# Random walks on percolation clusters, and scale-invariant groups

Gábor Pete http://www.math.toronto.edu/~gabor

Based on: A note on percolation on  $\mathbb{Z}^d$ : isoperimetric profile via exponential cluster repulsion, *Elect. Comm. Probab.* **13** (2008), [arXiv:math/0702474 math.PR]

and on joint work

with Volodia Nekrashevych (Texas A&M): Scale-invariant groups Groups, Geometry & Dynamics, to appear, [arXiv:0811.0220 math.GR] General wisdom:

How much of this survives if we pass to an infinite percolation cluster?

This talk:

- On finitely presented groups, anchored isoperimetry survives if  $p > 1 \epsilon$ .
- On  $\mathbb{Z}^d$ , via a new large deviations result (exponential cluster repulsion), everything works nicely for all  $p > p_c(\mathbb{Z}^d)$ , e.g.,  $p_n(o, o) \asymp n^{-d/2}$ .
- On what groups can one hope to do similar things, especially, percolation renormalization? Scale-invariant groups and tilings.
- A lot of questions.

#### Isoperimetry, groups, random walks

 $\psi(\cdot) \uparrow \infty$ . Bounded degree G(V, E) has  $\psi$ -isoperimetric inequality  $\mathcal{IP}_{\psi}$  if

$$0 < \iota_{\psi}(G) := \inf \left\{ \frac{|\partial S|}{\psi(|S|)} : S \subset V(G) \text{ connected finite} \right\}.$$

 $\psi(x) = x^{1-1/d} : d$ -dimensional isoperimetry  $\mathcal{IP}_d$ .  $\psi(x) = x :$  non-amenability  $\mathcal{IP}_{\infty}$ .

A Cayley graph has  $|B_n(x)| \leq Cn^d$  iff  $\mathcal{IP}_{d+\epsilon}$  does not hold [Varopoulos 1985, Coulhon-Saloff-Coste 1993]

A Cayley graph has a  $d < \infty$  with  $|B_n(x)| \leq Cn^d$  iff the group is almost nilpotent [Gromov 1981].

A Cayley graph has  $\mathcal{IP}_d$  iff  $p_n(x,x) \leq cn^{-d/2}$ . Varopoulos, Saloff-Coste, Coulhon, Grigoryan, Pittet, Lovász-Kannan, Morris-Peres, etc. Nash inequalities, Faber-Krahn inequalities, evolving sets, etc. A group is amenable [von Neumann 1929], i.e., exists invariant mean on all bounded functions, **iff** any Cayley graph of it is amenable [Følner 1955]. Idea 1: Compute averages along almost-invariant sets, take Banach limit. Idea 2:  $\mathcal{IP}_{\infty}$  implies wobbling paradoxical decomposition.

*G* is non-amenable **iff** spectral radius  $\rho = \lim_{n} p_n(x, y)^{1/n} < 1$  [Kesten 1959, Cheeger 1970]. Almost invariant sets  $\longleftrightarrow$  almost invariant functions. Implies that SRW has linear rate of escape.

**Conjecture** [Benjamini-Schramm 1996]. *G* is non-amenable iff there is a *p* with infinitely many infinite clusters.

**Amenable examples:** Abelian, nilpotent, solvable groups. Any group with subexponential volume growth, e.g., [Grigorchuk 1984]. Basilica group [Bartholdi-Virág 2005].

**Non-amenable examples:** Anything with an  $F_2$  free subgroup, e.g.,  $SL_n(\mathbb{Z})$ . Gromov hyperbolic groups. Tarski monsters [Olshanskii 1980] and free Burnside groups [Adian 1982].

### **Anchored isoperimetry**

Bounded degree infinite G(V, E), fixed  $o \in V(G)$ , function  $\psi(\cdot) \nearrow \infty$ . G(V, E) satisfies an anchored  $\psi$ -isoperimetric inequality  $\mathcal{IP}_{\psi}^*$  if

$$0 < \iota_{\psi}^{*}(G) := \lim_{n \to \infty} \inf \left\{ \frac{|\partial S|}{\psi(|S|)} : o \in S \subset V(G), \ S \text{ conn.}, \ n \leqslant |S| < \infty \right\}.$$

Does not depend on the anchor o. For G transitive, same as usual  $\mathcal{IP}_{\psi}$ .  $\psi(x) = x$ : anchored expansion or weak nonamenability,  $\mathcal{IP}_{\infty}^{*}$ .  $\psi(x) = x^{1-1/d}$ : *d*-dimensional anchored isoperimetry  $\mathcal{IP}_{d}^{*}$ .

Definition is by [Thomassen 1992] and [Benjamini-Lyons-Schramm 1999].

Point 1: Unlike  $\mathcal{IP}_{\psi}$ , this has a chance to survive percolation. E.g., supercritical GW trees on non-extinction have  $\mathcal{IP}_{\infty}^{*}$  [Chen-Peres 2004].

Point 2: Still has many probabilistic implications.

[Thomassen 1992]  $\mathcal{IP}_{2+\epsilon}^*$  implies transience (with a "precise  $\epsilon$ ").

Stronger result with very short proof by [Lyons-Morris-Schramm 2006].

[Virág 2000]  $\mathcal{IP}^*_{\infty}$  implies positive limit speed for SRW, and heat kernel decay  $p_n(o, o) \leq \exp(-cn^{1/3})$ , best possible.

Thomassen and Virág show existence of large subgraph. False for  $\mathcal{IP}_d^*$ .

**Conjecture 1.**  $\mathcal{IP}_d^*$  implies  $p_n(o, o) \leq Cn^{-d/2}$ . (And there is a general version.)

**Conjecture 2.** If G is not  $\mathcal{IP}^*_{\infty}$  (so, strongly amenable), then the Green super-level sets  $S_t := \{x \in V : \mathcal{G}(o, x) > t\}$  form a Følner sequence. Open even for groups, conjectured also by C. Pittet. Maybe, if G is not  $\mathcal{IP}^*_{\psi}$ , then the  $S_t$  witness this:  $|\partial S_t|/\psi(|S_t|) \to 0$ ?

**Conjecture 3.** If G satisfies  $\mathcal{IP}^*_{\tilde{\psi}}$ , with  $\tilde{\psi}$  derived from its volume growth, then SRW is not subdiffusive:  $\mathbf{E}_o[X_n] \ge c\sqrt{n}$ . True for groups [Mok-Erschler, Lee-Peres].

# Survival of $\mathcal{IP}_{\psi}^{*}$

**Proposition.** If G has  $\mathcal{IP}_{\psi}^*$  with some  $\psi \nearrow \infty$ , and the exponential decay  $\mathbf{P}_p[|\mathscr{C}_o| < \infty, \ |\partial_E^+ \mathscr{C}_o| = n] \leq \varrho(p)^n$ 

holds, then *p*-a.s. on the event  $|\mathscr{C}_o| = \infty$ , also  $\mathscr{C}_o$  has  $\mathcal{IP}_{\psi}^*$ .

The  $\rho(p)^n$  decay holds for  $p > 1 - \epsilon$  if the number of cutsets of size n grows at most exponentially (Peierls argument), e.g., for finitely presented groups.

A bit trickier:  $\mathcal{IP}^*_{\infty}$  for all  $p > \frac{1}{\iota^*_{\infty}(G)+1}$ . [my Appendix to Chen-Peres 2004]

However, on  $\mathbb{Z}^d$ ,  $d \ge 3$ , it does not hold for  $p \in (p_c, 1 - p_c)$ .

# Survival of $\mathcal{IP}_{\psi}^{*}$

**Proposition.** If G has  $\mathcal{IP}_{\psi}^*$  with some  $\psi \nearrow \infty$ , and the exponential decay

 $\mathbf{P}_p\big[|\mathscr{C}_o| < \infty, \ |\partial_E^+ \mathscr{C}_o| = n\big] \leqslant \varrho(p)^n$ 

holds, then *p*-a.s. on the event  $|\mathscr{C}_o| = \infty$ , also  $\mathscr{C}_o$  has  $\mathcal{IP}_{\psi}^*$ .

The  $\varrho(p)^n$  decay holds for  $p > 1 - \epsilon$  if the number of cutsets of size n grows at most exponentially (Peierls argument), e.g., for finitely presented groups. A bit trickier:  $\mathcal{IP}^*_{\infty}$  for all  $p > \frac{1}{\iota^*_{\infty}(G)+1}$ . [my Appendix to Chen-Peres 2004] However, on  $\mathbb{Z}^d$ ,  $d \ge 3$ , it does not hold for  $p \in (p_c, 1 - p_c)$ .

**Proof of theorem:** If  $|\partial_G^+ S| = n$  but  $|\partial_{\mathscr{C}_o}^+ S| \leq \alpha n$ , then can redeclare with a cost  $\leq (1-p)^{-\alpha n}$ , and  $\leq \binom{n}{\alpha n}$  preimages. Small exponential for  $\alpha$  small.



#### **Exponential cluster repulsion on** $\mathbb{Z}^d$

Between two clusters, the number of touching edges is  $\tau(\mathscr{C}_1, \mathscr{C}_2)$ .

**Theorem.** For  $d \ge 2$  and any  $p > p_c(\mathbb{Z}^d)$ , there is a  $c_1 = c_1(d, p) > 0$  s.t.  $\mathbf{P}_p\left[m \le |\mathscr{C}_o| < \infty \text{ and } \tau(\mathscr{C}_o, \mathscr{C}_\infty) \ge t\right] \le \exp\left(-c_1 \max\{m^{1-1/d}, t\}\right).$ 

Setting t = 0, the stretched exponential decay we get is a sharp classical result: [Kesten-Zhang 1990] combined with [Grimmett-Marstrand 1990].

**Corollaries.** For all  $p > p_c(\mathbb{Z}^d)$ ,  $\mathscr{C}_{\infty}$  satisfies  $\mathcal{IP}_d^*$  a.s. For giant cluster  $\mathscr{C}$ in  $[-n, n]^d$ ,  $\exists c_2(d, p), \alpha(d, p) > 0$  s.t., a.a.s., for all connected  $S \subseteq \mathscr{C}$  with  $c_2 (\log n)^{\frac{d}{d-1}} \leq |S| \leq |\mathscr{C}|/2$ , we have  $|\partial_{\mathscr{C}}S| \geq \alpha |S|^{1-1/d}$ . By [Morris-Peres 2005],  $L^{\infty}$ -mixing time is  $\Theta(n^2)$ , while  $p_n(o, o) \leq Cn^{-d/2}$  on  $\mathscr{C}_{\infty}$ .

Almost by [Benjamini-Mossel 2003], then actually by [Mathieu-Remy 2004] and [Rau 2006], 40 pages. Gaussian off-diagonal decay by [Barlow 2004].

#### **Exponential cluster repulsion elsewhere?**

Conjecture. On any infinite group,

$$\mathbf{P}_p\Big[|\mathscr{C}_o| < \infty \text{ and } \exists \mathscr{C}_\infty \text{ with } \tau(\mathscr{C}_o, \mathscr{C}_\infty) \geqslant t\Big] \leqslant \exp(-ct).$$

The renormalization technique is completely missing.

On non-amenable groups,  $\tau(\mathscr{C}^i_{\infty}, \mathscr{C}^j_{\infty}) < \infty$  a.s. for all i, j. [Timár 2006]

**Conjecture.** Bond percolation  $p > \frac{1+\epsilon}{d}$  on the hypercube  $\{0,1\}^d$ . Then SRW on the giant cluster has mixing time  $d^{O_{\epsilon}(1)}$ . Even  $O_{\epsilon}(d \log d)$ ?

Would follow from  $\mathbf{P}_p\Big[\exists \mathscr{C} \text{ with } \tau(\mathscr{C}_o, \mathscr{C}) \ge t\Big] \le \exp(-ct/d^{O_{\epsilon}(1)}).$ 

Note that if  $|\mathscr{C}_o| > d^{O_{\epsilon}(1)}$ , then it should already be the giant cluster. But none of [AjKoSz82], [BoKoŁu92], [BoChvdHSISp05] helps.

#### **Proof idea of exponential cluster repulsion**

Blocks  $B_x = \{y \in \mathbb{Z}^d : \|y - Nx\|_{\infty} \leq 3N/4\}$ . *B* is good if it has a cluster connecting its (d-1)-dim faces, while its other clusters have diam < N/5. Renormalization:  $\forall p > p_c$ ,  $\lim_N \mathbf{P}_p(B \text{ is good}) = 1$ . [Antal-Pisztora 1996]



### Proof idea of exponential cluster repulsion

Blocks  $B_x = \{y \in \mathbb{Z}^d : \|y - Nx\|_{\infty} \leq 3N/4\}$ . B is good if it has a cluster connecting its (d-1)-dim faces, while its other clusters have diam < N/5. Renormalization:  $\forall p > p_c$ ,  $\lim_N \mathbf{P}_p(B \text{ is good}) = 1$ . [Antal-Pisztora 1996]

*B* is  $\mathscr{C}$ -substantial if  $\mathscr{C} \cap B$  has a component of diam  $\ge N/5$ . Assume  $o \notin \mathscr{C}_{\infty}$ . A block is RED:  $\mathscr{C}_o$ -substantial but has a non- $\mathscr{C}_o$ -substantial neighbor. BLUE: both  $\mathscr{C}_o$ - and  $\mathscr{C}_{\infty}$ -substantial. Each touching edge is in at least one blue block, in at most  $2^d$ . Observe: a colored block is never good.



Main Lemma. On the event  $\{|\mathscr{C}_o| = m \text{ and } \tau(\mathscr{C}_o, \mathscr{C}_\infty) \ge t\},\$ the set of blocks RED  $\cup$  BLUE has a \*-connected subset of size  $\ge c(N, d) \max\{m^{1-1/d}, t\},\$ contained in the box  $B_m(o).$ 

# Wulff shape inside the cluster?

Balls inside  $\mathscr{C}_{\infty} \stackrel{?}{\longleftrightarrow}$  Isoperimetrically optimal  $\stackrel{?}{\longleftrightarrow}$  Classical Wulff shape (large finite clusters)

**Conjecture.** Limit shapes exist. (Are they the same?) In the plane, these converge to a Euclidean ball, as  $p \downarrow p_c$ . (For balls, asked by Itai Benjamini.)



Site percolation on  $\mathbb{Z}^2$ , at densities 0.8 and 0.65, the ball of radius 120.

# Scale-invariant groups

A group G is scale-invariant if there is a subgroup chain  $G = G_0 \supset G_1 \supset G_2 \supset \ldots$  with  $G_n \simeq G$  and  $\bigcap_{n \ge 0} G_n$  finite. Benjamini conjectured that such a G has polynomial growth, hence is almost nilpotent [Gromov 1981].

Reason for definition: renormalization. For conjecture: If  $G_n = \varphi^{\circ n}(G)$ , then  $\varphi$  "looks like" expanding:  $d(\varphi(x), \varphi(y)) > (1 + \epsilon)d(x, y)$ . But then  $|B_{(1+\epsilon)r}| \leq [G:\varphi(G)] |B_r|$ . [Franks 1970, Farkas 1981, Gelbrich 1985]

Not scale-inv: free group  $F_r$  has  $s - 1 = [F_r : F_s](r - 1)$ . More generally, if there is a non-zero Euler characteristic  $\chi(G)$ , e.g., if  $\text{Betti}_1^{(2)} > 0$  (the *G*-dimension of harmonic Dirichlet functions).

Using this and a theorem of Zlil Sela: torsion-free hyperbolic groups. What about relatively hyperbolic groups?

### Scale-invariant groups

A group G is scale-invariant if there is a subgroup chain  $G = G_0 \supset G_1 \supset G_2 \supset \ldots$  with  $G_n \simeq G$  and  $\bigcap_{n \ge 0} G_n$  finite. Benjamini **conjectured** that such a G has polynomial growth, hence is almost nilpotent [Gromov 1981].

Reason for definition: renormalization. For conjecture: If  $G_n = \varphi^{\circ n}(G)$ , then  $\varphi$  "looks like" expanding:  $d(\varphi(x), \varphi(y)) > (1 + \epsilon)d(x, y)$ . But then  $|B_{(1+\epsilon)r}| \leq [G:\varphi(G)] |B_r|$ . [Franks 1970, Farkas 1981, Gelbrich 1985] Not scale-inv: Betti<sub>1</sub><sup>(2)</sup> > 0. Torsion-free (relatively?) hyperbolic groups.

**Theorem.** Let H be scale-invariant,  $\bigcap_{n \ge 0} H_n = \{1\}$ , and A an automorphism group of H leaving all  $H_n$  invariant. Assume A is faithful on each  $H_n$ , and  $A \ltimes H_n \simeq A \ltimes H$ . Then  $G := A \ltimes H$  is scale-invariant.

**Corollary.** The following groups are scale-invariant: The lamplighter groups  $\mathbf{F} \wr \mathbb{Z}$ , where  $\mathbf{F}$  is any finite Abelian group. The solvable Baumslag-Solitar groups  $BS(1,m) = \langle a, b \mid bab^{-1} = a^m \rangle$ . The affine groups  $A \ltimes \mathbb{Z}^d$  with  $A \leq GL(\mathbb{Z}, d)$ .

### Sketch of proof

Coset tree  $\mathcal{T} = \{(x_0 x_1 x_2 \dots) : H_{n+1} x_{n+1} \subset H_n x_n\}$ . Since  $H_n$  is A-invariant,  $G := A \ltimes H$  acts on  $\mathcal{T}$  by the affine transformations  $(H_n x_n)^{(\alpha,h)} = H_n \alpha(x_n)h$ . Extends to a continuous action on  $\partial \mathcal{T}$ .

$$\operatorname{St}_G(H_n x_n) = \left\{ \left( \alpha, \ \alpha(x_n)^{-1} h_n x_n \right) \colon \alpha \in A, \ h_n \in H_n \right\} \simeq A \ltimes H_n \simeq A \ltimes H.$$

For  $x = (x_0, x_1, x_2, ...) \in \partial \mathcal{T}$ , we have  $\operatorname{St}_G(x) = \bigcap_{n \ge 0} \operatorname{St}_G(H_n x_n)$ . For  $(\alpha, h) \ne (1, 1)$ ,  $\{x \in \partial \mathcal{T} \text{ not stabilized by } (\alpha, h)\}$  is open and dense, so, by Baire's category theorem, exists ray with trivial stabilizer.

The isomorphisms  $\varphi_{x_n} : G \longrightarrow \operatorname{St}_G(H_n x_n)$  satisfy  $\varphi_{x_n} = \varphi_{x_{n-1}} \circ \varphi_{x_{n-1},x_n}$ , where  $x_n$  is parent of  $x_{n-1}$ , and  $\varphi_{x_{n-1},x_n} \in \{\varphi_1, \ldots, \varphi_t\}$ .

In our examples, the ray with trivial stabilizer has to be an "irrational ray", never periodic! For quite different reasons in the three examples. . .

**Question.** If  $G_n = \varphi^{\circ n}(G)$  scale-inv, is then G of polynomial growth?

#### How is Lamplighter Group an example?

 $H < \mathbb{Z}_2[[t]]$  additive group of finite Laurent polynomials of (1+t),  $\psi(F(t)) = tF(t)$ ,  $[H : \psi(H)] = 2$ . Coset tree is same as natural representation of  $\mathbb{Z}_2[[t]]$  as binary tree.

 $A = \mathbb{Z}$  acts on H, multiplication by 1 + t.  $G = A \ltimes H$ .

$$(m, f): \quad F(t) \mapsto (1+t)^m F(t) + \sum_{k \in \mathbb{Z}} f(k)(1+t)^k$$

Wreath generators:  $s: F(t) \mapsto F(t) + 1$  and  $R: F(t) \mapsto (1+t)F(t)$ .

With a = Rs, b = R, self-similar action:  $a = (b, a)\epsilon$ , b = (b, a).

**Diestel-Leader graph** is Cayley graph w.r.t. both  $\langle Rs, R \rangle$  and  $\langle sR, Rs \rangle$ .

# Good tilings and tiles?

Scale-invariant tiling  $\{T_i : i \in I\}$  of transitive  $\Gamma$ : finite connected  $T_i \simeq T$ , tiling graph  $(i \sim j : \exists x \in T_i, y \in T_j, x \sim y) \simeq \Gamma$ , and can iterate  $T^{(n)} \nearrow \Gamma$ .

SI of non-Abelian G does not give SI tiling of  $\Gamma$ ! But expanding homomorphism of Heisenberg Lie group induces nice contracting self-similar action on coset tree, producing a SI tiling. Still, the following remains: Question. Does existence of SI tiling imply polynomial growth?

In our amenable examples, exists tiling sequence  $\{\gamma T^{(n)}: \gamma \in G_n\}$  such that  $T^{(n)}$  is connected Følner, so converges locally to  $\Gamma$ . [G. Elek]

**Question.**  $\Gamma$  amenable transitive graph,  $p > p_c(\Gamma)$ . Does there exist a connected Følner sequence  $F_n \nearrow \Gamma$  s.t.

$$\lim_{n \to \infty} \frac{\text{largest component}(F_n \cap \mathscr{C}_{\infty})}{|F_n|} = \lim_{n \to \infty} \frac{|F_n \cap \mathscr{C}_{\infty}|}{|F_n|} = \theta(p) \ a.s.?$$

This would be the main percolation lemma for renormalization.