side can also be approximated of second order. If we multiply these
polynomials and hold only those terms which order at most 2 we can deduce the following equation

1 +
R2

2
= 1 +

a2 + b2 + c2

2 · 9
+

OM2

2
,

and hence the Euclidean formula

OM2 = R2 − a2 + b2 + c2

9
.

Corollary 2. Applying (24) to a triangle with four ideal circumcenter, we get a formula which determines
the common distance of three points of a hypercycle from the basic line of it. In fact, if d means the
searched distance that

2 sinh a
2 sinh

b
2 sinh

c
2

n
= tanhR = tanh

(
d+ ε

π

2
i
)
=

sinh
(
d+ επ

2 i
)

cosh
(
d+ επ

2 i
) =

εi cosh d

εi sinh d
= coth d,

and we get:

(29) tanh d =
n

2 sinh a
2 sinh

b
2 sinh

c
2

.

For Euclidean analogy of this equation we can use the first order Taylor polynomial of the hyperbolic
function. Our formula leads to the following:

1

R
= d =

4T

abc
implying a well-known connection among the sides, the circumradius and the area of the triangle.

4.5. On the center of the inscribed and escribed cycles. We are aware that the bisectors of the
interior angles of a hyperbolic triangle are concurrent at a point I, called the incenter, which is equidistant
from the sides of the triangle. The radius of the incircle or inscribed circle, whose center is at the incenter
and touches the sides, shall be designated by r. Similarly the bisector of any interior angle and those of
the exterior angles at the other vertices, are concurrent at point outside the triangle; these three points
are called excenters, and the corresponding tangent cycles excycles or escribed cycles. The excenter lying
on AI is denoted ba IA, and the radius of the escribed cycle with center at IA is rA. We denote by XA,
XB , XC the points where the interior bisectors meets BC, AC, AB, respectively. Similarly YA, YB and
YC denote the intersection of the exterior bisector at A, B and C with BC, AC and AB, respectively. We

I

ZA

A

AX

A
B

C

I

I
B

C

X
C C C

C C C
ZY V

X

B

B

B B

B

B

Z

V

V ,,

,

V ,

Figure 13. Incircles and excycles.

note that the excenters and the points of intersection of the sides with the bisectors of the corresponding
exterior angle could be points at infinity or also could be ideal points. Let denote the touching points
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of the incircle ZA, ZB and ZC on the lines BC, AC and AB, respectively and the touching points
of the excycles with center IA, IB and IC are the triples {VA,A, VB,A, VC,A}, {VA,B , VB,B , VC,B} and
{VA,C , VB,C , VC,C}, respectively (see in Fig. 13).

Theorem 4. On the radiuses r, rA, rB or rC we have the following formulas .

• Formulas by Staudtian are:

(30) tanh r =
n

sinh s
, tanh rA =

n

sinh(s− a)
, tanh rB =

n

sinh(s− b)
, tanh rC =

n

sinh(s− c)

• Formulas by angular Staudtian are

(31) tanh r =
N

2 cos α
2 cos β

2 cos γ
2

,

coth r =
sin(δ + α) + sin(δ + β) + sin(δ + γ) + sin δ

2N
(32)

coth rA =
− sin(δ + α) + sin(δ + β) + sin(δ + γ)− sin δ

2N
(33)

coth rB =
sin(δ + α)− sin(δ + β) + sin(δ + γ)− sin δ

2N

coth rC =
sin(δ + α) + sin(δ + β)− sin(δ + γ)− sin δ

2N

• Connections among the circumradiuses and inradiuses are:

tanhR+ tanhRA = coth rB + coth rC(34)

tanhRB + tanhRC = coth r + coth rA

tanhR+ coth r =
1

2
(tanhR+ tanhRA + tanhRB + tanhRC)

• Triangular coordinates of the incenter and excenters are:

nA(I) : nB(I) : nC(I) = sinh a : sinh b : sinh c(35)

nA(IA) : nB(IA) : nC(IA) = − sinh a : sinh b : sinh c(36)

nA(IB) : nB(IB) : nC(IB) = sinh a : − sinh b : sinh c

nA(IC) : nB(IC) : nC(IC) = sinh a : sinh b : − sinh c

Proof. The triangular coordinates of I by (8) holds

nA(I) : nB(I) : nC(I) = sinh a : sinh b : sinh c

proving (35). To (36) we observe that the excircle with center IB can be considered as the incircle of
those triangle of the vertex set {A,B,C} which edge-segment AC is equal to that of the corresponding
edge-segment of the triangle ABC while the other two edge-segments are complementary to those of
ABC. (In spherical geometry the above two triangle is called colunar because of their union is a lune.)
We also have that the sign of the measure of the radius in one of the cases is the negative as the sign of
the corresponding case of the incircle because of the side separates the two centers. Thus

nA(IB) : nB(IB) : nC(IC) = sinh(−a+ πi) : − sinh b : sinh(−c+ πi) = sinh a : − sinh b : sinh c,

implying (36).

The equalities in (30) follows from the observation that we have CZA = CZB = s− c, BZA = BZC =
s− b and AZB = AZC = s− a, respectively, and thus

tan
γ

2
=

tanh r

sinh(s− c)
.

In fact, sin γ
2 and cos γ

2 was calculated before (7) and from these quantities we get that

(37) tan
γ

2
=

√
sinh(s− a) sinh(s− b)

sinh s sinh(s− c)

Implying the first equality in (30). The other equalities follow from that the circumscribed triangles of
the excycles have two sides with the property that its measure is the measure of the corresponding side
of ABC subtracting from πi. More precisely the lengths of the sides of the circumscribed triangle of the
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excycle corresponding to the excenter IB are a′ = −a + πi, b′ = b, and c′ = −c + πi, respectively. The
corresponding half-perimeter is s′ = (a′ + b′ + c′)/2 = (−a+ b− c)/2 + πi. This implies that

tanh rB =

√
sinh(s′ − a′) sinh(s′ − b′) sinh(s′ − c′)

sinh s′
=

=

√
sinh(s− c) sinh(−s+ πi) sinh(s− a)

sinh(−s+ b+ πi)
=

n

sinh(s− b)
,

as we stated in (30).

Since we proved before (7) that

(38) cos
α

2
=

√
sinh s sinh(s− a)

sinh c sinh b
, cos

β

2
=

√
sinh s sinh(s− b)

sinh a sinh c
, cos

γ

2
=

√
sinh s sinh(s− c)

sinh a sinh b
,

then we have by (15) and (30) that

cos
α

2
cos

β

2
cos

γ

2
=

√
sinh3 s sinh(s− a) sinh(s− b) sinh(s− c)

sinh2 a sinh2 b sinh2 c
=

=
n sinh s

sinh a sinh b sinh c
=

N sinh a

2n
=

N

2 tanh r
and (31) follows, too.

To prove (32) consider the equalities

sin(δ + α) + sin(δ + β) = cos
−(α− β) + γ

2
+ cos

(α− β) + γ

2
= 2 cos

α− β

2
cos

γ

2
=

= 2 cos
α

2
cos

β

2
cos

γ

2
+ 2 sin

α

2
sin

β

2
cos

γ

2
,

and

sin(δ + γ)− sin δ = cos
(α+ β)− γ

2
− cos

(α+ β) + γ

2
= 2 cos

γ

2
cos

α+ β

2
=

= 2 cos
γ

2
cos

α

2
cos

β

2
− 2 cos

γ

2
sin

α

2
sin

β

2
.

Thus we get the equality

4 cos
α

2
cos

β

2
cos

γ

2
= sin(δ + α) + sin(δ + β) + sin(δ + γ) + sin(δ)

implying (32). The equations in (33) follow from (32) substituting two times (π − ϕ) into ϕ (ϕ = α, β or
ϕ = γ).

Finally, (23), (32) and (33)implies the equalities in (34). 2

The following formulas connect the radiuses of the circles and the lengths of the edges of the triangle.

Theorem 5. Let a, b, c, s, rA, rB, rC , r, R be the values defined for a hyperbolic triangle above. Then we
have the following formulas:

(39) − coth rA − coth rB − coth rC + coth r = 2 tanhR

coth rA coth rB + coth rA coth rC + coth rB coth rC =(40)

=
1

sinh s sinh(s− a)
+

1

sinh s sinh(s− b)
+

1

sinh s sinh(s− c)

tanh rA tanh rB + tanh rA tanh rC + tanh rB tanh rC =(41)

=
1

2
(cosh(a+ b) + cosh(a+ c) + cosh(b+ c)− cosh a− cosh b− cosh c)

coth rA + coth rB + coth rC =(42)

=
1

tanh r
(cosh a+ cosh b+ cosh c− coth s (sinh a+ sinh b+ sinh c))

tanh rA + tanh rB + tanh rC =(43)

=
1

2 tanh r
(cosh a+ cosh b+ cosh c− cosh(b− a)− cosh(c− a)− cosh(c− b))
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2(sinh a sinh b+ sinh a sinh c+ sinh b sinh c) =(44)

+ tanh r (tanh rA + tanh rB + tanh rC) + tanh rA tanh rB + tanh rA tanh rC + tanh rB tanh rC

Proof. From (32),(33) and (23) we get that

− coth rA − coth rB − coth rC + coth r = 2
sin δ

N
= 2 tanhR,

as we stated in (39).

To prove (40) consider the equalities in (30) from which

coth rA coth rB + coth rA coth rC + coth rB coth rC =

=
sinh(s− a) sinh(s− b) + sinh(s− a) sinh(s− c) + sinh(s− c) sinh(s− b)

n2
=

1

sinh s sinh(s− a)
+

1

sinh s sinh(s− b)
+

1

sinh s sinh(s− c)

Similarly we also get (41):

tanh rA tanh rB + tanh rA tanh rC + tanh rB tanh rC = sinh s sinh(s− a) + sinh s sinh(s− b)+

+ sinh s sinh(s− c) =
1

2
(cosh(a+ b) + cosh(a+ c) + cosh(b+ c)− cosh a− cosh b− cosh c) .

Since we have

−2 tanhR+ coth r = coth rA + coth rB + coth rC =
sinh(s− a) + sinh(s− b) + sinh(s− c)

n
=

=
(sinh(s− a) + sinh(s− b) + sinh(s− c))

sinh s tanh r
=

cosh a+ cosh b+ cosh c− coth s (sinh a+ sinh b+ sinh c)

tanh r

(42) is given. Furthermore we also have

tanh rA + tanh rB + tanh rC =

=
n (sinh(s− a) sinh(s− b) + sinh(s− a) sinh(s− c) + sinh(s− b) sinh(s− c))

sinh(s− a) sinh(s− b) sinh(s− c)
=

=
sinh s

n
(sinh(s− a) sinh(s− b) + sinh(s− a) sinh(s− c) + sinh(s− b) sinh(s− c)) =

=
(sinh(s− a) sinh(s− b) + sinh(s− a) sinh(s− c) + sinh(s− b) sinh(s− c))

tanh r
=

=
1

2 tanh r
(cosh a+ cosh b+ cosh c− cosh(b− a)− cosh(c− a)− cosh(c− b))

implying (43). From (41) and (43) we get

tanh r (tanh rA + tanh rB + tanh rC) + tanh rA tanh rB + tanh rA tanh rC + tanh rB tanh rC =

= cosh(a+ b) + cosh(a+ c) + cosh(b+ c)− cosh(b− a)− cosh(c− a)− cosh(c− b) =

= 2(sinh a sinh b+ sinh a sinh c+ sinh b sinh c)

which implies (44). 2

The following theorem gives a connection among the distance of the incenter and circumcenter, the
radiuses r,R and the side-lengths a, b, c .

Theorem 6. Let O and I the center of the circumsrcibed and inscribed circles, respectively. Then we
have

(45) coshOI = 2 cosh
a

2
cosh

b

2
cosh

c

2
cosh r coshR+ cosh

a+ b+ c

2
cosh(R− r).
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Proof. Since

cosh(s− a) cosh r = coshAI and IAO] =
α

2
− α+ β − γ

2
=

−β + γ

2
thus from (2) we get that

coshOI = coshAI coshR− sinhAI sinhR cos
−β + γ

2
.

Hence holds the equality

coshOI = cosh(s− a) cosh r coshR− sinh r sinhR
cos −β+γ

2

sin α
2

.

Analogously to the proof of (6) we get that

cos β
2 cos γ

2

sin α
2

=

√√√√ sinh s sinh(s−b)
sinh a sinh c

sinh s sinh(s−c)
sinh a sinh b

sinh(s−b) sinh(s−c)
sinh b sinh c

=
sinh s

sinh a

and also we have

sin β
2 sin γ

2

sin α
2

=

√√√√ sinh(s−a) sinh(s−c)
sinh a sinh c

sinh(s−a) sinh(s−b)
sinh a sinh b

sinh(s−b) sinh(s−c)
sinh b sinh c

=
sinh(s− a)

sinh a
.

Summing up we get that

coshOI = cosh(s− a) cosh r coshR− sinh r sinhR
sinh s+ sinh(s− a)

sinh a
=

= cosh(s− a) cosh r coshR− 2 sinh r sinhR
sinh b+c

2 cosh a
2

sinh a
=

= cosh
−a+ b+ c

2
cosh r coshR− sinh r sinhR

sinh b+c
2

sinh a
2

,

and also the similar formula

coshOI = cosh
a− b+ c

2
cosh r coshR− sinh r sinhR

sinh a+c
2

sinh b
2

and

coshOI = cosh
a+ b− c

2
cosh r coshR− sinh r sinhR

sinh a+b
2

sinh c
2

.

Adding now the latter three formulas we get that

3 coshOI =

(
cosh

−a+ b+ c

2
+ cosh

a− b+ c

2
+ cosh

a+ b− c

2

)
cosh r coshR−

− sinh r sinhR

(
sinh b+c

2

sinh a
2

+
sinh a+c

2

sinh b
2

+
sinh a+b

2

sinh c
2

)
.

Since

cosh
−a+ b+ c

2
=

(
cosh

b+ c

2
cosh

a

2
− sinh

b+ c

2
sinh

a

2

)
=

= cosh
a

2
cosh

b

2
cosh

c

2
+ cosh

a

2
sinh

b

2
sinh

c

2
− sinh

a

2
sinh

b

2
cosh

c

2
− sinh

a

2
cosh

b

2
sinh

c

2
,

thus

cosh
−a+ b+ c

2
+ cosh

a− b+ c

2
+ cosh

a+ b− c

2
=

= 3 cosh
a

2
cosh

b

2
cosh

c

2
− cosh

a

2
sinh

b

2
sinh

c

2
− sinh

a

2
sinh

b

2
cosh

c

2
− sinh

a

2
cosh

b

2
sinh

c

2
.

We also have that

sinh b+c
2

sinh a
2

+
sinh a+c

2

sinh b
2

+
sinh a+b

2

sinh c
2

=
sinh b+c

2 sinh b
2 sinh

c
2 + sinh a+c

2 sinh a
2 sinh

c
2 + sinh a+b

2 sinh a
2 sinh

b
2

sinh a
2 sinh

b
2 sinh

c
2

and since

sinh
b+ c

2
sinh

b

2
sinh

c

2
= sinh

(
s− a

2

)
sinh

b

2
sinh

c

2
=

= sinh s cosh
a

2
sinh

b

2
sinh

c

2
− cosh s sinh

a

2
sinh

b

2
sinh

c

2
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we get that
sinh b+c

2 sinh b
2 sinh

c
2 + sinh a+c

2 sinh a
2 sinh

c
2 + sinh a+b

2 sinh a
2 sinh

b
2

sinh a
2 sinh

b
2 sinh

c
2

=

=

(
sinh s cosh

a

2
sinh

b

2
sinh

c

2
+ sinh s sinh

a

2
cosh

b

2
sinh

c

2
+ sinh s sinh

a

2
sinh

b

2
cosh

c

2
−

−3 cosh s sinh
a

2
sinh

b

2
sinh

c

2

)
1

sinh a
2 sinh

b
2 sinh

c
2

.

Using (46) we get that

sinh b+c
2

sinh a
2

+
sinh a+c

2

sinh b
2

+
sinh a+b

2

sinh c
2

=

=
2
(
cosh a

2 sinh
b
2 sinh

c
2 + sinh a

2 cosh
b
2 sinh

c
2 + sinh a

2 sinh
b
2 cosh

c
2

)
tanh r tanhR

− 3 cosh s.

Thus we have

3 coshOI = 3

(
cosh

a

2
cosh

b

2
cosh

c

2
− cosh

a

2
sinh

b

2
sinh

c

2
−

− sinh
a

2
sinh

b

2
cosh

c

2
− sinh

a

2
cosh

b

2
sinh

c

2

)
cosh r coshR+ 3 cosh s sinh r sinhR

implying that

coshOI =

(
2 cosh

a

2
cosh

b

2
cosh

c

2
− cosh s

)
cosh r coshR+ cosh s sinh r sinhR =

= 2 cosh
a

2
cosh

b

2
cosh

c

2
cosh r coshR+ cosh s cosh(R− r) =

= 2 cosh
a

2
cosh

b

2
cosh

c

2
cosh r coshR+ cosh

a+ b+ c

2
cosh(R− r),

as we stated in (45). 2

Remark. The second order approximation of (45) leads to the equality

1+
OI2

2
= 2

(
1 +

r2

2

)(
1 +

R2

2

)(
1 +

a2

8

)(
1 +

b2

8

)(
1 +

c2

8

)
−
(
1 +

(a+ b+ c)2

8

)(
1 +

(R− r)2

2

)
.

From this we get that

OI2 = R2 + r2 +
a2 + b2 + c2

4
− ab+ bc+ ca

2
+ 2Rr.

But for Euclidean triangles we have (see [2])

a2 + b2 + c2 = 2s2 − 2(4R+ r)r and ab+ bc+ ca = s2 + (4R+ r)r,

the equality above leads to the Euler’s formula:

OI2 = R2 − 2rR.

4.6. On the orthocenter of a triangle. The most important formulas on the orthocenter are also
valid in the hyperbolic plane. We give a collection in which the orthocenter is denoted by H, the feet of
the altitudes are denoted by HA, HB and HC , respectively. We also denote by ha, hb or hc the heights
of the triangle corresponding to the sides a, b or c, respectively.

Theorem 7. With the notation above we have the formulas:

(46) tanhHA · tanhHHA = tanhHB · tanhHHB = tanhHC · tanhHHC = const. =: h

sinhHA · sinhHHA : sinhHB · sinhHHB : sinhHC · sinhHHC =(47)

= coshhA : coshhB : coshhC

(48) nA(H) : nB(H) : nC(H) = tanα : tanβ : tan γ.

Furthermore let P be any point of the plane then we have

(49) nA(H) coshPA+ nB(H) coshPB + nC(H) coshPC = n coshPH
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and also

(50) cosh c sinhHAC + cosh b sinhBHA = coshhA sinh a.

Finally we have also that

(51) (h+ 1) coshOH =

(
cothhA

sinhHA
+

cothhB

sinhHB
+

cothhC

sinhHC

)
coshR.

A B

C

H

A
H

C

H

P
H

B

A
,

Figure 14. Stewart’s theorem and the orthocenter.

Before the proof we prove Stewart’s Theorem on the hyperbolic plane.

Theorem 8 (Stewart’s theorem). Let ABC be a triangle and A′ is a point on the side BC. Then we
have

(52) coshAB sinhA′C + coshAC sinhBA′ = coshAA′ sinhBC.

Proof. Using (2) to the triangles ABA′ and ACA′, respectively, we get

coshAA′ sinhBC = coshAA′ sinh(BA′ +A′C) = sinhBA′ coshA′C coshAA′+

+sinhA′C coshBA′ coshAA′ = sinhBA′(sinhA′C sinhAA′ cos(AA′C]) + coshAC)+

+ sinhA′C(sinhBA′ sinhAA′ cos(π −AA′C]) + coshAB) =

= sinhBA′ coshAC + sinhA′C coshAB

as we stated. 2

Remark. Considering third-order approximation of the hyperbolic functions we get the equality:(
1 +

AA′2

2

)(
BC +

BC3

6

)
=

(
1 +

b2

2

)(
BA′ +

BA′3

6

)
+

(
1 +

c2

2

)(
A′C +

A′C3

6

)
or equivalently the equation

a+
|AA′|2

2
a+

a3

6
= BA′ +

b2

2
BA′ +

BA′3

6
+A′C +

c2

2
A′C +

A′C3

6
.

Since a = BA′ +A′C

AA′2

2
a+

(
BA′3

6
+

BA′2A′C

2
+

BA′A′C2

2
+

A′C3

6

)
=

b2

2
BA′ +

BA′3

6
+

c2

2
A′C +

A′C3

6

implying the well-known Euclidean Stewart’s theorem:(
AA′2 +BA′ ·A′C

)
a = b2BA′ + c2A′C.

Proof. (Proof of Theorem 7) (51) is the Stewart’s theorem for the point HA.

From the rectangular trianglesHCHA andHHCA we get that tanhHHA : tanhHC = cosHAHC] =
tanhHHC : tanhHA. Similarly we get also that tanhHHB : tanhHC = cosHBHC] = tanhHHC :
tanhHB thus we have (47):

tanhHA · tanhHHA = tanhHB · tanhHHB = tanhHC · tanhHHC .



32 Á. G.HORVÁTH

From this we get
sinhHA · sinhHHA

coshHA · coshHHA
=

sinhHB · sinhHHB

coshHB · coshHHB
.

Thus
sinhHA · sinhHHA

sinhHB · sinhHHB
=

coshHA · coshHHA

coshHB · coshHHB
=

coshAHB

coshBHA

implying (48). From (9) we get that

nA(H) : nB(H) = (AHCB) = sinhAHC : sinhHCB = tanα : tanβ

implying (49). Use now the Stewart’s Theorem for the triangle PAB and its secant PHC (see in Fig.14),
where P is arbitrary point of the plane. Then we get

coshPA sinhHCB + coshPB sinhAHC = coshPHC sinh c.

Applying Stewart’s theorem again to the triangle PCHC and its secant PH, we get

coshPC sinhHHC + coshPHC sinhCH = coshPH sinhCHC .

Eliminating PHC from these equations we get

coshPA sinhHCB + coshPB sinhAHC +
coshPC sinhHHC sinh c

sinhCH
=

coshPH sinhCHC sinh c

sinhCH
.

On the other hand we have

2nC(H) = sinhHHC sinh c.

We also have

2nB(H) = 2 sinhHHB sinh b = 2 sinhCHA sinhAH = 2 sinhAHC sinhCH,

and similarly

2nA(H) = 2 sinhHCB sinhCH

implying the equality

nA(H) coshPA+ nB(H) coshPB + nC(H) coshPC =
coshPH sinhCHC sinh c

2
= n coshPH

as we stated in (50).

Use (50) in the case when P = O is the circumcenter of the triangle. Then we have

(53) nA(H) coshR+ nB(H) coshR+ nC(H) coshR = n coshOH.

Thus we have

coshOH =
nA(H) + nB(H) + nC(H)

n
coshR =

(
sinhHHA

sinhhA
+

sinhHHB

sinhhB
+

sinhHHC

sinhhC

)
coshR.

From (48) we get

sinhHHB = sinhHHA
sinhHA

sinhHB

coshhB

coshhA

and also

sinhHHC = sinhHHA
sinhHA

sinhHC

coshhC

coshhA

implying that

coshOH =
sinhHHA sinhHA

coshhA

(
coshhA

sinhHA sinhhA
+

coshhB

sinhHB sinhhB
+

coshhC

sinhHC sinhhC

)
coshR =

=

(
coshhA

sinhHA sinhhA
+

coshhB

sinhHB sinhhB
+

coshhC

sinhHC sinhhC

)
coshR

tanhHHA tanhHA+ 1
.

Now we have

(h+ 1) coshOH =

(
1

tanhhA sinhHA
+

1

tanhhB sinhHB
+

1

tanhhC sinhHC

)
coshR,

showing (52).

2
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4.7. Isogonal conjugate of a point. Let define the isogonal conjugate of a point X of the plane in the
following way: Reflect the lines through the point X and any of the vertices of the triangle with respect
to the bisector of that vertex. Then the getting lines are concurrent at a point X ′ which we call the
isogonal conjugate of X. To prove the concurrence of these lines we have to observe that if the lines AX
and AX ′ intersect the line of the side BC in the points Y and Y ′ then the ratio of these points with
respect to B and C has an inverse connection. In fact, by (1) we have that

sinh c

sinhBY
=

sinAY B]
sinBAY ] and

sinh b

sinhY C
=

sin(π −AY B])
sinCAY ] .

This implies that

(BY C) =
sinhBY

sinhY C
=

sinh c

sinh b

sinBAY ]
sinCAY ] .

For the point Y ′ we get similarly that

(BY ′C) =
sinh c

sinh b

sinBAY ′]
sinCAY ′] =

sinh c

sinh b

sinCAY ]
sinBAY ]

implying the equation

(54) (BY C)(BY ′C) =
sinh2 c

sinh2 b
.

If Z,Z ′ or V, V ′ are the intersection points of the examined lines with the corresponding sides CA or AB,
respectively, then we get the equation

(BY C)(BY ′C)(CZA)(CZ ′A)(AV B)(AV ′B) = 1

showing that the first three lines are concurrent if and only if the second three lines are. Hence we can
prove the following:

Lemma 5. If X and X ′ are isogonal conjugate points with respect to the triangle ABC then their
triangular coordinates have the following connection:

(55) nA(X
′) : nB(X

′) : nC(X
′) =

sinh2 a

nA(X)
:
sinh2 b

nB(X)
:
sinh2 c

nC(X)
.

Proof. Using (55) we have

(nC(X) : nB(X)) (nC(X
′) : nB(X

′)) = (BNAC)(BN ′
AC) =

sinh2 c

sinh2 b

implying that

nB(X
′) : nC(X

′) =
sinh2 b

nB(X)
:
sinh2 c

nC(X)

as we stated in (56). 2

Corollary 3. As a first consequence we can see immediately (35) again on the triangular coordinates of
the incenter. By (56) the triangular coordinates of the isogonal conjugate H ′ of the orthocenter is

nA(H
′) : nB(H

′) : nC(H
′) =

sinh2 a

tanα
:
sinh2 b

tanβ
:
sinh2 c

tan γ
.

Thus

nA(H
′) : nB(H

′) =
sinh2 a

tanα

tanβ

sinh2 b
=

sinα cosα

sinβ cosβ
=

sin 2α

sin 2β

implying that

(56) nA(H
′) : nB(H

′) : nC(H
′) = sin 2α : sin 2β : sin 2γ.

Compare the coordinates of H ′ with the triangular coordinates of the circumcenter (see (25)) we can see
that the isogonal conjugate of the orthocenter is the circumcenter if and only if the defect of the triangle
is zero implying that the geometry of the plane is Euclidean.

A minimality property of the incenter follows from a generalization of the equality (50). Similarly as
in the proof of (50) (see Theorem 8 and the equality (53)) we can prove that for any triangle ABC with
any fixed point Q and any various point P of the plane the following equality holds:

(57) nA(Q) coshPA+ nB(Q) coshPB + nC(Q) coshPC = n(ABC) coshPQ.
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Theorem 9. The sum of the triangular coordinates of a point P of the plane is minimal if and only if
P is the center of the inscribed circle of the triangle ABC.

Proof. Assume that the vertices of the triangle ABC are real points and the edges of it are those real
segments which are connecting these real vertices, respectively. Let A′, B′ and C ′ be the respective poles
of the lines BC, AC and AB. These poles are ideal points and the corresponding lines A′B′, A′C ′ and
B′C ′ are also ideal lines, respectively. If P is any point of the plane let d(P,BC), εA and α′ be the
distance of P and the line BC the sign of this distance and the angle of the polar triangle at the vertex
A′, respectively. We choose the sign to positive if P and A are the same (real) half-plane determined by
the line BC. Then the investigated quantity is

nA(P ) + nB(P ) + nC(P ) =

=
1

2
(εA sinh d(P,BC) sinh a+ εB sinh d(P,AC) sinh b+ εC sinh d(P,AB) sinh c) =

=
1

2i

(
cosh

(
d(P,BC) + εA

π

2
i
)
sinh a+ cosh

(
d(P,AC) + εB

π

2
i
)
sinh b+

+cosh
(
d(P,AB) + εC

π

2
i
)
sinh c

)
=

1

2i
(coshPA′ sinh a+ coshPB′ sinh b+ coshPC ′ sinh c) .

Hence using (58) we have that

1

2i
(coshPA′ sinh a+ coshPB′ sinh b+ coshPC ′ sinh c) =

1

2i
n(A′B′C ′) coshPQ

where the triangular coordinates of the point Q with respect to the polar triangle are

nA′(Q) = sinh a, nB′(Q) = sinh b, and nC′(Q) = sinh c.

It follows from (8) that the Staudtian of the triangle A′B′C ′ is

n(A′B′C ′) =
1

2
sinα′ sinh b′ sinh c′ =

1

2
sin

a

i
sinh iβ sinh iγ =

i

2
sinh a sinβ sin γ

implying that.

nA(P ) + nB(P ) + nC(P ) =
1

4
sinh a sinβ sin γ coshPQ =

N

2
coshPQ,

where the triangular coordinates of Q are sinh a, sinh b and sinh c, respectively. Thus from (35) we get
that Q = I and the sum in the question is minimal if and only if P is equal to Q = I. This proves the
statement. 2

4.7.1. Symmedian point. We recall that the isogonal conjugate of the centroid is the so-called symmedian
point of the triangle. The triangular coordinates of the symmedian point are

(58) nA(M
′) : nB(M

′) : nC(M
′) = sinh2 a : sinh2 b : sinh2 c.

From (8) immediately follows that the hyperbolic sine of the distances of the symmedian point to the
sides are proportional to the hyperbolic sines of the corresponding sides:

(59) sinh d(M ′, BC) : sinh d(M ′, AC) : sinh d(M ′, AB) = sinh a : sinh b : sinh c

showing the validity of the analogous Euclidean theorem in the hyperbolic geometry, too.

We note that the symmedian point of a hyperbolic triangle does not coincides with the Lemoine point
L of the triangle. This center can be defined on the following way: If tangents be drawn at A,B,C
to the circumcircle of the triangle ABC, forming a triangle A′B′C ′, the lines AA′, BB′ and CC ′, are
concurrent. The point of concurrence, is the Lemoine point of the triangle. The concurrency follows
from Menelaos-theorem applying it to the triangle A′B′C ′. We note that L is also (by definition) the
so-called Gergonne point of the triangle A′B′C ′. To prove that the symmedian point does not coincides
with the Lemoine point we determine the triangular coordinates of the latter, too. Let LA, LB or LC be
the intersection point of AA′ ∩BC, BB′ ∩AC or CC ′ ∩AB (see in Fig. 15),respectively. Then we have

nB(L) : nA(L) = (ALCB) =
sinhALC

sinhLCB
=

sinhC ′B

sinhC ′A

sinAC ′LC]
sinBC ′LC]

=
sinAC ′LC]
sinBC ′LC]

.

On the other hand we have by (1)

sinAC ′LC]
sinCAC ′] =

sinhCA

sinhCC ′ and
sinBC ′LC]
sinCBC ′] =

sinhCB

sinhCC ′
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Figure 15. The Lemoine point of the triangle.

implying that

sinAC ′LC]
sinBC ′LC]

=
sinhCA sinCAC ′]
sinhCB sinCBC ′] =

sinhCA cosCAO]
sinhCB sinCBO] =

2 sinh CA
2 cosh CA

2 cosCAO]
2 sinh CB

2 cosh CB
2 sinCBO]

=

=
sinh CA

2 cosh CA
2

tanh CA
2

tanhR

sinh CB
2 cosh CB

2

tanh CB
2

tanhR

=
sinh2 b

2

sinh2 a
2

= (cosh b− 1) : (cosh a− 1) .

Thus the triangular coordinates of the Lemoine point are:

(60) nA(L) : nB(L) : nC(L) = (cosh a− 1) : (cosh b− 1) : (cosh a− 1) .

Now the symmedian point and the Lemoine point coincides for a triangle if and only if the equation array

(cosh a− 1) sinh2 b = (cosh b− 1) sinh2 a(61)

(cosh a− 1) sinh2 c = (cosh c− 1) sinh2 a

gives an identity. Since

(cosh a− 1)(cosh2 b− 1) = (cosh a− 1)(cosh b− 1)(cosh b+ 1) = (cosh b− 1)(cosh a− 1)(cosh a+ 1) =

= (cosh b− 1) sinh2 a

implies a = b, the only solution is when a = b = c and the triangle is an equilateral (regular) one.

4.8. On the “Euler line”. An interesting question in elementary hyperbolic geometry is the existence
of the Euler line. Known fact (see e.g. in [16]) that the circumcenter, the centroid and the orthocenter of
a triangle having in a common line if and only if the triangle is isoscale. In this sense Euler line does not
exist for each triangle. A nice result from the recent investigations on the triangle centers is the paper of
A.V. Akopyan [1] in which the author defined the concepts of ”pseudomedians” and ”pseudoaltitudes”
giving two new centers of the hyperbolic triangle holding a deterministic Euclidean property of Euclidean
centroid and orthocenter, respectively. He proved that the circumcenter, the intersection points of the
pseudomedians (pseudo-centroid), the intersection points of the pseudoaltitudes (pseudo-orthocenter)
and the circumcenter of the circle through the footpoints of the bisectors (the center of the Feuerbach
circle) are on a hyperbolic line. A line through a vertex is called by pseudomedian if divides the area
of the triangle in half. (We note that in spherical geometry Steiner proved the statement that the great
circles through angular points of a spherical triangle, and which bisect its area, are concurrent (see [5]).
Of course the pseudomedians are not medians and their point of concurrency is not the centroid of the
triangle. We call it pseudo-centroid. He called pseudoaltitude a cevian (AZA) with the property that
with its foot ZA on BC holds the equality

AZAB]− ZABA]−BAZA] = CZAA]− ZAAC]−ACZa]
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where the angles above are directed, respectively. Throughout on his paper Akopyan assume that “any
two lines intersects and that three points determine a circle”. He note in the introduction also that “Con-
sideration of all possible cases would not only complicate the proof, but would contain no fundamentally
new ideas. To complete our arguments, we could always say that other cases follow from a theorem by
analytic continuation, since the cases considered by us are sufficiently general (they include an interior
point in the configuration space). Nevertheless, in the course of our argument we shall try to avoid major
errors and show that the statements can be demonstrated without resorting to more powerful tools”. We
note that in our paper the reader can find this required extraction of the real elements by the ideal
elements and the elements at infinity. We also defined all concepts using by Akopyan with respect to
general points and lines, furthermore his lemmas and theorem can be extracted from circles onto cycles
with our method. This prove the truth of Akopyan’s note, post factum. To see the equivalence of the

P
,

O
P

,,

Figure 16. The connection between the projective and conformal models

two theory on real elements we recall that between the projective (Cayley-Klein-Beltrami) and Poincare
models of the unit disk there is a natural correspondence, when we map to a line of the projective model
to the line of the Poincare model with the same ends (points at infinity). On Fig. 16 we can see the
corresponding mapping. A point P can be realized in the first model as the point P ′ and in the second
one as the point P ′′. It is easy to see that if the hyperbolic distance of the points P and O is a then
the Euclidean distances P ′O or P ′′O are equals to tanh a or tanh(a/2), respectively. Thus our analytic
definitions on similarity or inversion are model independent (end extracted ) variations of the definitions
of Akopyan, respectively. Thus we have

Theorem 10 ([1]). The center O of the cycle around the triangle, the center of the cycle F around the
feet of the pseudomedians, the pseudo-centroid S and the pseudo-orthocenter Z are on the same line.

By Akopyan’s opinion this is the Euler line of the triangle and thus he avoided the problem is to
determination of the connection among the three important classical centers of the triangle. Our aim to
give some analytic determination for the pseudo-centers introduced by Akopyan.

Theorem 11. Let SA, SB , SC be the feet of the pseudo-medians. Then we have the following formulas:

sinh
ANC

2
: sinh

NCB

2
= cosh

b

2
: cosh

a

2
(62)

sinh
BNA

2
: sinh

NAC

2
= cosh

c

2
: cosh

b

2

sinh
CNB

2
: sinh

NBA

2
= cosh

a

2
: cosh

c

2
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implying that they are concurrent in a point S. We call S the pseudo-centroid of the triangle. The
triangular coordinates of the pseudo-centroid hold:

nA(R) : nB(R) : nC(R) =
1(

cosh2 b
2 cosh

2 c
2 + cosh a

2 cosh
b
2 cosh

c
2

) :(63)

:
1(

cosh2 a
2 cosh

2 c
2 + cosh a

2 cosh
b
2 cosh

c
2

) :

:
1(

cosh2 b
2 cosh

2 a
2 + cosh a

2 cosh
b
2 cosh

c
2

) .
Proof. From (12) we know that

cosh
a

2
cosh

b

2
cosh

c

2
=

N2

sinα sinβ sin γ sin δ
.

(15) says that

2n2 = N sinh a sinh b sinh c,

and we also have

sinα sinβ sin γ sinh a sinh b sinh c = 4nN.

From these equalities we get the analogous of the spherical Cagnoli’s theorem:

(64) sin δ =
N2

sinα sinβ sin γ cosh a
2 cosh

b
2 cosh

c
2

=
N2 sinh a sinh b sinh c

4nN cosh a
2 cosh

b
2 cosh

c
2

=
n

2 cosh a
2 cosh

b
2 cosh

c
2

.

Using the formulas before (26) we get that

cosh
a

2
sinh

b

2
sinh

c

2
=

√
sin (δ + β) sin (δ + γ)

sin γ sinβ

√
sin δ sin (δ + β)

sin γ sinα

√
sin δ sin (δ + γ)

sinα sinβ
=

=
N2

sin(δ + α) sinα sinβ sin γ
,

implying (with the above manner) the equality

(65) sin(δ + α) =
n

2 cosh a
2 sinh

b
2 sinh

c
2

.

From these equalities we get that

(66)
sin(δ + α)

sin δ
= cosα+ cot δ sinα = coth

b

2
coth

c

2
.

Thus if the area of a triangle and one of its angles be given, the product of the semi hyperbolic tangents
of the containing sides is given. Since the area of the examined triangles are equals to each other we get
that

n

2 cosh a
2 cosh

BNC

2 cosh CNC

2

=
sinh a sinhBNC sinβ

4 cosh a
2 cosh

BNC

2 cosh CNC

2

=
sinh a

2 sinh
BNC

2 sinβ

cosh CNC

2

and similarly

n

2 cosh b
2 cosh

NCA
2 cosh CNC

2

=
sinh b

2 sinh
NCA

2 sinα

cosh CNC

2

implying that

sinh
a

2
sinh

BNC

2
sinβ = sinh

b

2
sinh

NCA

2
sinα.

From this we get that
sinh ANC

2

sinh NCB
2

=
sinh a

2 sinβ

sinh b
2 sinα

=
cosh b

2

cosh a
2

as we stated in (63). The production of the equalities in (63) gives the equality

(67) sinh
ANC

2
sinh

BNA

2
sinh

CNB

2
= sinh

NCB

2
sinh

NAC

2
sinh

NBA

2
.

On the other hand the triangles CANC , NBAB having equal areas and also have a common angle, in
virtue of (67) we get that

tanh
b

2
tanh

ANC

2
= tanh

c

2
tanh

NBC

2
,
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implying that

tanh
ANC

2
tanh

BNA

2
tanh

CNB

2
= tanh

NBC

2
tanh

NCB

2
tanh

NAC

2
.

So we also have

cosh
ANC

2
cosh

BNA

2
cosh

CNB

2
= cosh

NBC

2
cosh

NCB

2
cosh

NAC

2
,

and as a consequence the equality

sinhANC sinhBNA sinhCNB = sinhNCB sinhNAC sinhNBA.

Menelaos theorem now gives the existence of the pseudo-centroid.

From (63) we get that

cosh a
2

cosh b
2

=
sinh

(
c
2 − ANC

2

)
sinh ANC

2

= sinh
c

2
coth

ANC

2
− cosh

c

2
,

hence

coth
ANC

2
=

cosh b
2 cosh

c
2 + cosh a

2

sinh c
2 cosh

b
2

or equivalently

cosh
ANC

2
=

cosh b
2 cosh

c
2 + cosh a

2

sinh c
2 cosh

b
2

sinh
ANC

2
.

From this we get

1 = sinh2
ANC

2

−1 +

(
cosh b

2 cosh
c
2 + cosh a

2

sinh c
2 cosh

b
2

)2
 =

=
− sinh2 c

2 cosh
2 b

2 +
(
cosh b

2 cosh
c
2 + cosh a

2

)2
sinh2 c

2 cosh
2 b

2

sinh2
ANC

2
=

cosh2 b
2 + 2 cosh a

2 cosh
b
2 cosh

c
2 + cosh2 a

2

sinh2 c
2 cosh

2 b
2

sinh2
ANC

2

Thus

sinhANC = 2 sinh
ANC

2
cosh

ANC

2
= 2 sinh2

ANC

2

cosh b
2 cosh

c
2 + cosh a

2

sinh c
2 cosh

b
2

=

= 2
sinh c

2 cosh
b
2

(
cosh b

2 cosh
c
2 + cosh a

2

)
cosh2 b

2 + 2 cosh a
2 cosh

b
2 cosh

c
2 + cosh2 a

2

.

Hence we also have

sinhNCB = 2
sinh c

2 cosh
a
2

(
cosh a

2 cosh
c
2 + cosh b

2

)
cosh2 a

2 + 2 cosh a
2 cosh

b
2 cosh

c
2 + cosh2 b

2

implying that

nB(N) : nA(N) = (ANCB) =

(
cosh2

b

2
cosh

c

2
+ cosh

b

2
cosh

a

2

)
:

(
cosh2

a

2
cosh

c

2
+ cosh

a

2
cosh

b

2

)
=

=

(
cosh2

b

2
cosh2

c

2
+ cosh

a

2
cosh

b

2
cosh

c

2

)
:

(
cosh2

a

2
cosh2

c

2
+ cosh

a

2
cosh

b

2
cosh

c

2

)
.

From this we get that

nA(N) : nB(N) =
1(

cosh2 b
2 cosh

2 c
2 + cosh a

2 cosh
b
2 cosh

c
2

) :
1(

cosh2 a
2 cosh

2 c
2 + cosh a

2 cosh
b
2 cosh

c
2

) .
Similarly we get

nB(N) : nC(N) =
1(

cosh2 c
2 cosh

2 a
2 + cosh c

2 cosh
b
2 cosh

a
2

) :
1(

cosh2 b
2 cosh

2 a
2 + cosh a

2 cosh
b
2 cosh

c
2

)
as we stated in (64). 2
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Remark. We note that there are many Euclidean theorems can be investigated on the hyperbolic plane
by our more-less trigonometric way. We note that on the hyperbolic plane the usual isoptic property of
the circle lost (see [6]) and thus all the Euclidean statements using this property can be investigated only
the way of [1]. To that we can use trigonometry in this method we can concentrate on the introduced
concept of angle sums which in a trigonometric calculation can be handed well. Thus the isoptic property
of a cycle (or which is the same the cyclical property of a set of points) can lead for new hyperbolic
theorems suggested by known Euclidean analogy.
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Hungary, 1111

E-mail address: ghorvath@math.bme.hu


