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General wisdom:

Algebraic properties of a group
←→ Coarse geometric properties of its Cayley graphs

←→ Behaviour of simple random walk on it

How much of this survives if we pass to an infinite percolation cluster?

This talk:

• On finitely presented groups, anchored isoperimetry survives if p > 1− ǫ.

• On Z
d, via a new large deviations result (exponential cluster repulsion),

everything works nicely for all p > pc(Z
d), e.g., pn(o, o) ≍ n−d/2.

• On what groups can one hope to do similar things, especially, percolation
renormalization? Scale-invariant groups and tilings.

• A lot of questions.
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Isoperimetry, groups, random walks

ψ(·) ↑ ∞. Bounded degree G(V,E) has ψ-isoperimetric inequality IPψ if

0 < ιψ(G) := inf

{ |∂S|
ψ(|S|) : S ⊂ V (G) connected finite

}

.

ψ(x) = x1−1/d : d-dimensional isoperimetry IPd.
ψ(x) = x : non-amenability IP∞.

A Cayley graph has |Bn(x)| 6 Cnd iff IPd+ǫ does not hold [Varopoulos
1985, Coulhon-Saloff-Coste 1993]

A Cayley graph has a d < ∞ with |Bn(x)| 6 Cnd iff the group is almost
nilpotent [Gromov 1981].

A Cayley graph has IPd iff pn(x, x) 6 cn−d/2. Varopoulos, Saloff-Coste,
Coulhon, Grigoryan, Pittet, Lovász-Kannan, Morris-Peres, etc.
Nash inequalities, Faber-Krahn inequalities, evolving sets, etc.
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A group is amenable [von Neumann 1929], i.e., exists invariant mean on
all bounded functions, iff any Cayley graph of it is amenable [Følner 1955].
Idea 1: Compute averages along almost-invariant sets, take Banach limit.
Idea 2: IP∞ implies wobbling paradoxical decomposition.

G is non-amenable iff spectral radius ρ = limn pn(x, y)
1/n < 1 [Kesten

1959, Cheeger 1970]. Almost invariant sets←→ almost invariant functions.
Implies that SRW has linear rate of escape.

Conjecture [Benjamini-Schramm 1996]. G is non-amenable iff there is
a p with infinitely many infinite clusters.

Amenable examples: Abelian, nilpotent, solvable groups. Any group
with subexponential volume growth, e.g., [Grigorchuk 1984]. Basilica group
[Bartholdi-Virág 2005].

Non-amenable examples: Anything with an F2 free subgroup, e.g.,
SLn(Z). Gromov hyperbolic groups. Tarski monsters [Olshanskii 1980] and
free Burnside groups [Adian 1982].
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Anchored isoperimetry

Bounded degree infinite G(V,E), fixed o ∈ V (G), function ψ(·)ր∞.
G(V,E) satisfies an anchored ψ-isoperimetric inequality IP∗

ψ if

0 < ι∗ψ(G) := lim
n→∞

inf

{ |∂S|
ψ(|S|) : o ∈ S ⊂ V (G), S conn., n 6 |S| <∞

}

.

Does not depend on the anchor o. For G transitive, same as usual IPψ.
ψ(x) = x : anchored expansion or weak nonamenability, IP∗

∞
.

ψ(x) = x1−1/d : d-dimensional anchored isoperimetry IP∗

d.

Definition is by [Thomassen 1992] and [Benjamini-Lyons-Schramm 1999].

Point 1: Unlike IPψ, this has a chance to survive percolation.
E.g., supercritical GW trees on non-extinction have IP∗

∞
[Chen-Peres 2004].

Point 2: Still has many probabilistic implications.
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[Thomassen 1992] IP∗

2+ǫ implies transience (with a “precise ǫ”).

Stronger result with very short proof by [Lyons-Morris-Schramm 2006].

[Virág 2000] IP∗

∞
implies positive liminf speed for SRW, and heat kernel

decay pn(o, o) 6 exp(−cn1/3), best possible.

Thomassen and Virág show existence of large subgraph. False for IP∗

d.

Conjecture 1. IP∗

d implies pn(o, o) 6 Cn−d/2. (And there is a general
version.)

Conjecture 2. If G is not IP∗

∞
(so, strongly amenable), then the Green

super-level sets St := {x ∈ V : G(o, x) > t} form a Følner sequence.
Open even for groups, conjectured also by C. Pittet.
Maybe, if G is not IP∗

ψ, then the St witness this: |∂St|/ψ(|St|)→ 0?

Conjecture 3. If G satisfies IP∗

ψ̃
, with ψ̃ derived from its volume growth,

then SRW is not subdiffusive: Eo[Xn] > c
√
n. True for groups [Mok-

Erschler, Lee-Peres].
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Survival of IP∗

ψ

Proposition. If G has IP∗

ψ with some ψ ր∞, and the exponential decay

Pp

[

|Co| <∞, |∂+
ECo| = n

]

6 ̺(p)n

holds, then p-a.s. on the event |Co| =∞, also Co has IP∗

ψ.

The ̺(p)n decay holds for p > 1− ǫ if the number of cutsets of size n grows
at most exponentially (Peierls argument), e.g., for finitely presented groups.

A bit trickier: IP∗

∞
for all p > 1

ι∗
∞

(G)+1. [my Appendix to Chen-Peres 2004]

However, on Z
d, d > 3, it does not hold for p ∈ (pc, 1− pc).

6



Survival of IP∗

ψ

Proposition. If G has IP∗

ψ with some ψ ր∞, and the exponential decay

Pp

[

|Co| <∞, |∂+
ECo| = n

]

6 ̺(p)n

holds, then p-a.s. on the event |Co| =∞, also Co has IP∗

ψ.

The ̺(p)n decay holds for p > 1− ǫ if the number of cutsets of size n grows
at most exponentially (Peierls argument), e.g., for finitely presented groups.
A bit trickier: IP∗

∞
for all p > 1

ι∗
∞

(G)+1. [my Appendix to Chen-Peres 2004]

However, on Z
d, d > 3, it does not hold for p ∈ (pc, 1− pc).

Proof of theorem: If |∂+
GS| = n but |∂+

Co
S| 6 αn, then can redeclare with

a cost 6 (1− p)−αn, and 6
(

n
αn

)

preimages. Small exponential for α small.

G

Co

S Co
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Exponential cluster repulsion on Z
d

Between two clusters, the number of touching edges is τ(C1,C2).

Theorem. For d > 2 and any p > pc(Z
d), there is a c1 = c1(d, p) > 0 s.t.

Pp

[

m 6 |Co| <∞ and τ(Co,C∞) > t
]

6 exp
(

−c1 max{m1−1/d, t}
)

.

Setting t = 0, the stretched exponential decay we get is a sharp classical
result: [Kesten-Zhang 1990] combined with [Grimmett-Marstrand 1990].

Corollaries. For all p > pc(Z
d), C∞ satisfies IP∗

d a.s. For giant cluster C

in [−n, n]d, ∃ c2(d, p), α(d, p) > 0 s.t., a.a.s., for all connected S ⊆ C with

c2 (logn)
d
d−1 6 |S| 6 |C |/2, we have |∂CS| > α|S|1−1/d. By [Morris-Peres

2005], L∞-mixing time is Θ(n2), while pn(o, o) 6 Cn−d/2 on C∞.

Almost by [Benjamini-Mossel 2003], then actually by [Mathieu-Remy 2004]
and [Rau 2006], 40 pages. Gaussian off-diagonal decay by [Barlow 2004].
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Exponential cluster repulsion elsewhere?

Conjecture. On any infinite group,

Pp

[

|Co| <∞ and ∃C∞ with τ(Co,C∞) > t
]

6 exp(−ct).

The renormalization technique is completely missing.

On non-amenable groups, τ(C i
∞
,C j

∞
) <∞ a.s. for all i, j. [Timár 2006]

Conjecture. Bond percolation p > 1+ǫ
d on the hypercube {0, 1}d. Then

SRW on the giant cluster has mixing time dOǫ(1). Even Oǫ(d log d)?

Would follow from Pp

[

∃C with τ(Co,C ) > t
]

6 exp(−ct/dOǫ(1)).

Note that if |Co| > dOǫ(1), then it should already be the giant cluster. But
none of [AjKoSz82], [BoKo Lu92], [BoChvdHSlSp05] helps.
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Proof idea of exponential cluster repulsion

Blocks Bx = {y ∈ Z
d : ‖y −Nx‖∞ 6 3N/4}. B is good if it has a cluster

connecting its (d− 1)-dim faces, while its other clusters have diam < N/5.
Renormalization: ∀p > pc, limN Pp(B is good) = 1. [Antal-Pisztora 1996]

N
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Proof idea of exponential cluster repulsion

Blocks Bx = {y ∈ Z
d : ‖y −Nx‖∞ 6 3N/4}. B is good if it has a cluster

connecting its (d− 1)-dim faces, while its other clusters have diam < N/5.
Renormalization: ∀p > pc, limN Pp(B is good) = 1. [Antal-Pisztora 1996]

B is C -substantial if C ∩ B has a component of diam > N/5. Assume
o 6∈ C∞. A block is RED: Co-substantial but has a non-Co-substantial
neighbor. BLUE: both Co- and C∞-substantial. Each touching edge is in at
least one blue block, in at most 2d. Observe: a colored block is never good.

a block both red and blue 

a pure blue block

the cluster of the origin

the infinite cluster

a pure red block

Main Lemma. On the event
{|Co| = m and τ(Co,C∞) > t},
the set of blocks RED ∪ BLUE
has a ∗-connected subset of size

> c(N, d)max{m1−1/d, t},
contained in the box Bm(o).
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Wulff shape inside the cluster?

Balls inside C∞

?←→ Isoperimetrically optimal
sets inside C∞

?←→ Classical Wulff shape
(large finite clusters)

Conjecture. Limit shapes exist. (Are they the same?) In the plane, these
converge to a Euclidean ball, as p ↓ pc. (For balls, asked by Itai Benjamini.)

Site percolation on Z
2, at densities 0.8 and 0.65, the ball of radius 120.
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Scale-invariant groups

A group G is scale-invariant if there is a subgroup chain G = G0 ⊃ G1 ⊃
G2 ⊃ . . . with Gn ≃ G and

⋂

n>0Gn finite. Benjamini conjectured that
such a G has polynomial growth, hence is almost nilpotent [Gromov 1981].

Reason for definition: renormalization. For conjecture: If Gn = ϕ◦n(G),
then ϕ “looks like” expanding: d(ϕ(x), ϕ(y)) > (1 + ǫ)d(x, y). But then
|B(1+ǫ)r| . [G : ϕ(G)] |Br|. [Franks 1970, Farkas 1981, Gelbrich 1985]

Not scale-inv: free group Fr has s − 1 = [Fr : Fs](r − 1). More generally,

if there is a non-zero Euler characteristic χ(G), e.g., if Betti
(2)
1 > 0 (the

G-dimension of harmonic Dirichlet functions).
Using this and a theorem of Zlil Sela: torsion-free hyperbolic groups. What
about relatively hyperbolic groups?
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Scale-invariant groups

A group G is scale-invariant if there is a subgroup chain G = G0 ⊃ G1 ⊃
G2 ⊃ . . . with Gn ≃ G and

⋂

n>0Gn finite. Benjamini conjectured that
such a G has polynomial growth, hence is almost nilpotent [Gromov 1981].

Reason for definition: renormalization. For conjecture: If Gn = ϕ◦n(G),
then ϕ “looks like” expanding: d(ϕ(x), ϕ(y)) > (1 + ǫ)d(x, y). But then
|B(1+ǫ)r| . [G : ϕ(G)] |Br|. [Franks 1970, Farkas 1981, Gelbrich 1985]

Not scale-inv: Betti
(2)
1 > 0. Torsion-free (relatively?) hyperbolic groups.

Theorem. Let H be scale-invariant,
⋂

n>0Hn = {1}, and A an
automorphism group of H leaving all Hn invariant. Assume A is faithful
on each Hn, and A⋉Hn ≃ A⋉H. Then G := A⋉H is scale-invariant.

Corollary. The following groups are scale-invariant:
The lamplighter groups F ≀ Z, where F is any finite Abelian group.
The solvable Baumslag-Solitar groups BS(1,m) =

〈

a, b | bab−1 = am
〉

.
The affine groups A⋉ Z

d with A 6 GL(Z, d).
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Sketch of proof

Coset tree T = {(x0x1x2 . . . ) : Hn+1xn+1 ⊂ Hnxn}. Since Hn is
A-invariant, G := A ⋉ H acts on T by the affine transformations
(Hnxn)

(α,h) = Hnα(xn)h. Extends to a continuous action on ∂T .

StG(Hnxn) =
{

(

α, α(xn)
−1hnxn

)

: α ∈ A, hn ∈ Hn

}

≃ A⋉Hn ≃ A⋉H .

For x = (x0, x1, x2, . . .) ∈ ∂T , we have StG(x) =
⋂

n>0 StG(Hnxn). For

(α, h) 6= (1, 1),
{

x ∈ ∂T not stabilized by (α, h)
}

is open and dense, so,
by Baire’s category theorem, exists ray with trivial stabilizer.

The isomorphisms ϕxn : G −→ StG(Hnxn) satisfy ϕxn = ϕxn−1 ◦ ϕxn−1,xn,
where xn is parent of xn−1, and ϕxn−1,xn ∈ {ϕ1, . . . , ϕt}.

In our examples, the ray with trivial stabilizer has to be an “irrational ray”,
never periodic! For quite different reasons in the three examples. . .

Question. If Gn = ϕ◦n(G) scale-inv, is then G of polynomial growth?
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How is Lamplighter Group an example?

H < Z2[[t]] additive group of finite Laurent polynomials of (1+t),
ψ(F (t)) = tF (t), [H : ψ(H)] = 2.
Coset tree is same as natural representation of Z2[[t]] as binary tree.

A = Z acts on H, multiplication by 1 + t. G = A⋉H.

(m, f) : F (t) 7→ (1 + t)mF (t) +
∑

k∈Z

f(k)(1 + t)k

Wreath generators: s : F (t) 7→ F (t) + 1 and R : F (t) 7→ (1 + t)F (t).

With a = Rs, b = R, self-similar action: a = (b, a)ǫ, b = (b, a).

Diestel-Leader graph is Cayley graph w.r.t. both
〈

Rs,R
〉

and
〈

sR,Rs
〉

.
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Good tilings and tiles?

Scale-invariant tiling {Ti : i ∈ I} of transitive Γ: finite connected Ti ≃ T ,
tiling graph (i ∼ j : ∃x ∈ Ti, y ∈ Tj, x ∼ y) ≃ Γ, and can iterate T (n)ր Γ.

SI of non-Abelian G does not give SI tiling of Γ! But expanding
homomorphism of Heisenberg Lie group induces nice contracting self-similar
action on coset tree, producing a SI tiling. Still, the following remains:
Question. Does existence of SI tiling imply polynomial growth?

In our amenable examples, exists tiling sequence {γT (n) : γ ∈ Gn} such
that T (n) is connected Følner, so converges locally to Γ. [G. Elek]

Question. Γ amenable transitive graph, p > pc(Γ). Does there exist a
connected Følner sequence Fn ր Γ s.t.

lim
n→∞

largest component(Fn ∩ C∞)

|Fn|
= lim

n→∞

|Fn ∩ C∞|
|Fn|

= θ(p) a.s.?

This would be the main percolation lemma for renormalization.
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