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Most problems are best for pairs of students, but some are also good for triples (e.g., No 11 probably requires

more work than average), or solos (e.g., No 13 is quite easy).

1. Aldous’ theorem. Show that the vector of the two largest cluster sizes C1(n), C2(n) in the critical

Erdős-Rényi graph G(n, 1/n), scaled by n2/3, converges in distribution to the vector of the two longest

excursions of a Brownian motion with parabolic drift, Bt − t2/2, away from its running minimum (see

PGG Theorem 12.23). The process (Bt)t≥0 should be simulated as the limit of Xnt/
√
n as n→∞, where

Xi is simple symmetric random walk on Z.

2. Persistence of disconnectedness. Recall that there is a sharp phase transition at p = pn = lnn
n for

the connectedness of the Erdős-Rényi graph G(n, p).

(a) Estimate the probability of connectedness at pn via simulations.

(b) What is the probability of being disconnected at pn(t) := pn + t
n , how does it behave as t → ∞?

Note that you can get an explicit mathematical guess by looking at the expected number of isolated

vertices, which is ∼ e−t, for large n.

(c) Now, starting from a configuration at pn, consider the dynamics where, at each step, a uniform

random edge of Kn is chosen and resampled: independently of whether it was present or not, let it

be present with probability pn. Fixing a large t > 0, what is the probability that it is disconnected

all along the first tn/2 steps? Note (via a math argument) that this probability is at least as large as

the previous off-critical probability, but the question is if it is much larger; say, only subexponentially

small in t. (I do not know the answer.)

3. Noise sensitivity in the Minimal Spanning Tree. Assign to each edge e of the complete graph Kn

an independent Ue ∼ Unif[0, 1] label, and let MST be the spanning tree T that minimizes the total weight∑
e∈T Ue. Let us denote this minimal total weight by W({Ue}), and the diameter of MST (in terms of the

graph metric, not in terms of the labels) by diam({Ue}). Recall that MST can be effectively sampled by

Kruskal’s or similar greedy algorithms.

(a) Plot the distributions of W({Ue}) and diam({Ue}) for several values of n. How do the means and

standard deviations scale with n?

(b) Now introduce a small noise to the labels: fix a small ε > 0, and for each e ∈ E(Kn), let Ũe be equal

to Ue with probability 1 − ε, and an independent Unif[0, 1] variable with probability ε. How do the

correlations Corr
(
W({Ue}),W({Ũe})

)
and Corr

(
diam({Ue}), diam({Ũe})

)
behave for fixed ε > 0 as

n → ∞? I expect that the first remains close to 1, while the second goes to 0; i.e., the macroscopic

geometry of the tree is noise sensitive, but the total weight is not.

4. Random walk in random environment. Let {pi : i ∈ Z} be an iid sequence with pi ∈ (0, 1). Fix this

random environment, then consider the random walk

P[Xn+1 = i+ 1 | Xn = i ] = 1−P[Xn+1 = i− 1 | Xn = i ] = pi .
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(a) Let pi be 1/3 or 2/3, with probability 1/2 each. Find a deterministic sequence an such that Xn/an
seems to be converging in distribution to a non-degenerate variable.

(b) Find a distribution with Epi = 1/2 such that Xn is transient.

(c) In both cases, draw pictures of the space-time trajectories.

5. A random walk in Manhattan. In Manhattan, all streets are one-way. So, for each infinite line of Z2,

flip a fair coin, orienting it one way or the other. Given this random environment, let Xn be the random

walk that, at each corner, chooses one of the two possibilities (continuing straight or turning, respecting

the one-way direction) with probability 1/2. Is this walk recurrent? How far is typically Xn from the

origin, for large n? Draw pictures of the trajectory.

6. Random walk in a changing random environment. Consider critical dynamical bond percolation

on the n × n discrete torus (Z/nZ)2: at the beginning, each edge is open or closed, with probability 1/2

each, independently, then at each time step, one edge is chosen at random and its status is flipped. Now

consider a particle that starts from the origin and performs a random walk in this changing maze with

“infinite speed”: that is, it is always uniformly distributed in its current cluster. That is, let X0 = (0, 0),

and let C0 be the cluster of X0. Then let X1 be a uniform random vertex in C0. Then flip the status of

a random edge. The new cluster of X1 will be C1. Then let X2 be a uniform random vertex in C1. Then

flip the status of a random edge. The new cluster of X2 will be C2, and so on.

How many steps are needed for the particle Xt to be approximately uniformly distributed on the torus?

7. PageRank for Barabási-Albert. How does the PageRank score of a vertex correlate with time? E.g.,

arrival time of first ranked vertex goes to infinity with growth of graph?

8. Random genetic drift drives a population towards genetic uniformity. Consider the Wright-

Fisher model, as follows. A certain gene can have two alleles, A and B. At the beginning, the two alleles

are represented equally in the gene pool given by N diploid individuals: there are altogether N copies of

A and N copies of B. In the next generation, we again have N individuals, with each of their altogether

2N genes drawn independently at random from all the genes in the old generation. And so on, repeated

forever.

(a) How many generations does it typically take to eradicate one of the alleles from the gene pool?

(b) Now assume that, in each generation, each individual may go dormant, independently with proba-

bility λ/N , some λ ∈ (0,∞) fixed, and stays dormant for an independent time ξ with distribution

P[ ξ ≥ t ] = t−β , t = 1, 2, 3, . . . , some β > 0. When D individuals are dormant, then the reproduction

is like before, just with the N −D non-dormant individuals participating. When an individual wakes

up, it will take part in the reproduction, and thus may re-introduce a seemingly extinct allele. For

what values of λ and β is the time scale to get complete uniformity significantly larger than before?

9. Positive overshoots with negative drift. Consider a random walk Sn = X1 + · · · + Xn on R,

with iid increments satisfying EXi < 0, but P[Xi > 0 ] > 0, moreover, with E(X+
i )2 = ∞, where

x+ := max{x, 0}. (In particular, the size-biased version of X+
i exists, but has infinite expectation.) Let

T := inf{n > 0 : Sn > 0}, where the infimum is defined to be infinite if the set is empty.

(a) Does it seem to be always true that E[ST | T <∞ ] <∞?

(b) Does it seem to be always true that E[ST | T <∞ ] =∞?

10. Bootstrap percolation. Let Z2
∞ be the graph with vertex set Z2 and edge set given by the pairs of

vertices at `∞-distance distance at most 1 from each other. In the n × n box in Z2
∞, start with an

i.i.d. Bernoulli(p) set of occupied vertices. Then, at each round, a vertex becomes occupied if at least 4 of

its 8 neighbours are occupied; this is repeated until there are no changes in a round.

(a) Estimate the critical value pc(n) for the initial occupation density p for which the probability that

every vertex becomes eventually occupied is 1/2.



(b) Around the critical density, take an instance when complete occupation happens, and make a picture

of the occupation process: let the colour of a site (or, for better visibility, of a unit square) depend

on the round in which it got occupied.

11. Liquid crystal. In R2/(nZ)2, the 2-dimensional continuum torus of side length n, let X1, X2, . . . be iid

uniform random points. From each Xi iteratively, draw a unit vector at a uniform random angle, unless

it intersects some previously drawn vector. Do this until we have n2 vectors drawn.

(a) How many tries are needed typically?

(b) In a typical subsquare of side-length m, there are of order m2 vectors. One can say that they are

pointing roughly in the same direction (there is long range order in this subsquare) if their vector

sum has length of order m2. What is the largest m = m(n) for which most subsquares have long

range order?

(c) Make pictures.

12. Gaussian copula. Consider the following data from the last 100 days for the prices of a pair of stocks:

{199.183, 198.731}, {199.974, 199.734}, {198.084, 198.307}, {199.132, 200.579}, {198.995, 200.155},
{199.744, 199.44}, {199.546, 198.39}, {199.755, 200.776}, {198.47, 199.096}, {198.662, 199.675}, {189.774,

189.307}, {186.628, 186.131}, {196.473, 198.316}, {199.803, 199.613}, {197.333, 198.765}, {198.407,

199.52}, {199.989, 200.138}, {196.261, 196.598}, {199.866, 201.095}, {196.152, 195.168}, {200.021, 199.419},
{199.622, 198.419}, {200.605, 200.932}, {196.332, 194.418}, {193.769, 196.125}, {196.958, 197.247},
{198.648, 198.961}, {199.039, 199.532}, {198.371, 198.722}, {197.122, 200.102}, {196.644, 198.725},
{199.822, 199.674}, {199.112, 199.773}, {197.595, 196.657}, {199.663, 197.82}, {199.039, 199.135}, {196.899,

198.705}, {199.176, 200.07}, {198.626, 200.604}, {199.48, 200.255}, {195.652, 197.964}, {199.708, 199.213},
{198.009, 198.869}, {199.743, 199.869}, {196.87, 200.09}, {193.913, 192.382}, {196.284, 198.334}, {199.07,

200.245}, {198.899, 200.216}, {200.407, 198.075}, {199.626, 200.985}, {199.278, 197.229}, {199.512,

200.966}, {190.633, 192.106}, {198.982, 198.297}, {200.74, 200.235}, {199.366, 198.7}, {200.311, 200.237},
{199.723, 199.197}, {195.653, 197.154}, {190.626, 189.285}, {199.477, 199.724}, {199.296, 199.29}, {142.269,

144.896}, {198.028, 197.95}, {198.072, 197.308}, {198.153, 199.564}, {190.066, 188.593}, {200.105, 200.592},
{198.656, 200.201}, {199.411, 198.112}, {199.17, 197.28}, {200.371, 200.146}, {198.712, 198.329}, {198.956,

200.89}, {200.183, 196.989}, {187.394, 187.588}, {198.15, 199.422}, {173.914, 174.935}, {197.05, 198.765},
{199.175, 199.964}, {198.341, 198.239}, {197.813, 196.851}, {200.743, 199.522}, {184.203, 185.063},
{199.543, 196.427}, {198.676, 198.976}, {198.362, 198.797}, {199.965, 198.247}, {199.082, 198.926},
{201.179, 199.302}, {198.334, 198.182}, {188.417, 186.537}, {198.011, 199.522}, {201.118, 200.}, {198.235,

194.815}, {200.166, 198.914}, {198.035, 198.593}, {199.276, 199.479}, {200.556, 197.852}.
(I admit that this is actually iid data from a certain bivariate distribution, so we see things that would not

happen for real stock prices. In real life, a day like {142.269, 144.896} could happen without any warning

signs beforehand, but would not be followed by completely normal days.)

(a) Calculate the sample mean vector µ and covariance matrix Σ for this data.

(b) Assuming that the distribution is bivariate normal, with the parameters (µ,Σ) just obtained, make

a random sample how the next 100 days may look like.

(c) Estimate the marginal distributions of the data, then using the Gaussian copula with parameters

(µ,Σ), make a random sample for the next 100 days.

(d) Vice versa, calculate the sample copula of the data, then assume that the marginals are normal, with

marginal parameters obtained above, make a random sample for the next 100 days.

(e) Now use the marginals and the copula obtained from the data, and make a random sample for the

next 100 days.

(f) Plot all the data: (1) the original; (2) bivariate normal; (3) estimated marginals, Gaussian copula;

(4) estimated copula, Gaussian marginals; (5) estimated copula, estimated marginals. How similar

are these to each other?



(g) We go bankrupt in the future if both prices go below 0. For which model does this seem to be

the most likely? (Of course, since the minimum number in the entire data is 142.269, it’s not really

possible to estimate this probability. I’m just asking for simple-minded intuition, which is what many

traders would also rely on.)

13. In a k-step Markov chain X0, X1, X2, . . . , by definition, k is the smallest value such that, for every

n ≥ k, the distribution of Xn depends only on the previous k steps:

Xn |X0, X1, . . . , Xn−1
d
= Xn |Xn−k, . . . , Xn−1.

The following sequence is the first 800 steps of a k-step Markov chain. Make a guess what k is and what

the transition probabilities are.

0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0,

1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,

1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0,

1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1,

1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0,

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1,

0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0,

0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0,

0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1,

1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1,

0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1,

1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1,

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1,

1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0,

0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0,

1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1,

0, 1, 0


