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General wisdom:

Algebraic properties of a group
«—— (Coarse geometric properties of its Cayley graphs
«—— Behaviour of simple random walk on it

How much of this survives if we pass to an infinite percolation cluster?

This talk:

e On finitely presented groups, anchored isoperimetry survives if p > 1 — €.

e On Z9 via a new large deviations result (exponential cluster repulsion),
everything works nicely for all p > p.(Z%), e.g., pn(0,0) < n=%2

e On what groups can one hope to do similar things, especially, percolation
renormalization? Scale-invariant groups and tilings.

e A lot of questions.



Isoperimetry, groups, random walks

Y (-) T oo. Bounded degree G(V, E) has 1-isoperimetric inequality ZP, if

. 0] . }
0 < ty(G) ;= Inf {— S C V(@) connected finite ; .

z1=1/% . d-dimensional isoperimetry ZP,.
Y(x) = x : non-amenability ZP .

A Cayley graph has |B,(z)| < On® iff ZP4,. does not hold [Varopoulos
1985, Coulhon-Saloff-Coste 1993]

A Cayley graph has a d < oo with |B,(z)| < Cn? iff the group is almost
nilpotent |Gromov 1981].

A Cayley graph has ZP iff p,(x,x) < en—%2. Varopoulos, Saloff-Coste,
Coulhon, Grigoryan, Pittet, Lovdsz-Kannan, Morris-Peres, etc.
Nash inequalities, Faber-Krahn inequalities, evolving sets, etc.



A group is amenable [von Neumann 1929, i.e., exists invariant mean on
all bounded functions, iff any Cayley graph of it is amenable [F@lner 1955].
ldea 1: Compute averages along almost-invariant sets, take Banach limit.
|dea 2: 7P, implies wobbling paradoxical decomposition.

G is non-amenable iff spectral radius p = lim, p,(x, )™ < 1 [Kesten
1959, Cheeger 1970]. Almost invariant sets «— almost invariant functions.
Implies that SRW has linear rate of escape.

Conjecture [Benjamini-Schramm 1996]. G is non-amenable iff there is
a p with infinitely many infinite clusters.

Amenable examples: Abelian, nilpotent, solvable groups. Any group

with subexponential volume growth, e.g., |Grigorchuk 1984|. Basilica group
[Bartholdi-Virag 2005].

Non-amenable examples: Anything with an F, free subgroup, e.g.,
SL,(Z). Gromov hyperbolic groups. Tarski monsters [Olshanskii 1980] and
free Burnside groups [Adian 1982].



Anchored isoperimetry

Bounded degree infinite G(V, E), fixed o € V(G), function ¢(-) /" oc.
G(V, E) satisfies an anchored 1/-isoperimetric inequality 77, if
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Does not depend on the anchor o. For G transitive, same as usual ZP,.
Y(x) = x : anchored expansion or weak nonamenability, ZP__.
Y(x) = 2171/?: d-dimensional anchored isoperimetry ZP%.

0 <iy(G) := lim inf{

n—aoo

:oeSCV(G),Sconn.,n<\S\<oo}.

Definition is by [Thomassen 1992] and [Benjamini-Lyons-Schramm 1999].

Point 1: Unlike ZP,, this has a chance to survive percolation.
E.g., supercritical GW trees on non-extinction have ZP__ [Chen-Peres 2004].

Point 2: Still has many probabilistic implications.



| Thomassen 1992] IP5., . implies transience (with a “precise €").
Stronger result with very short proof by [Lyons-Morris-Schramm 2006].

Virag 2000] ZPZL, implies positive liminf speed for SRW, and heat kernel
decay py,(0,0) < exp(—cn'/?), best possible.

Thomassen and Virag show existence of large subgraph. False for ZP}.

Conjecture 1. TP implies p,(0,0) < Cn~%2. (And there is a general
version.)

Conjecture 2. If G is not ZP._ (so, strongly amenable), then the Green
super-level sets Sy :={x € V : G(o,x) > t} form a Fglner sequence.
Open even for groups, conjectured also by C. Pittet.

Maybe, if G is not ZP;, then the S; witness this: |0.Sy|/1(]S¢]) — 07

Conjecture 3. If (G satisfies IP:‘L, with ¢ derived from its volume growth,

then SRW is not subdiffusive: E,[X,] > c¢y/n. True for groups [Mok-
Erschler, Lee-Peres].



Survival of IPZZ

Proposition. If G has IP;Z with some 1 " 00, and the exponential decay
P,||%| < 00, |05 = n]| < o(p)"
holds, then p-a.s. on the event |4,| = oo, also €, has ZPy,.

The o(p)™ decay holds for p > 1 — € if the number of cutsets of size n grows
at most exponentially (Peierls argument), e.g., for finitely presented groups.

A bit trickier: ZP__ for all p > W [my Appendix to Chen-Peres 2004]

However, on Z%, d > 3, it does not hold for p € (p., 1 — p.).



Survival of IPZZ

Proposition. If G has IPZ with some 1) 7 00, and the exponential decay
Pp[‘cgol < 00, ‘ai?l—cgol — n] < Q(p)n

holds, then p-a.s. on the event |%,| = oo, also %, has IP:;.

The o(p)™ decay holds for p > 1 — ¢ if the number of cutsets of size n grows

at most exponentially (Peierls argument), e.g., for finitely presented groups.
A bit trickier: ZP7_ for all p > W [my Appendix to Chen-Peres 2004]

However, on Z9, d > 3, it does not hold for p € (p., 1 — pe).

Proof of theorem: If |0 S| = n but |8<}ZOS| < an, then can redeclare with

a cost < (1 —p)~", and < (") preimages. Small exponential for e small.
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Exponential cluster repulsion on Z¢

Between two clusters, the number of touching edges is 7(%1, 6>).

Theorem. For d > 2 and any p > p.(Z?), there is a ¢; = c1(d,p) > 0 s.t.

P, [m <%, < oo and 7(%,, ) > t] < exp(—c max{ml_l/d,t}).

Setting t = 0, the stretched exponential decay we get is a sharp classical
result: [Kesten-Zhang 1990] combined with |[Grimmett-Marstrand 1990].

Corollaries. For all p > p.(Z%), €, satisfies ZP}; a.s. For giant cluster &
in [—n,n]?, 3 ca(d,p), a(d,p) > 0s.t., a.a.s., for all connected S C € with
Ca (logn)d%dl < |S] < |F]/2, we have |04S| > «|S|'~1/¢. By [Morris-Peres
2005], L>™-mixing time is ©(n?), while p,(0,0) < Cn~%2 on €.

Almost by [Benjamini-Mossel 2003], then actually by [Mathieu-Remy 2004]
and [Rau 2006], 40 pages. Gaussian off-diagonal decay by [Barlow 2004].



Exponential cluster repulsion elsewhere?

Conjecture. On any infinite group,

Pp[\%o\ < 00 and €. with 7(6,, Cx) > t| < exp(—ct).

The renormalization technique is completely missing.

On non-amenable groups, 7(€", %) < co a.s. for all ¢,7. [Timar 2006]

Conjecture. Bond percolation p > 1< on the hypercube {0,1}%. Then

SRW on the giant cluster has mixing time d?<(1). Even O.(dlogd)?

Would follow from P, [3% with 7(%,,€) > t} < exp(—ct /dO)).

Note that if |€,| > d°<(1), then it should already be the giant cluster. But
none of [AjK05z82], [BoKotu92|, [BoChvdHSISp05] helps.



Proof idea of exponential cluster repulsion

Blocks B, = {y € Z% : |ly — Nx||ooc <3N/4}. B is good if it has a cluster

connecting its (d — 1)-dim faces, while its other clusters have diam < N/5.
Renormalization: Vp > p, limy P,(B is good) = 1. |Antal-Pisztora 1996]
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Proof idea of exponential cluster repulsion

Blocks B, = {y € Z% : ||y — Nx||oo < 3N/4}. B is good if it has a cluster
connecting its (d — 1)-dim faces, while its other clusters have diam < N/5.
Renormalization: Vp > p,, limy P, (B is good) = 1.

B is @ -substantial if € N B has a component of diam > N/5. Assume
0 & 6. A block is RED: %,-substantial but has a non-%,-substantial
neighbor. BLUE: both %,- and %.-substantial. Each touching edge is in at
least one blue block, in at most 2¢. Observe: a colored block is never good.

the infinite cluster

the cluster of the origin

Main Lemma. On the event
{1%,] = m and 7(%,,%6~) > t},
the set of blocks RED U BLUE
has a *-connected subset of size

> ¢(N, d) max{m!'~1/? t},
d contained in the box B,,(0). 0

apureblueblock —— |

ablock both red and blue ——
apureredblock — |




Wulff shape inside the cluster?

. 7 lsoperimetrically optimal 7  Classical Wulff shape
Balls inside -, «— perimetrically opt s . P
sets inside 6 (large finite clusters)

Conjecture. Limit shapes exist. (Are they the same?) In the plane, these
converge to a Euclidean ball, as p | p.. (For balls, asked by Itai Benjamini.)
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Scale-invariant groups

A group G is scale-invariant if there is a subgroup chain G = Gy D G1 D
Gy D ... with G,, ~ G and ﬂ,@o (:,, finite. Benjamini conjectured that
such a G has polynomial growth, hence is almost nilpotent |Gromov 1981].

Reason for definition: renormalization. For conjecture: If G,, = p°"*(G),
then ¢ “looks like" expanding: d(¢(x),p(y)) > (1 + €)d(x,y). But then
|Biiter| S |G : o(G)]|By|. [Franks 1970, Farkas 1981, Gelbrich 1985]

Not scale-inv: free group Fj. has s — 1 = [F}. : F](r — 1). More generally,
if there is a non-zero Euler characteristic X(G), e.g., if Bettif) > 0 (the
G-dimension of harmonic Dirichlet functions).

Using this and a theorem of Zlil Sela: torsion-free hyperbolic groups. What
about relatively hyperbolic groups?
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Scale-invariant groups

A group G is scale-invariant if there is a subgroup chain G = Gog D G D
Gy D ... with G,, ~ G and ﬂn>0 (i, finite. Benjamini conjectured that
such a G has polynomial growth, hence is almost nilpotent |Gromov 1981].

Reason for definition: renormalization. For conjecture: If G,, = °"(G),
then ¢ “looks like” expanding: d(¢(x),p(y)) > (1 4+ €)d(x,y). But then

|B(it+e)r| S G 1 o(G)]|By|. [Franks 1970, Farkas 1981, Gelbrich 1985]
Not scale-inv: Bettif) > (. Torsion-free (relatively?) hyperbolic groups.
Theorem. Let H be scale-invariant, (), ,H, = {1}, and A an

automorphism group of H leaving all H,, invariant. Assume A is faithful
on each H,,, and Ax H, ~ Ax H. Then GG := A x H is scale-invariant.

Corollary. The following groups are scale-invariant:

The lamplighter groups F { Z, where F is any finite Abelian group.

The solvable Baumslag-Solitar groups BS(1,m) = (a,b | bab™! = a™).
The affine groups A x Z% with A < GL(Z,d).
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Sketch of proof

Coset tree 7 = {(xor122...): Hypr12p11 C Hpx,}. Since H, is
A-invariant, G := A x H acts on 7 by the affine transformations
(Hpz,) ") = H, a(z,)h. Extends to a continuous action on 97 .

Sta(Hpxy,) = {(Oz, oz(:cn)_lhn:r;n) €A, h, € Hn} ~ AxH, ~ Ax H .

For x = (zo,21,%2,...) € 0T, we have Stg(z) = (50 Sta(Hpryn). For
(o, h) # (1,1), {x € T not stabilized by (a,h)} is open and dense, so,
by Baire's category theorem, exists ray with trivial stabilizer. i

The isomorphisms ¢, : G — Stg(Hpx,) satisfy @ = @, 00e | 4,
where z,, is parent of z,,_1, and @, | .. € {©1,..., P}

In our examples, the ray with trivial stabilizer has to be an “irrational ray”,
never periodic! For quite different reasons in the three examples. . .

Question. If G,, = ©°"(G) scale-inv, is then G of polynomial growth?



How is Lamplighter Group an example?

H < Zs|[t]] additive group of finite Laurent polynomials of (14t),
(F(t) =tF({), [H:y(H)| = 2.

Coset tree is same as natural representation of Zs|[[t]] as binary tree.
A =7 acts on H, multiplication by 1 +¢. G = A x H.

(m,f): Ft)— Q+0)"F)+ > fk)(1+t)k
keZ

Wreath generators: s: F(t) — F(t)+1and R: F(t) — (1 +1t)F(t).
With a = Rs, b = R, self-similar action: a = (b,a)e, b = (b, a).
Diestel-Leader graph is Cayley graph w.r.t. both <RS,R> and <3R, R3>.



Good tilings and tiles?

Scale-invariant tiling {T; : @ € I} of transitive I': finite connected T; ~ T,
tiling graph (i ~ j : 3x € T;,y € Tj,x ~ y) >~ I', and can iterate T™ /T,

SI of non-Abelian G does not give Sl tiling of I'!  But expanding
homomorphism of Heisenberg Lie group induces nice contracting self-similar
action on coset tree, producing a Sl tiling. Still, the following remains:
Question. Does existence of Sl tiling imply polynomial growth?

In our amenable examples, exists tiling sequence {77 :~v € G,} such
that 7™ is connected Fglner, so converges locally to I'. [G. Elek]

Question. I' amenable transitive graph, p > p.(I'). Does there exist a
connected Fglner sequence F,, I s.t.

. largest component(F,, N €x) .
lim = lim
n—00 ‘Fn‘ o0 |Fn‘

=0(p) a.s.”

This would be the main percolation lemma for renormalization.
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