Random walks on percolation clusters, and scale-invariant groups

Gábor Pete
http://www.math.toronto.edu/~gabor
Based on: A note on percolation on \mathbb{Z}^{d} :
isoperimetric profile via exponential cluster repulsion,
Elect. Comm. Probab. 13 (2008), [arXiv:math/0702474 math.PR]
\[\begin{aligned} \& and on joint work
\& with Volodia Nekrashevych (Texas A\&M): Scale-invariant groups
\& Groups, Geometry \& Dynamics, to appear, [arXiv:0811.0220 math.GR] \end{aligned} \]

General wisdom:
Algebraic properties of a group
\longleftrightarrow Coarse geometric properties of its Cayley graphs
\longleftrightarrow Behaviour of simple random walk on it
How much of this survives if we pass to an infinite percolation cluster?

This talk:

- On finitely presented groups, anchored isoperimetry survives if $p>1-\epsilon$.
- On \mathbb{Z}^{d}, via a new large deviations result (exponential cluster repulsion), everything works nicely for all $p>p_{c}\left(\mathbb{Z}^{d}\right)$, e.g., $p_{n}(o, o) \asymp n^{-d / 2}$.
- On what groups can one hope to do similar things, especially, percolation renormalization? Scale-invariant groups and tilings.
- A lot of questions.

Isoperimetry, groups, random walks

$\psi(\cdot) \uparrow \infty$. Bounded degree $G(V, E)$ has ψ-isoperimetric inequality $\mathcal{I P} \psi$ if

$$
0<\iota_{\psi}(G):=\inf \left\{\frac{|\partial S|}{\psi(|S|)}: S \subset V(G) \text { connected finite }\right\} .
$$

$\psi(x)=x^{1-1 / d}: d$-dimensional isoperimetry $\mathcal{I} \mathcal{P}_{d}$.
$\psi(x)=x$: non-amenability $\mathcal{I} \mathcal{P}_{\infty}$.
A Cayley graph has $\left|B_{n}(x)\right| \leqslant C n^{d}$ iff $\mathcal{I} \mathcal{P}_{d+\epsilon}$ does not hold [Varopoulos 1985, Coulhon-Saloff-Coste 1993]

A Cayley graph has a $d<\infty$ with $\left|B_{n}(x)\right| \leqslant C n^{d}$ iff the group is almost nilpotent [Gromov 1981].

A Cayley graph has $\mathcal{I} \mathcal{P}_{d}$ iff $p_{n}(x, x) \leqslant c n^{-d / 2}$. Varopoulos, Saloff-Coste, Coulhon, Grigoryan, Pittet, Lovász-Kannan, Morris-Peres, etc.
Nash inequalities, Faber-Krahn inequalities, evolving sets, etc.

A group is amenable [von Neumann 1929], i.e., exists invariant mean on all bounded functions, iff any Cayley graph of it is amenable [Følner 1955]. Idea 1: Compute averages along almost-invariant sets, take Banach limit. Idea 2: $\mathcal{I} \mathcal{P}_{\infty}$ implies wobbling paradoxical decomposition.
G is non-amenable iff spectral radius $\rho=\lim _{n} p_{n}(x, y)^{1 / n}<1$ [Kesten 1959, Cheeger 1970]. Almost invariant sets \longleftrightarrow almost invariant functions. Implies that SRW has linear rate of escape.

Conjecture [Benjamini-Schramm 1996]. G is non-amenable iff there is a p with infinitely many infinite clusters.

Amenable examples: Abelian, nilpotent, solvable groups. Any group with subexponential volume growth, e.g., [Grigorchuk 1984]. Basilica group [Bartholdi-Virág 2005].

Non-amenable examples: Anything with an F_{2} free subgroup, e.g., $S L_{n}(\mathbb{Z})$. Gromov hyperbolic groups. Tarski monsters [Olshanskii 1980] and free Burnside groups [Adian 1982].

Anchored isoperimetry

Bounded degree infinite $G(V, E)$, fixed $o \in V(G)$, function $\psi(\cdot) \nearrow \infty$. $G(V, E)$ satisfies an anchored ψ-isoperimetric inequality $\mathcal{I} \mathcal{P}_{\psi}^{*}$ if
$0<\iota_{\psi}^{*}(G):=\lim _{n \rightarrow \infty} \inf \left\{\frac{|\partial S|}{\psi(|S|)}: o \in S \subset V(G), S\right.$ conn., $\left.n \leqslant|S|<\infty\right\}$.
Does not depend on the anchor o. For G transitive, same as usual $\mathcal{I P}{ }_{\psi}$. $\psi(x)=x$: anchored expansion or weak nonamenability, $\mathcal{I} \mathcal{P}_{\infty}^{*}$. $\psi(x)=x^{1-1 / d}: d$-dimensional anchored isoperimetry $\mathcal{I} \mathcal{P}_{d}^{*}$.

Definition is by [Thomassen 1992] and [Benjamini-Lyons-Schramm 1999].
Point 1: Unlike $\mathcal{I} \mathcal{P}_{\psi}$, this has a chance to survive percolation. E.g., supercritical GW trees on non-extinction have $\mathcal{I} \mathcal{P}_{\infty}^{*}$ [Chen-Peres 2004].

Point 2: Still has many probabilistic implications.
[Thomassen 1992] $\mathcal{I} \mathcal{P}_{2+\epsilon}^{*}$ implies transience (with a "precise ϵ ").
Stronger result with very short proof by [Lyons-Morris-Schramm 2006].
[Virág 2000] $\mathcal{I P}_{\infty}^{*}$ implies positive liminf speed for SRW, and heat kernel decay $p_{n}(o, o) \leqslant \exp \left(-c n^{1 / 3}\right)$, best possible.

Thomassen and Virág show existence of large subgraph. False for $\mathcal{I} \mathcal{P}_{d}^{*}$.
Conjecture 1. $\mathcal{I} \mathcal{P}_{d}^{*}$ implies $p_{n}(o, o) \leqslant C n^{-d / 2}$. (And there is a general version.)

Conjecture 2. If G is not $\mathcal{I P}_{\infty}^{*}$ (so, strongly amenable), then the Green super-level sets $S_{t}:=\{x \in V: \mathcal{G}(o, x)>t\}$ form a Følner sequence.
Open even for groups, conjectured also by C. Pittet. Maybe, if G is not $\mathcal{I P} \mathcal{P}_{\psi}^{*}$, then the S_{t} witness this: $\left|\partial S_{t}\right| / \psi\left(\left|S_{t}\right|\right) \rightarrow 0$?

Conjecture 3. If G satisfies $\mathcal{I} \mathcal{P}_{\tilde{\psi}}^{*}$, with $\tilde{\psi}$ derived from its volume growth, then SRW is not subdiffusive: $\mathbf{E}_{o}\left[X_{n}\right] \geqslant c \sqrt{n}$. True for groups [MokErschler, Lee-Peres].

Survival of $\mathcal{I P}_{\psi}^{*}$

Proposition. If G has $\mathcal{I P}{ }_{\psi}^{*}$ with some $\psi \nearrow \infty$, and the exponential decay

$$
\mathbf{P}_{p}\left[\left|\mathscr{C}_{o}\right|<\infty,\left|\partial_{E}^{+} \mathscr{C}_{o}\right|=n\right] \leqslant \varrho(p)^{n}
$$

holds, then p-a.s. on the event $\left|\mathscr{C}_{0}\right|=\infty$, also \mathscr{C}_{o} has $\mathcal{I} \mathcal{P}_{\psi}^{*}$.
The $\varrho(p)^{n}$ decay holds for $p>1-\epsilon$ if the number of cutsets of size n grows at most exponentially (Peierls argument), e.g., for finitely presented groups.

A bit trickier: $\mathcal{I P}_{\infty}^{*}$ for all $p>\frac{1}{i_{\infty}^{*}(G)+1}$. [my Appendix to Chen-Peres 2004]
However, on $\mathbb{Z}^{d}, d \geqslant 3$, it does not hold for $p \in\left(p_{c}, 1-p_{c}\right)$.

Survival of $\mathcal{I} \mathcal{P}_{\psi}^{*}$

Proposition. If G has $\mathcal{I P}{ }_{\psi}^{*}$ with some $\psi \nearrow \infty$, and the exponential decay

$$
\mathbf{P}_{p}\left[\left|\mathscr{C}_{0}\right|<\infty,\left|\partial_{E}^{+} \mathscr{C}_{o}\right|=n\right] \leqslant \varrho(p)^{n}
$$

holds, then p-a.s. on the event $\left|\mathscr{C}_{0}\right|=\infty$, also \mathscr{C}_{0} has $\mathcal{I} \mathcal{P}_{\psi}^{*}$.
The $\varrho(p)^{n}$ decay holds for $p>1-\epsilon$ if the number of cutsets of size n grows at most exponentially (Peierls argument), e.g., for finitely presented groups. A bit trickier: $\mathcal{I P}_{\infty}^{*}$ for all $p>\frac{1}{i_{\infty}^{*}(G)+1}$. [my Appendix to Chen-Peres 2004] However, on $\mathbb{Z}^{d}, d \geqslant 3$, it does not hold for $p \in\left(p_{c}, 1-p_{c}\right)$.

Proof of theorem: If $\left|\partial_{G}^{+} S\right|=n$ but $\left|\partial_{\mathscr{C}_{0}}^{+} S\right| \leqslant \alpha n$, then can redeclare with a cost $\leqslant(1-p)^{-\alpha n}$, and $\leqslant\binom{ n}{\alpha n}$ preimages. Small exponential for α small.

Exponential cluster repulsion on \mathbb{Z}^{d}

Between two clusters, the number of touching edges is $\tau\left(\mathscr{C}_{1}, \mathscr{C}_{2}\right)$.
Theorem. For $d \geqslant 2$ and any $p>p_{c}\left(\mathbb{Z}^{d}\right)$, there is a $c_{1}=c_{1}(d, p)>0$ s.t.

$$
\mathbf{P}_{p}\left[m \leqslant\left|\mathscr{C}_{0}\right|<\infty \text { and } \tau\left(\mathscr{C}_{o}, \mathscr{C}_{\infty}\right) \geqslant t\right] \leqslant \exp \left(-c_{1} \max \left\{m^{1-1 / d}, t\right\}\right)
$$

Setting $t=0$, the stretched exponential decay we get is a sharp classical result: [Kesten-Zhang 1990] combined with [Grimmett-Marstrand 1990].

Corollaries. For all $p>p_{c}\left(\mathbb{Z}^{d}\right), \mathscr{C}_{\infty}$ satisfies $\mathcal{I P}_{d}^{*}$ a.s. For giant cluster \mathscr{C} in $[-n, n]^{d}, \exists c_{2}(d, p), \alpha(d, p)>0$ s.t., a.a.s., for all connected $S \subseteq \mathscr{C}$ with $c_{2}(\log n)^{\frac{d}{d-1}} \leqslant|S| \leqslant|\mathscr{C}| / 2$, we have $\left|\partial_{\mathscr{C}} S\right| \geqslant \alpha|S|^{1-1 / d}$. By [Morris-Peres 2005], L^{∞}-mixing time is $\Theta\left(n^{2}\right)$, while $p_{n}(o, o) \leqslant C n^{-d / 2}$ on \mathscr{C}_{∞}.

Almost by [Benjamini-Mossel 2003], then actually by [Mathieu-Remy 2004] and [Rau 2006], 40 pages. Gaussian off-diagonal decay by [Barlow 2004].

Exponential cluster repulsion elsewhere?

Conjecture. On any infinite group,

$$
\mathbf{P}_{p}\left[\left|\mathscr{C}_{o}\right|<\infty \text { and } \exists \mathscr{C}_{\infty} \text { with } \tau\left(\mathscr{C}_{o}, \mathscr{C}_{\infty}\right) \geqslant t\right] \leqslant \exp (-c t) .
$$

The renormalization technique is completely missing.
On non-amenable groups, $\tau\left(\mathscr{C}_{\infty}^{i}, \mathscr{C}_{\infty}^{j}\right)<\infty$ a.s. for all i, j. [Timár 2006]

Conjecture. Bond percolation $p>\frac{1+\epsilon}{d}$ on the hypercube $\{0,1\}^{d}$. Then SRW on the giant cluster has mixing time $d^{O_{\epsilon}(1)}$. Even $O_{\epsilon}(d \log d)$?
Would follow from $\mathbf{P}_{p}\left[\exists \mathscr{C}\right.$ with $\left.\tau\left(\mathscr{C}_{o}, \mathscr{C}\right) \geqslant t\right] \leqslant \exp \left(-c t / d^{O_{\epsilon}(1)}\right)$.
Note that if $\left|\mathscr{C}_{o}\right|>d^{O_{\epsilon}(1)}$, then it should already be the giant cluster. But none of [AjKoSz82], [BoKołu92], [BoChvdHSISp05] helps.

Proof idea of exponential cluster repulsion

Blocks $B_{x}=\left\{y \in \mathbb{Z}^{d}:\|y-N x\|_{\infty} \leqslant 3 N / 4\right\}$. B is good if it has a cluster connecting its $(d-1)$-dim faces, while its other clusters have diam $<N / 5$. Renormalization: $\forall p>p_{c}, \lim _{N} \mathbf{P}_{p}(B$ is good $)=1$. [Antal-Pisztora 1996]

Proof idea of exponential cluster repulsion

Blocks $B_{x}=\left\{y \in \mathbb{Z}^{d}:\|y-N x\|_{\infty} \leqslant 3 N / 4\right\}$. B is good if it has a cluster connecting its $(d-1)$-dim faces, while its other clusters have diam $<N / 5$. Renormalization: $\forall p>p_{c}, \lim _{N} \mathbf{P}_{p}(B$ is good $)=1$. [Antal-Pisztora 1996]
B is \mathscr{C}-substantial if $\mathscr{C} \cap B$ has a component of diam $\geqslant N / 5$. Assume $o \notin \mathscr{C}_{\infty}$. A block is RED: \mathscr{C}_{o}-substantial but has a non- \mathscr{C}_{o}-substantial neighbor. BLUE: both $\mathscr{C}_{0^{-}}$and $\mathscr{C}_{\infty^{-}}$-substantial. Each touching edge is in at least one blue block, in at most 2^{d}. Observe: a colored block is never good.

Main Lemma. On the event $\left\{\left|\mathscr{C}_{0}\right|=m\right.$ and $\left.\tau\left(\mathscr{C}_{0}, \mathscr{C}_{\infty}\right) \geqslant t\right\}$, the set of blocks RED \cup BLUE has a $*$-connected subset of size

$$
\geqslant c(N, d) \max \left\{m^{1-1 / d}, t\right\}
$$ contained in the box $B_{m}(o)$.

Wulff shape inside the cluster?

Balls inside $\mathscr{C}_{\infty} \stackrel{?}{\longleftrightarrow} \begin{gathered}\text { Isoperimetrically optimal } \\ \text { sets inside } \mathscr{C}_{\infty}\end{gathered} \stackrel{?}{\longleftrightarrow}$ Classical Wulff shape
Conjecture. Limit shapes exist. (Are they the same?) In the plane, these converge to a Euclidean ball, as $p \downarrow p_{c}$. (For balls, asked by Itai Benjamini.)

Site percolation on \mathbb{Z}^{2}, at densities 0.8 and 0.65 , the ball of radius 120 .

Scale-invariant groups

A group G is scale-invariant if there is a subgroup chain $G=G_{0} \supset G_{1} \supset$ $G_{2} \supset \ldots$ with $G_{n} \simeq G$ and $\bigcap_{n \geqslant 0} G_{n}$ finite. Benjamini conjectured that such a G has polynomial growth, hence is almost nilpotent [Gromov 1981].

Reason for definition: renormalization. For conjecture: If $G_{n}=\varphi^{\circ n}(G)$, then φ "looks like" expanding: $d(\varphi(x), \varphi(y))>(1+\epsilon) d(x, y)$. But then $\left|B_{(1+\epsilon) r}\right| \lesssim[G: \varphi(G)]\left|B_{r}\right|$. [Franks 1970, Farkas 1981, Gelbrich 1985]

Not scale-inv: free group F_{r} has $s-1=\left[F_{r}: F_{s}\right](r-1)$. More generally, if there is a non-zero Euler characteristic $\chi(G)$, e.g., if $\mathrm{Betti}_{1}^{(2)}>0$ (the G-dimension of harmonic Dirichlet functions).
Using this and a theorem of Zlil Sela: torsion-free hyperbolic groups. What about relatively hyperbolic groups?

Scale-invariant groups

A group G is scale-invariant if there is a subgroup chain $G=G_{0} \supset G_{1} \supset$ $G_{2} \supset \ldots$ with $G_{n} \simeq G$ and $\bigcap_{n \geqslant 0} G_{n}$ finite. Benjamini conjectured that such a G has polynomial growth, hence is almost nilpotent [Gromov 1981].

Reason for definition: renormalization. For conjecture: If $G_{n}=\varphi^{\circ n}(G)$, then φ "looks like" expanding: $d(\varphi(x), \varphi(y))>(1+\epsilon) d(x, y)$. But then $\left|B_{(1+\epsilon) r}\right| \lesssim[G: \varphi(G)]\left|B_{r}\right|$. [Franks 1970, Farkas 1981, Gelbrich 1985] Not scale-inv: $\operatorname{Betti}_{1}^{(2)}>0$. Torsion-free (relatively?) hyperbolic groups.

Theorem. Let H be scale-invariant, $\bigcap_{n \geqslant 0} H_{n}=\{1\}$, and A an automorphism group of H leaving all H_{n} invariant. Assume A is faithful on each H_{n}, and $A \ltimes H_{n} \simeq A \ltimes H$. Then $G:=A \ltimes H$ is scale-invariant.

Corollary. The following groups are scale-invariant:
The lamplighter groups $\mathbf{F} \imath \mathbb{Z}$, where \mathbf{F} is any finite Abelian group.
The solvable Baumslag-Solitar groups $B S(1, m)=\left\langle a, b \mid b a b^{-1}=a^{m}\right\rangle$.
The affine groups $A \ltimes \mathbb{Z}^{d}$ with $A \leqslant G L(\mathbb{Z}, d)$.

Sketch of proof

Coset tree $\mathcal{T}=\left\{\left(x_{0} x_{1} x_{2} \ldots\right): H_{n+1} x_{n+1} \subset H_{n} x_{n}\right\}$. Since H_{n} is A-invariant, $G:=A \ltimes H$ acts on \mathcal{T} by the affine transformations $\left(H_{n} x_{n}\right)^{(\alpha, h)}=H_{n} \alpha\left(x_{n}\right) h$. Extends to a continuous action on $\partial \mathcal{T}$.
$\operatorname{St}_{G}\left(H_{n} x_{n}\right)=\left\{\left(\alpha, \alpha\left(x_{n}\right)^{-1} h_{n} x_{n}\right): \alpha \in A, h_{n} \in H_{n}\right\} \simeq A \ltimes H_{n} \simeq A \ltimes H$.
For $x=\left(x_{0}, x_{1}, x_{2}, \ldots\right) \in \partial \mathcal{T}$, we have $\operatorname{St}_{G}(x)=\bigcap_{n \geqslant 0} \operatorname{St}_{G}\left(H_{n} x_{n}\right)$. For $(\alpha, h) \neq(1,1),\{x \in \partial \mathcal{T}$ not stabilized by $(\alpha, h)\}$ is open and dense, so, by Baire's category theorem, exists ray with trivial stabilizer.

The isomorphisms $\varphi_{x_{n}}: G \longrightarrow \operatorname{St}_{G}\left(H_{n} x_{n}\right)$ satisfy $\varphi_{x_{n}}=\varphi_{x_{n-1}} \circ \varphi_{x_{n-1}, x_{n}}$, where x_{n} is parent of x_{n-1}, and $\varphi_{x_{n-1}, x_{n}} \in\left\{\varphi_{1}, \ldots, \varphi_{t}\right\}$.

In our examples, the ray with trivial stabilizer has to be an "irrational ray", never periodic! For quite different reasons in the three examples. . .

Question. If $G_{n}=\varphi^{\circ n}(G)$ scale-inv, is then G of polynomial growth?

How is Lamplighter Group an example?

$H<\mathbb{Z}_{2}[[t]]$ additive group of finite Laurent polynomials of (1+t), $\psi(F(t))=t F(t),[H: \psi(H)]=2$.
Coset tree is same as natural representation of $\mathbb{Z}_{2}[t t]$ as binary tree.
$A=\mathbb{Z}$ acts on H, multiplication by $1+t . G=A \ltimes H$.

$$
(m, f): \quad F(t) \mapsto(1+t)^{m} F(t)+\sum_{k \in \mathbb{Z}} f(k)(1+t)^{k}
$$

Wreath generators: $s: F(t) \mapsto F(t)+1$ and $R: F(t) \mapsto(1+t) F(t)$.
With $a=R s, b=R$, self-similar action: $a=(b, a) \epsilon, b=(b, a)$.
Diestel-Leader graph is Cayley graph w.r.t. both $\langle R s, R\rangle$ and $\langle s R, R s\rangle$.

Good tilings and tiles?

Scale-invariant tiling $\left\{T_{i}: i \in I\right\}$ of transitive Γ : finite connected $T_{i} \simeq T$, tiling graph $\left(i \sim j: \exists x \in T_{i}, y \in T_{j}, x \sim y\right) \simeq \Gamma$, and can iterate $T^{(n)} \nearrow \Gamma$.

SI of non-Abelian G does not give SI tiling of Γ ! But expanding homomorphism of Heisenberg Lie group induces nice contracting self-similar action on coset tree, producing a SI tiling. Still, the following remains:
Question. Does existence of SI tiling imply polynomial growth?
In our amenable examples, exists tiling sequence $\left\{\gamma T^{(n)}: \gamma \in G_{n}\right\}$ such that $T^{(n)}$ is connected Følner, so converges locally to Γ. [G. Elek]

Question. Γ amenable transitive graph, $p>p_{c}(\Gamma)$. Does there exist a connected Følner sequence $F_{n} \nearrow \Gamma$ s.t.

$$
\lim _{n \rightarrow \infty} \frac{\text { largest component }\left(F_{n} \cap \mathscr{C}_{\infty}\right)}{\left|F_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\left|F_{n} \cap \mathscr{C}_{\infty}\right|}{\left|F_{n}\right|}=\theta(p) \text { a.s.? }
$$

This would be the main percolation lemma for renormalization.

