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Abstract

Continuity as appears to us immediately by intuition (in the flow of time and in motion) differs
from its current formalization, the arithmetical continuum or equivalently the set of real numbers
used in modern mathematical analysis. Motivated by the known mathematical and physical prob-
lems arising from this formalization of the continuum, our aim in this paper is twofold. Firstly, by
interpreting Chaitin’s variant of Gödel’s first incompleteness theorem as an inherent uncertainty or
fuzziness of the arithmetical continuum, a formal set-theoretic entropy is assigned to the arithmeti-
cal continuum. Secondly, by analyzing Noether’s theorem on symmetries and conserved quantities,
we argue that whenever the four dimensional space-time continuum containing a single, stationary,
asymptotically flat black hole is modeled by the arithmetical continuum in the mathematical formu-
lation of general relativity, the hidden set-theoretic entropy of this latter structure reveals itself as the
entropy of the black hole (proportional to the area of its “instantaneous” event horizon), indicating
that this apparently physical quantity might have a pure set-theoretic origin, too.

PACS numbers: 01.55.+b; 02.10.-v; 03.75.Hh; 04.70.-s; 05.70.-a
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1 Introduction
In his struggling with Zeno’s paradoxes introduced into the Western thinking in an apparently never-
more-removable way by the Eleatic school, Aristotle declared that even by performing an infinitude of
successive divisions the extension of time or space cannot be dissolved or destroyed (this is one partic-
ular form of Aristotle’s general prohibition of the appearance of actual infinities). In other words the
Aristotelian description of the continuum considered the (temporal or spatial) extension as a primitive,
irreducible concept. This Aristotelian or let us call synthetical concept of the continuum is however in
sharp contrast with our contemporary analytical approach to the continuum used in both mathematics
and theoretical physics. Accepting and making good use of the concept of the analytical continuum
when solving mathematical or physical problems means that one declares that the ultimate constituents
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of the (temporal or spatial) continuum are the points without possessing any extension and the analyt-
ical continuum with its all pleasant properties arises as the disjoint union of its ultimate constituents,
the extensionless points.

Taking a rapid overview of its history, the synthetical approach to the continuum seems to had been
accepted after Aristotle more or less1 till Descartes (recall his dualistic philosophy based on the res
extensa and the res cogitans). However in an apparently sudden sharp transition, the next generation,
hallmarked by such names as Leibniz and Newton, began to replace the synthetical description with the
analytical one and this new but intuitive approach was finally strictly formalized by Dedekind in 1858
and studied in detail by Cantor and Weierstraß in the 1870-80’s. Concerning the character and one
possible root of this transition let us quote from Russell [13, Chapter IX]:

Even among philosophers, we may say, broadly, that only those universals which are named by
adjectives or substantives have been much or often recognized, while those named by verbs and
prepositions have been usually overlooked. This omission has had a very great effect upon philoso-
phy; it is hardly too much to say that most metaphysics, since Spinoza, has been largely determined
by it. The way this has occured is, in outline, as follows: Speaking generally, adjectives and com-
mon nouns express qualities or properties of single things, whereas prepositions and verbs tend to
express relations between two or more things. Thus the neglect of prepositions and verbs led to the
belief that every proposition can be regarded as attributing a property to a single thing, rather than
as expressing a relation between two or more things. Hence it was supposed that, ultimately, there
can be no such entities as relations between things. Hence either there can be only one thing in the
universe, or, if there are more than one things, they cannot possibly interact in any way, since any
interaction would be a relation, and relations are impossible.

The first of these views, advocated to Spinoza and held in our own day by Bradley and many
other philosophers, is called monism; the second, advocated to Leibniz but not very common nowa-
days, is called monadism, because each of the isolated things is called a monad. Both these oppos-
ing philosophies, interesting as they are, result, in my opinion, from an undue attention to one sort
of universals, namely the sort represented by adjectives and substantives rather than by verbs and
prepositions.

It therefore seems that the passage from the synthetical to the analytical approach at least in part was a
consequence of the slow decline of the influensive and in the beginning deep and from the conceptional
viewpoint colourful universalia i.e. the realia vs. nominalia debate of the previous scholastic centuries
hence it was not so sharp. Nevertheless the central figure of this conceptual shift was surely Leibniz who
played an important role in the developments of both 17-18th century philosophy with his monadism
and mathematics with his fundamental contributions to mathematical analysis. Indeed, there is a more
or less straightforward analogy between the purely metaphysical concept of a monad and the formal
mathematical concept of a(n extensionless) point: Both philosophically and mathematically speaking,

1Although with increasing scepticism from the late scholastic times onwards: around the 13-14th century some people
began to claim that the line is composed by a finite or infinite number of indivisibles, respectively. For instance Walter
de Chatton (c.1290-1343) is from the former group, while from the latter group Henry of Harclay (1275-1317) stated that
a line is composed by an infinite number of immediately joined indivisibles, Robert Grosseteste (c.1168-1253) that it is
composed by an infinite number of indivisibles which are mediate to one another. According to the more sophisticated
mathematical approach of Richard Kilvington (c.1302-1360), the continuum stands for infinite sets of integers containing
infinite subsets with intrinsic and extrinsic quantifiable boundaries. Meanwhile Thomas Bradwardine (1300-1349) believed
that a continuum is not composed of indivisible points, but of mutually joined parts, i.e., an infinite number of mediate
indivisibles that are not points. William of Ockham (c.1287-1347) said that a continuum whose parts form a unity is distinct
from a mere collection of juxtaposed things. As a general observation, Adam of Whodeham (death: 1358) suggested that
one infinite can be greater than another. For more history see [3, 9].
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they represent sort of irreducible terminal elements of reality, nonetheless possessing the character of
totality in the sense that they are the only constituents of existing things, moreover they are disjoint
entities without interacting with each other.

The great success of modern mathematical analysis and theoretical physics based on the utilization
of the analytical continuum is well-known and cannot be overestimated; however the present-day ana-
lytical formalization of continuity, which dissolves it into the collection of extensionless points, is not
obvious intuitively at all since its acceptance in mathematics. As Weyl calls attention [20, pp. 23-24]:

But as things now stand we must point out that, in spite of Dedekind, Cantor, and Weierstrass, the
great task which has been facing us since the Pythagorean discovery of the irrationals remains today
as unfinished as ever; that is, the continuity given to us immediately by intuition (in the flow of time
and in motion) has yet to be grasped mathematically as a totality of discrete “stages” in accordance
with that part of its content which can be conceptualized in an “exact” way. More or less arbitrarily
axiomatized systems (be they ever so “elegant” and “fruitful”) cannot further help us here. We must
try to attain a solution which is based on objective insight.

Still quoting Weyl [20, p. 49]:

If, as I have advocated, we give a precise meaning to the concept “set”, then the following asser-
tion gains a substantial content: “To every point of a line (given an origin and a unit of length)
there corresponds a (distance-measuring) real number [...] and vice versa”. This assertion estab-
lishes a noteworthy connection between something given in the intuition of space and something
constructed in a logical conceptual way. But, clearly, this assertion far exceeds everything which
intuition teaches, or can teach, us about the continuum. For it does not offer a morphological de-
scription of what presents itself in intuition (that being, first and foremost, a fluid whole rather than
a set of discrete elements). Instead, it gives an exact construal of an immediately given reality which
by its nature, is inexact—a process which is fundamental to all exact knowledge of (physical) reality
and through which alone mathematics acquires significance for natural science.

These worries are not of pure academic nature taking into account that the concept of the analytical
continuum, or as we shall call in its currently formalized form here from now on, the arithmetical con-
tinuum (or equivalently the set R of real numbers), is widely used everywhere in mathematics, physics,
engineering sciences, mathematical biology, economy and sociology, etc., etc. Indeed, in spite of its
success, the utilization of the arithmetical continuum leads to various problems in pure mathematics
[20] and in its applications, too (for an excellent survey see [1]). Perhaps the most relevant problem
related with the arithmetical continuum on the pure mathematical side is the (in our opinion) unset-
tled status of Cantor’s continuum hypothesis; while a simple example from theoretical physics is the
divergence of the total electric energy of an electrically charged point particle in Faraday–Maxwell
electrodynamics (leading eventually to the complicated renormalization issues in classical and quan-
tum field theories). Fortunately, by performing simple experiments, we know that this and the various
other occurences of divergences in classical and quantum electrodynamics are nothing but artifacts
originating from the mathematical formulation (which uses the arithmetical continuum) of these theo-
ries hence we can identify and isolate these divergences quite easily. But what about the singularities or
other phenomena (mathematically) predicted by general relativity for instance? Lacking unambigous
experimental evidences yet we cannot make a commitment about their ontological status.

The purpose of this paper is to examine whether the several conceptional, technical, etc. problems
related with black hole entropy [2] at least in part emanate from the tacit fact that mathematically
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general relativity rests on the structure of the arithmetical continuum. The paper is organized as follows.
In Section 2 we recall Chaitin’s reformulation of Gödel’s first incompleteness theorem and interpret
its content as the presence of an inherent uncertainty or fuzziness within the arithmetical continuum
(which might be a consequence that its final constituents are extensionless). This allows us to introduce
a statistico-physical analogy and to talk in this context about the pure “set-theoretic entropy” of the
arithmetical conntinuum. Then, in Section 3 we recall and refine Noether’s theorem on symmetries and
conserved quantities and prove that within general relativity a conserved quantity to diffeomorphisms
can be assigned which is not zero if a stationary black hole is present and can be identified with its
entropy (proportional to the area of the “instantaneous” event horizon [10]). Then we argue that, based
on their common diffeomorphism invariance, the “set-theoretic” and the black hole entropy are in fact
the same. This suggests that the latter entropy might be a consequence of the former one and the long-
sought physical degrees of freedom responsible for black hole entropy have simply a pure mathematical
origin corresponding to the artificial decomposition of the space-time continuum into points.

2 Chaitin incompleteness and the entropy of the continuum
Accepting the structure of the arithmetical continuum or equivalently the set R of real numbers,2 it is
the totality of, or more precisely the disjoint union of, its individual constituents called real numbers
or—speaking geometrically—its points:

R=
⊔

x∈R
{x} .

If indeed this is its optimal mathematical structure, then one would expect that using mathematical
tools only, one is able to “locate” the individual constituents x within their totality R or equivalently,
one is able to make a mathematical distinction between them in an effective way. We know from
our elementary university studies that upon fixing a notational convention every real number admits
a well-defined (for instance decimal) expansion which means that this expansion exists for all real
numbers and is unique in the sense that two expansions coincide if and only if the corresponding two
real numbers are equal. It is however a quite surprising observation that in general the existence of this
well-defined and unique expansion is the only available property of a “truely generic” real number i.e.
a typical element x ∈ R. Therefore our question about an effective mathematical way of “picking” a
single element x∈R is in fact a question about the effectiveness of making distinctions between generic
real numbers in terms of their (decimal) expansions.

To approach this problem first let us recall the idea of Kolmogorov complexity or algorithmic com-
pressibility or computability of a real number. Let x ∈ R be given and denote by Tx the (probably
empty) set of those Turing machines which reproduce x in the sense that if Tx ̸= /0 and some Tx ∈ Tx is
given with an input n ∈ N then the output Tx(n) ∈ N consists of e.g. precisely the first n digits of the
expansion of x. Denoting by |Tx| ∈ N the length of the Turing machine (considered as an algorithm or
program in some programming language) define

K(x) :=


+∞ if Tx = /0

inf
Tx∈Tx

|Tx|<+∞ if Tx ̸= /0

2Here by a real number x we mean by definition a Dedekind slice and by the set of real numbers R the set of all Dedekind
slices. R can be equipped with the usual structures (addition, multiplication and ordering) and posssesses the completeness
property rendering it a complete ordered field. It is well-known that R as a complete ordered field is essentially unique.
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and call the resulting (extended) natural number K(x)∈N∪{+∞} the Kolmogorov complexity of x∈R.
Then K(x)=+∞ corresponds to the situation when no algorithms reproducing x in the above sense exist
hence x is not algorithmically compressible or not computable (by simple cardinality arguments the vast
majority of real numbers belongs to this class) while K(x)<+∞ corresponds to the opposite case (this
class contains all “known” real numbers like 7, 5

8 ,
√

2, π , e,...). It is clear that the only important
question about x in this context is whether K(x) = +∞ or K(x) < +∞ and in the latter case only the
magnitude of K(x) is relevant, for its particular value depends on the details of the sort of expansion
of x, the programming language for Tx, etc. hence does not carry essential information. A remarkable
observation about Kolmogorov complexity is the following result [4]:

Theorem 2.1. (Chaitin’s version of Gödel’s first incompleteness theorem) For any (sufficiently rich,
consistent, recursively enumerable) axiomatic system S based on a first order language L there exists a
natural number 0 < NS <+∞ such that there exists no real number x for which the proposition

K(x)≧ NS

is provable within S. 3

Motivated in various ways by [8, 14, 15] we interpret this quite surprising mathematical fact from
our viewpoint as follows: Taking into account that the only known property of a generic real number
which fully characterizes it is its existing (decimal) expansion, but the Kolmogorov complexity of
this expansion hence the expansion itself generally is not fully determinable (by proving theorems
on it in an axiomatic system), there is in general no way, using standard mathematical tools in the
broadest sense, to “sharply pick” any element from the arithmetical continuum. Consequently, from
the viewpoint of “effective mathematical activity”, the structure of the arithmetical continuum i.e. the
set R of real numbers contains an inherent uncertainty or fuzziness in the sense that its individual
disjoint constituents cannot be distinguished from each other in a universal and effective mathematical
way.

The above interpretation of Theorem 2.1 serves as a motivation to introduce a statistico-physical
analogy for the arithmetical continuum which might offer another insight into its structure. First,
generalizing the above decomposition of the real line into its points, we suppose that every (finite
dimensional, real) differentiable manifold M admits a decomposition into its disjoint constituent points:

M =
⊔

x∈M

{x} . (1)

Speaking intutively, we can make three observations about this decomposition: All the points x of M
(i) are homologous i.e. “look the same”, (ii) are terminal objects i.e. they do not possess any further
internal structure nevertheless their collection gives back precisely M and (iii) are disjoint from each
other i.e. they “do not interact”. Except its cardinality this decomposition of M therefore strongly
resembles the structure of an ideal gas as usually defined in statistical physics. Take an abstract set X
whose cardinality coincides with that of the continuum in ZFC set theory and regard it as an abstract
ideal gas X such that its elements x correspond to the atoms x of the ideal gas X . Extending this analogy
further, the left hand side of (1) i.e. the fixed diffeomorphism class of M with its global topological,
smooth, etc. “macroscopic” properties can be regarded as one possible macrostate of X while the right
hand side of (1) i.e. the particular identification of M with its elements as a particular microstate of X
within the macrostate M. The dynamics of X in its macrostate M is generated by diffeomorphisms; hence
another microstate within the same macrostate is achieved by picking any diffeomorphism f : M → M



G. Etesi: On a possibly pure set-theoretic contribution to black hole entropy 6

and taking the corresponding new decomposition

M = f (M) =
⊔

x∈M

{ f (x)} .

Another differentiable manifold N not diffeomorphic to M (in the broadest sense i.e. possibly hav-
ing different dimension, number of connected components, etc.) might be interpreted as a different
macrostate (with its corresponding assembly of microstates created by diffeomorphisms) of the same
astractly given ideal gas X . However this abstract ideal gas can even appear in completely different
i.e. non-geometric, discontinuous macrostates as well like e.g. in the form of the Cantor set C ⊂ R or
some other abstract topological space (with its homeomorphisms creating the corresponding assembly
of microstates), or just simply in the form of some set (together with its bijections), etc., etc.

In accord with this analogy Theorem 2.1 is interpreted as a fundamental result about the indistin-
guishability of the individual microstates of X belonging to the same macrostate M. The next standard
step in statistical mechanics is then to introduce a tool, a measure, capable to grasp the amount of in-
formation loss created by the passage from individual microstates to their common macrostate. This
measure is known as the entropy of the ideal gas in a given macrostate. How could we characterize this
entropy within our analogy? Proceeding completely formally along the way of Boltzmann’s classical
approach to entropy we can argue as follows. Certainly all possible microstates of the abstract ideal
gas X are parameterized by the elements of the group of its all set-theoretic bijections Bij(X) while its
possible microstates within the macrostate M are parameterized by its subgroup of diffeomorphisms
Diff(M). Thus we formally put

Entropy of the set X in its manifold-macrostate M := ConstS · logΓS(Diff(M)) (2)

with ΓS being an, at this state of the art admittedly hypothetical, measure on Bij(X) depending on a
particular choice of axiomatic system S in Theorem 2.1. Taking into account 1 ⫋ Diff(M) ⫋ Bij(X)
we expect 1 < ΓS(Diff(M))< ΓS(Bij(X)) = +∞ to hold such that, together with 0 < ConstS <+∞ the
resulting formal expression is a finite positive number independent of any choice of S as dictated by the
universality of Theorem 2.1. Note that despite being formally ill-defined, by construction this entropy
formula is invariant under diffeomorphisms of M.

To summarize, we have sketched a framework in which the inherent uncertainty or fuzziness of
the arithmetical continuum i.e. the set R of real numbers or gemetrically speaking the real line or
more generally any differentiable manifold, can be interpreted as a non-zero entropy of the arithmetical
continuum (cf. [14, 15]).

3 Secondary Noether theory and the entropy of black holes
We would like to make the quite nonsense formula (2) more meaningful by passing from mathematics
to physics. Namely, we shall consider classical physical theories over physical space-time such that
in the mathematical description of these theories the physical space-time is modeled on a differen-
tiable manifold with the property (1). Then, we shall ask ourselves: Does the inherent uncertainty or
fuzziness of the arithmetical continuum recognized in the mathematical model of the physical theory
“pop up” somehow among the physical propositions of the physical theory? Putting differently: Does
this fuzziness somehow “lift” from the mathematical level to the physical level of the physical theory?
Since we have found some similarities between this purely mathematical uncertainty or fuzziness of the
arithmetical continuum and the physical concept of entropy, we are going to seek entropylike phenom-
ena in those physical theories which are particularly sensitive for the physical structure of space-time.
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If these sought entropylike phenomena happen to have a pure set-theoretical origin introduced by the
mathematical description of the physical theory, then we expect them to have something to do with dif-
feomorphisms of the underlying differentiable manifold modeling physical space-time; for the formal
expression (2) is diffeomorphism-invariant hence the entropy it describes is invariant under diffeomor-
phisms. Apart from this, if diffeomorphisms are in addition symmetries of the physical theory we are
dealing with then we may as well try to identify these entropylike things with Noether charges associ-
ated with diffeomorphism symmetry.

By Noether’s theorem in a broad physical sense one means that “to every continuous symmetry of
a physical theory a quantity can be assigned which is conserved”. It may happen however that this con-
served quantity, the Noether charge, vanishes. Our goal is to demonstrate that even in this trivial case
certain non-trivial de Rham cohomology classes can still be interpreted as “secondary Noether charges”
associated with this symmetry of the theory. There is an analogouos situation in algebraic topology.
Consider a complex vector bundle E over a topological space X . Recall that for all i = 0, . . . , rk E the
ith Chern class of E takes value in H2i(X ;Z). Therefore, if it happens that X has vanishing even dimen-
sional singular cohomology then characteristic classes cannot be used to distinguish complex vector
bundles over it.3 However if X is a manifold M then one can still introduce the so-called secondary or
Chern–Simons characteristic classes taking values in odd dimensional cohomology [5]. Motivated by
this consideration as well as those in [6, 19] we proceed as follows.

For completeness and convenience let us recall how standard Noether theory works in case of a
classical relativistic field theory. We are going to skip all the technical details here but emphasize that
in case of a compact, orientable Riemannian 4-manifold all of our considerations below are rigorous
mathematical statements; therefore we have a reason to hope that with appropriate technical modifica-
tions all the stuff remains valid in physically more realistic situations.

So let (M,g) be a four dimensional (non-)compact oriented (pseudo-)Riemannian manifold repre-
senting space-time and let Φ denote the full field content of a classical field theory over (M,g) defined
by a Lagrangian density L(Φ,g) ∈ Ω4(M). Note that by definition the Lagrangian is not a function but
a 4-form over M allowing one to talk about the corresponding action S(Φ,g) =

∫
M L(Φ,g) defined by

integration over M. Let M be the configuration space of all (but belonging to a nice function class)
(Φ,g)-field configurations over M i.e. its elements are not identified by diffeomorphisms, gauge, etc.
transformations. Consider a differentiable curve C : R→M . We say that C is a symmetry of the theory
L(Φ,g) if its action S(Φ,g) is constant along C that is, S(C(t)) = S(Φ(t),g(t)) = Const for all t ∈ R.
Writing (Φ,g) := (Φ(0),g(0)) and using physicists’ usual notation define “the infinitesimal variation
of the action at (Φ,g) along C” by

δCS(Φ,g) := lim
t→0

1
t
(S(C(t))−S(C(0))) =

∫
M

lim
t→0

1
t
(L(C(t))−L(C(0))) =:

∫
M

δCL(Φ,g)

where δCL(Φ,g)∈Ω4(M) is the “infinitesimal variation of the Lagrangian at (Φ,g) along C”.4 Assume
that (M,g) is smooth and let ∆g := dd∗+d∗d denote its Hodge Laplacian; recall that if ω ∈ Ω4(M) the
partial differential equation ∆gϕ = ω has a smooth solution ϕ if and only if

∫
M ω = 0. By definition of

3A simple example for this failure is provided by complex rank two vector bundles with structure group SU(2) over
the 5-sphere S5. Then, on the one hand, isomorphism classes of these type of vector bundles are classified by the group
π4(SU(2))∼= π4(S3)∼= Z2 hence there are precisely two different such bundles up to isomorphism over S5; meanwhile, on
the other hand, Hk(S5;Z)∼= {0} if k ̸= 0,5 hence all Chern classes of these bundles are trivial.

4Using standard notations of differential geometry if Ċ is the derivative of C at t = 0 then δCL = Ċ(L) : M → Ω4(M).
By specializing the variation further we can demand δ 2 = 0 hence we can formally treat δ as an exterior derivative on the
infinite dimensional manifold M [6, and references therein] and can introduce the Ω4(M)-valued 1-form δL on M . Then
δCL = δL(Ċ) : M → Ω4(M) as well.
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a symmetry
∫

M δCL(Φ,g) = 0 hence there exists an element ϕC ∈ Ω4(M) satisfying ∆gϕC = δCL(Φ,g).
However ∆gϕC = dd∗ϕC +d∗dϕC = dd∗ϕC consequently picking an arbitrary ηC ∈ Ω2(M) and putting

θC := d∗ϕC +dηC (3)

we succeeded to find an element θC ∈ Ω3(M) such that dθC = δCL(Φ,g). Note first that, although
ϕC is well-defined only up to a harmonic 4-form i.e. an element ϕ ∈ Ker ∆g, the 3-form θC is not
sensitive for this ambiguity because taking into account its harmonicity, ϕ is both closed (dϕ = 0) and
co-closed (d∗ϕ = 0) hence θC = d∗ϕC + dηC = d∗(ϕC +ϕ) + dηC. Secondly, the “gauge freedom”
i.e. the ηC-ambiguity can be fixed as well by imposing the “Coulomb gauge condition” d∗θC = 0.
Indeed, d∗θC = d∗2

ϕC+d∗dηC = d∗dηC = 0 (together with the Hodge decomposition theorem) implies
dηC = 0. Therefore, given a symmetry C of the theory we come up with a θC ∈ Ω3(M) which satisfies

dθC = δCL(Φ,g)
d∗θC = 0∫

M dθC = 0

and this 3-form is well-defined in the sense that it depends only on the symmetry represented by the
curve C as expected.5

Proceeding further, we call the Hodge dual 1-form jC := ∗θC ∈ Ω1(M) the Noether current as-
sociated with the symmery C moreover for a (spacelike) hypersurface-without-boundary S ⊂ M put
qC,S :=

∫
S ∗ jC and call it the Noether charge associated with the symmetry C. The Noether charge

satisfies
qC,S1 −qC,S2 =±

∫
W (S1,S2)

dθC = 0

by applying Stokes’ theorem on a domain W (S1,S2)⫅ M with induced orientation and oriented bound-
ary ∂W (S1,S2) = S1 ⊔ (−S2). (Here we strictly speaking assume that the variation vanishes on the
complement M \W (S1,S2) hence

∫
W (S1,S2)

dθC =
∫

M dθC = 0 indeed.) Consequently the real number
qC := qC,S is a well-defined conserved quantity associated with the symmetry of the theory in this sense.

Thanks to the gauge fixing condition d∗θC = 0 the Noether current looks like jC = ∗θC =±d∗ϕC
consequently jC ∈ [0] ∈ H1(M) i.e. the current represents the trivial cohomology class in the first de
Rham cohomology. We may then ask ourselves what about θC from the de Rham theoretic viewpoint?
Does it represent a cohomology class in H3(M)? Still working in the gauge d∗θC = 0, assume dθC = 0
holds; then via (3) we get ∆gϕC = 0 implying ϕC is harmonic hence θC = d∗ϕC = 0. Therefore we
find that dθC = 0 if and only if θC = 0. Consequently θC ∈ Ω3(M) represents a cohomology class
[θC] ∈ H3(M) if and only if θC = 0 and the associated Noether charge qC =

∫
S ∗ jC = ±

∫
S θC = 0 is

trivial rendering the classical Noether theory useless in this situation.
Let us focus attention to this trivial case i.e. when for a symmetry C of the theory L(Φ,g) the

associated total derivative satisfies [θC] ∈ H3(M) or equivalently (by exploiting the gauge fixing condi-
tion d∗θC = 0) θC = 0. This latter equation also implies d∗ϕC = 0 as we have seen hence the general
expression (3) reduces to

0 = dηC

saying that ηC itself represents a cohomology class in H2(M). Consequently in this situation—which
is trivial from the variational viewpoint in the sense that it yields vanishing primary Noether theory,

5If (Φ0,g0) ∈ M is a critical point of the action then δCS(Φ0,g0) =
∫

M δCL(Φ0,g0) =
∫

M δL(Φ0,g0)(Ċ) = 0 for all
curves passing through the critical point. Hence

∫
M δL(Φ0,g0)(Ċ) = 0 for all Ċ ̸= 0 thus in fact δL(Φ0,g0) = 0 which is

the resulting field equation of the theory.
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but not trivial from the topological viewpoint in the sense that H2(M) ̸∼= {0} may hold—we can still
introduce a secondary or topological Noether current JC ∈ Ω2(M) by putting JC := ∗ηC. Then taking
any (spacelike) two dimensional submanifold-without-boundary Σ ⊂ M the corresponding secondary
or topological Noether charge QC,Σ :=

∫
Σ
∗JC is well-defined in the sense that it depends only on the

chosen de Rham cohomology class [∗JC] ∈ H2(M). Moreover

QC,Σ1 −QC,Σ2 =±
∫

W (Σ1,Σ2)

dηC = 0

by Stokes’ theorem. (This time W (Σ1,Σ2) ⊂ M is a sub-3-manifold with induced orientation and
oriented boundary ∂W (Σ1,Σ2) = Σ1 ⊔ (−Σ2).) Consequently we have a conserved quantity in the
sense that the number QC,Σ =: QC,[Σ] depends only on [∗JC] ∈ H2(M) and the singular homology class
[Σ] ∈ H2(M;Z). Although it is not necessary, just for aesthetical reasons we can suppose without loss
of generality that ηC is the unique harmonic representative of [ηC] hence both ηC and JC = ∗ηC are
closed that is, represent cohomology classes within H2(M).

Note that, regardless what the symmetry C actually is, in order QC,[Σ] not to be trivial i.e., QC,[Σ] ̸= 0,
we need [0] ̸= [Σ] ∈ H2(M;Z) as well as [0] ̸= [∗JC] ∈ H2(M). Both conditions are met if we de-
mand M to satisfy the topological condition that the free part of its second singular homology group
H2(M;Z)free ∼= Zrk H2(M;Z) be non-zero (i.e., the rank of H2(M;Z) be non-zero). Moreover, at this
level of generality all cohomology classes in H2(M) are premitted to play the role of [∗JC] conse-
quently the number of linearly independent secondary Noether currents is equal to b2(M). Therefore if
rkH2(M;Z)> 1 that is, b2(M)> 1 then we have “too many” options to introduce non-trivial secondary
Noether charges for a given symmetry. Consequently, the optimal situation for this secondary theory is
when rk H2(M;Z) = 1 (at this level of generality).

To summarize, we have proved:

Lemma 3.1. Let (M,g) be a (non-)compact oriented (pseudo-)Riemannian 4-manifold satisfying the
topological condition H2(M;Z)free ̸∼= {0}. Let moreover a classical relativistic field theory be given
over (M,g) defined by its Lagrangian density L(Φ,g) ∈ Ω4(M). Assume that C : R→ M is a symme-
try of the theory such that the corresponding total derivative θC ∈ Ω3(M) satisfying the gauge fixing
condition d∗θC = 0 is closed (hence in fact θC = 0).

Then there exist a 2-form 0 ̸= JC ∈ Ω2(M) representing a non-trivial de Rham cohomology class
0 ̸= [∗JC] ∈ H2(M) as well as a closed oriented surface Σ ⊂ M representing a non-trivial singular
homology class [0] ̸= [Σ] ∈ H2(M;Z)free such that the associated quantity QC,Σ :=

∫
Σ
∗JC ∈ R is not

zero and depends only on [∗JC] ∈ H2(M) and [Σ] ∈ H2(M;Z)free . We denote this quantity by QC,[Σ] and
call the secondary or topological Noether charge associated with the symmetry C and the classes [∗JC]
and [Σ]. For a given symmetry C the number of linearly independent cohomology classes [∗JC] is equal
to rk H2(M;Z). 3

Note that what we have done is in fact simple: We interpret the a priori existing cohomology classes
of M as certain physical quantities whenever a theory L(Φ,g), possessing certain type of symmetries,
has been formulated over M.

Let us apply this theory for diffeomorphisms in pure gravity in four dimensions. Let ωM ∈ Ω4(M)
defined by ωM := ∗1 be the volume form of (M,g) and take the usual Einstein–Hilbert Lagrangian
LEH(g) := (Scalg − 2Λ)ωM with cosmological constant Λ ∈ R and consider its variation with respect
to a 1-parameter subgroup { ft}t∈R of the orientation-preserving diffeomorphism group Diff+(M) of
the underlying space-time manifold M while the metric g is kept fixed. That is we define our curve
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by C(t) := f ∗t g ∈ M for all t ∈ R. The infinitesimal generator of this subgroup is a compactly sup-
ported vector field X ∈ C∞

c (M;T M). Since a diffeomorphism acts on k-forms via pullback and the
scalar curvature is invariant under diffeomorphisms, LEH(C(t)) = f ∗t LEH( f ∗t g) = f ∗t LEH(g) hence the
corresponding infinitesimal variation takes the shape

δCLEH(g) = lim
t→0

1
t
(1− f ∗t )LEH(g) = LX(LEH(g))

where LX denotes the Lie derivative with respect to X . Substituting the Lagrangian and applying
Cartan’s formula we thus get

δCLEH(g) = ιX(d((Scalg −2Λ)ωM))+d(ιX((Scalg −2Λ)ωM))

= d((Scalg −2Λ)ιX ωM) .

While δCLEH(g) ̸= 0 in general, nevertheless we find that δCSEH(g) =
∫

M d((Scalg−2Λ)ιX ωM) = 0 by
Stokes’ theorem hence the Einstein–Hilbert action itself is invariant consequently diffeomorphisms are
both off or on shell symmetries of general relativity with possibly non-vanishing cosmological constant.
The associated total derivative up to an exact term looks like θC = (Scalg − 2Λ)ιX ωM in some gauge
probably not satisfying the condition d∗θC = 0.

In order not to get lost in the gauge fixing problem assume instead that (i) we are on shell i.e.,
Einstein’s equation Ricg = Λg is valid hence θC = 2ΛιX ωM and (ii) the cosmological constant vanishes
yielding θC = 0. Consequently the diffeomorphism symmetry in on shell pure gravity with vanish-
ing cosmological constant has vanishing associated (primary) Noether charge. However substituting
θC = 0 into (3) (and referring to the Hodge decomposition theorem) we get d∗ϕC = 0 and dηC = 0 con-
sequently in this physically important situation we can interpret the cohomology classes [ηC] ∈ H2(M)
as Hodge duals of currents JC in secondary Noether theory.

As we stressed even in the formulation of Lemma 3.1, interesting secondary Noether theory emerges
only if the underlying manifold is topologically non-trivial in the sense formulated there. At this point,
by taking e.g. a survey on known solutions [16], we make an observation which is completely indepen-
dent of our considerations taken so far—hence in our opinion is very interesting!—namely: Apparently
all explicitly known 4 dimensional black hole solutions in vacuum general relativity with vanishing cos-
mological constant satisfy the topological condition formulated in Lemma 3.1. This intuitively means
that because of some general reason a black hole is even topologically recognizable as a two dimen-
sional “hole” in space-time. In fact with an appropriate restriction this observation can be proved [7]
and can be considered as a global topological counterpart of well-known black hole uniqueness theo-
rems [12]. In accordance with this provable version [7] we suppose from now on that: (M,g) is a 4
dimensional solution of the Einstein’s equation Ricg = 0 and describes a single stationary asymptoti-
cally flat black hole; hence rk H2(M;Z) = 1 (which apparently corresponds to the case that a “single”
black hole is present). In this case the homology class of the “instantaneous” event horizon of the black
hole as an (immersed) surface i : Σ ↬ M represents a non-zero element [Σ] ∈ H2(M;Z)free ∼= Z.

Then we proceed as follows: Like the original volume form ∗1 = ∗g1 = ωM ∈ Ω4(M), the in-
duced area form ∗i∗g1 =: ωΣ ∈ Ω2(Σ) of the “instantaneous” event horizon Σ is closed consequently
it represents a class [ωΣ] ∈ H2(Σ) which is not zero since the event horizon has finite area. Then
exploiting singleness and stationarity, the “instantaneous” event horizon Σ is connected and its area
Areag(Σ) =

∫
Σ

ωΣ is constant in time consequently we can suppose that the area form is proportional
to the Hodge dual of the secondary Noether current with a time-independent constant. In other words
with any choice for the Hodge dual of the secondary Noether current JC ∈ Ω2(M) the ωΣ satisfies that
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Const [i∗(∗JC)] = [ωΣ] ∈ H2(Σ)∼= R therefore

Entropy of the black hole in (M,g) = Const (Areag(Σ)) = Const
∫
Σ

ωΣ = Const
∫
Σ

∗JC

= Const QC,[Σ]

offering a natural way to normalize QC,[Σ] to be equal to the entropy of the black hole i.e.

Entropy of the black hole in (M,g) = QC,[Σ] . (4)

Accepting this choice of normalization therefore a natural physical interpretation of this abstract con-
served quantity also emerges, namely: If a 4 dimensional space-time (M,g) is a solution of the vacuum
Einstein’s equation with vanishing cosmological constant and describes a single stationary asymp-
totically flat black hole then the secondary Noether charge associated to an orientation-preserving
diffeomorphism of the space-time manifold is not zero and as a secondary conserved quantity is equal
to the entropy of the black hole (cf. [19]).

We are now in a position to make our crucial observation: Both the previously introduced set-
theoretic and the black hole entropy here give rise to conserved quantities assigned to one and the same
process namely the permutation of the points of a given differentiable manifold by diffeomorphisms.
This manifests itself in their common diffeomorphism invariance. More precisely: (2) as the set-
theoretic entropy of the abstract set X underlying the black hole space-time M is invariant in the formal
sense while (4) as the black hole entropy of (M,g) is invariant in the secondary Noether sense. Hence
these two scalars are expected to obey a functional relation like

F(Entropy of the black hole in (M,g) , Entropy of X in its manifold-macrostate M) = 0

and accepting the validity of the implicit function theorem then at least locally the black hole entropy
can be recovered from this as follows:

Entropy of the black hole in (M,g) = f (Entropy of X in its manifold-macrostate M) .

Both quantities express entropy hence are subject to positivity, subadditivity, etc. moreover (4) depends
on both the smooth structure on M and a metric g on it while (2) depends only on the smooth structure
on M. These properties force the two entropy expressions in fact to be proportional. Therefore the
(stationary, asymptotically flat, single) black hole entropy (4) factorizes like

Entropy of the black hole in (M,g) = Constg · (Entropy of X in its manifold-macrostate M) (5)

consisting of a metric term Constg > 0 and the pure set-theoretic entropy term from (2) of the underlying
manifold continuum. We can even generalize this “formula” for any solution of Einstein’s equation by
setting the left hand side to be zero if (M,g) does not describe a black hole and putting Constg = 0 on
the right hand side, too.

The time has come to complete the circle of our arguments. On the mathematical side, the formal
concept of the arithmetical continuum (or the set R of real numbers) contains an inherent uncertainty
or fuzziness in the sense that the effective identification of the arithmetical continuum with its indi-
vidual disjoint constituents, the points, cannot be carried out (our interpretation of Theorem 2.1). On
the physical side, the nowadays accepted formal mathematical description of our intuitive concept of
the spatial or temporal continuum in terms of the arithmetical continuum lifts the purely formal—and
concerning its origin, metaphysical—concept, the same point again, to an ontological level. We may
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then ask ourselves whether or not this sort of description of space-time in a mathematical model of a
physical theory introduces a similar uncertainty or fuzziness into the physical theory. Let us formulate
our question more carefully. In the modern understanding by a physical theory one means a two-level
description of a certain class of natural phenomena: The theory possesses a syntax provided by its
mathematical core structure and a semantics which is the meaning i.e. interpretation of the bare math-
ematical model in terms of physical concepts. Consider a physical theory whose semantics contains
a description of space and time (like general relativity) and its syntax uses the arithmetical continuum
to mathematically describe the thing which corresponds to the space-time continuum at the semanti-
cal level of the theory (like general relativity). Then we may ask whether or not the uncertainty or
fuzziness at the syntactical level of the physical theory (introduced by the utilization of the arithmetical
continuum) shows up at the semantical level of the physical theory as well? To answer this for a given
physical theory, we have to search among its physical concepts which describe uncertainty, fuzziness,
or disorder at the semantical level and check their counterparts at the syntactical level. Of course the
basic physical concept of this kind is the entropy.

Therefore, in this context, one can be concerned whether or not entropy within classical general
relativity, appearing in its semantics in the form of black hole entropy [2, 10], simply comes from its
syntax i.e. has a pure mathematical origin only (hence probably not corresponding to any “objective”
thing in the world)? This suspicion is also supported in some extent by the several controversial (geo-
metrical, thermodynamical, quantum and information theoretic, etc.) properties of the one and the same
black hole entropy. Our analysis of the black hole entropy formula in general relativity culminating in
its formal factorization (5) into the product of a metric term and a pure set-theoretic term points at least
in part towards a set-theoretic origin. That is, even if the metric term in (5) indeed corresponds to the
“physical part” of black hole entropy, the next term could be a “pure mathematical” or more precisely
a “pure set-theoretic” contribution only. This could be an example of how certain physical statements
within the physical theory of general relativity are “contaminated” by the underlying mathematical
model akin to the situation in quantum field theory [1].

However if one prefers one can read (5) in two extreme ways as well, going into exactly the opposite
directions as follows. The first is that black hole entropy is of pure mathematical origin without any
physical content hence e.g. the long-sought as well as quite problematic physical degrees of freedom
responsible for black hole entropy (far from being complete cf. e.g. [17]) would in fact be not physical
at all but would simply coincide with the purely “mathematical degrees of freedom” of the point con-
stituents of the arithmetical continuum used to formulate general relativity mathematically. We have
to acknowledge that as long as the physical origin of black hole entropy is not confirmed by the ex-
perimental discovery of e.g. black hole radiation [11, 18] or other thermal phenomena, this possibility
cannot be a priori refuted. The second extreme reading is that black hole entropy is of pure physical
origin without any mathematical content which arises if one rather wishes to accept the physical origin
of black hole entropy (and e.g. looks forward its experimental discovery). Then (5) can be interpreted
as an argument for the “physical origin” of what we have called the inherent fuzziness or uncertainty
within the set of real numbers. This interpretation then could explain the expected independence of the
set-theoretic entropy (2) of any axiomatic system S which is in accordance with the universal character
of Theorem 2.1.

Finally, in the realm of the latter extreme interpretation, for future investigation we record here
another consequence of the entropy formulas (2) and (4), too. Let M be a differentiable 4-manifold with
H2(M;Z)free ∼= Z and equipped with a metric g. Suppose Σ ⊂ M is a homologically non-trivial closed
minimal surface (mathematical equivalent of the apparent horizon of a single black hole). Consider the
hypothetical measure ΓS on the group Bij(X) of all set-theoretic bijections of M as a set X . Although
we expect ΓS(Bij(X)) = +∞ to hold, by the aid of (5) the measure of the subgroup Diff(M) ⫋ Bij(X)
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of diffeomorphisms formally looks like

ΓS(Diff(M)) = e
Areag(Σ)

ConstS Constg <+∞

where 0 < ConstS < +∞ is the constant depending on the axiomatic system S used to define ΓS while
0 < Constg <+∞ is the constant depending only on the metric.
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version of the manuscript.
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