ON THE GAPS OF PRODUCTS OF MEMBERS OF A SEQUENCE WITH POSITIVE DENSITY

CSABA SÁNDOR

1. Introduction

Throughout this paper we use the following notations: let \mathbb{N} be the set of positive integers. The cardinality of a finite set S is denoted by $|S|$. If \mathcal{A} is a subset of \mathbb{N} then the counting function is $A(n)=\mathcal{A} \cap\{1,2, \ldots, n\}$. We call $\bar{d}(\mathcal{A})=\lim \sup _{n \rightarrow \infty} \frac{A(n)}{n}$ and $\underline{d}(\mathcal{A})=\liminf _{n \rightarrow \infty} \frac{A(n)}{n}$ the upper asymptotic density and lower asymptotic density of \mathcal{A}. For a given positive integer l and $\mathcal{A} \subset \mathbb{N}$, where $\mathcal{A}=a_{1}, a_{2}, \ldots$ with $a_{1}<a_{2}<\ldots$ denote by $\mathcal{A}+l$ the set of $\left\{a_{1}+l, a_{2}+l, \ldots\right\}$ and by $\mathcal{A}_{\geq c}$ the set of $\left\{n: a_{n+1}-a_{n} \geq c\right\}$. The subsets $\mathcal{A}_{=c}$ and $\mathcal{A}_{<c}$ is defined similarly.

Let \mathcal{A} be a given infinite subset of \mathcal{N} with $\bar{d}(\mathcal{A})=\alpha>0$. Denote the set of products of the form $a_{i_{1}} a_{i_{2}} \ldots a_{i_{k}}$ with $a_{i} \in \mathcal{A}$ by $B_{\mathcal{A}}^{(k)}=b_{1}^{(k)}<b_{2}^{(k)}<\ldots$ A. Sárközy [2] formulated the following problem:

Is it true that for all $\alpha>0$ there is a number $c=c(\alpha)$ depending only on α such that if $\mathcal{A} \subset \mathbb{N}$ is an infinite sequence whose lower asymptotic density $\underline{d}(\mathcal{A})$ is $>\alpha$, then $b_{n+1}^{(2)}-b_{n}^{(2)} \leq c$ holds for nfintely many n ? If the answer is affirmative, does this hold with $(\alpha) \leq \frac{1}{\alpha^{2}}$ (If $k>1$ is a natural number and $a_{n}=n k$, so $\alpha=\frac{1}{k}$, then $b_{n+1}^{(2)}-b_{n}^{(2)}=k^{2}$ for every n so this upper bound would be sharp.)
B. Bérczi [1] proved the existence of $c(\alpha)$ by showing that $c(\alpha) \leq \frac{c_{1}}{\alpha^{4}}$ for some $c_{1}>0$. Improving this estimate we prove in this note that $c(\alpha) \leq \frac{8}{\alpha^{3}}$.
Theorem 1.1. Let \mathcal{A} be a subset of positive integers with $\underline{d}(\mathcal{A})=\alpha>0$. Let us denote the sequence of the numbers of the form $a_{i} a_{j}$ (with $a_{i}, a_{j} \in \mathcal{A}$) by $B_{\mathcal{A}}^{(2)}=b_{1}, b_{2}, \ldots$, where $b_{1}<b_{2} \ldots$. Then for infinitely many n we have $b_{n+1}^{(2)}-b_{n}^{(2)}<\frac{16}{a^{3}}$.
G. Brczi [1] asked the similar question about $B_{\mathcal{A}}^{(k)}$:

Let \mathcal{A} be an infinite sequence of natural numbers with $\underline{d}(\mathcal{A})=\alpha>0$ and $k \geq 2 a$ natural number. It is a natural question what can we say about the distribution of the products $a_{i_{1}} a_{i_{2}} \ldots a_{i_{k}}$ where $a_{i_{j}} \in \mathcal{A}$. Let $B_{\mathcal{A}^{(k)}}$ these products as above. Is it true that there are infinitely many indices n with $b_{n+1}^{(k)}-b_{n}^{(k)}<c(k, \alpha)$ where this constant depends

[^0]only on α, k ? We have seen the case $k=2$ but unfortunately I cannot say anything about the other values of k, but the conjecture is surely true for every k.

In the next theorem we prove this conjecture for small $k \mathrm{~s}$.
Theorem 1.2. For $k=2,3 \ldots, 10,12$ and arbitrary $0<\alpha \leq 1$ there exists a $c(k, \alpha)$ such that for every $\mathcal{A} \subset \mathbb{N}$ with $\underline{d}(\mathcal{A})=\alpha$ we have $b_{n+1}^{(k)}-b_{n}^{(k)}<c(k, \alpha)$ for infinitely many indices n.

2. Proofs

The proof of Theorem 1.1 is based on the following lemma.
Lemma 2.1. For every $0<\beta \leq 1$ and subset $S \subset \mathbb{N}$ with $\bar{d}(\mathcal{S})=\beta$ there exists an integer $0<l<\frac{2}{\beta}$ such that $\bar{d}\left(\mathcal{S} \cap(\mathcal{S}+l) \geq \frac{\beta^{2}}{4}\right.$.

Proof. The definition of $\bar{d}(\mathcal{S})=\beta$ implies that there is an infinite sequence $x_{n}\left(x_{n} \rightarrow \infty\right)$ such that $A\left(x_{n}\right)=(\beta+o(1)) x_{n}$. It is not difficult to see that

$$
\left(S_{\geq \frac{2}{\beta}}\left(x_{n}\right)-1\right) \frac{2}{\beta} \leq x_{n}
$$

The right-hand side can be written as

$$
\left.S\left(x_{n}\right)-S_{<\frac{2}{\beta}}\left(x_{n}\right)-1\right) \frac{2}{\beta}=\left((\beta+o(1)) x_{n}-S_{<\frac{2}{\beta}}\left(x_{n}\right)\right) \frac{2}{\beta}=(2+o(1)) x_{n}-S_{<\frac{2}{\beta}}\left(x_{n}\right),
$$

therefore

$$
(2+o(1)) x_{n}-S_{<\frac{2}{\beta}}\left(x_{n}\right) \leq x_{n},
$$

which implies

$$
S_{<\frac{2}{\beta}}\left(x_{n}\right) \geq\left(\frac{\beta}{2}+o(1)\right) x_{n}
$$

Hence $\bar{d}\left(S_{<\frac{2}{\beta}}\right) \geq \frac{\beta}{2}$. Clearly $S_{<\frac{2}{\beta}}=\cup_{1 \leq<\frac{2}{\beta}} S_{=l}$. Hence the statement follows from the inequalities $\frac{\beta}{2} \leq \bar{d}\left(S_{<\frac{2}{\beta}}\right) \leq \sum_{1 \leq l<\frac{2}{\beta}} \bar{d}\left(S_{=l}\right)$.

Proof of 2.1. By the previous lemma we have a $0<l<\frac{2}{\alpha}$ such that $\underline{d}\left(\mathcal{A} \cap(\mathcal{A}+l) \geq \frac{4}{\alpha^{2}}\right.$ Picking up this l and denote by $\mathcal{C}=\mathcal{A} \cap(\mathcal{A}+l)$ we have $\bar{d}(C) \geq \alpha^{2} 4$. Using again the above lemma we get that there exist a $0<m<\frac{8}{\alpha^{2}} \underline{d}\left(\mathcal{C} \cap(\mathcal{C}+m) \geq \frac{\alpha^{4}}{64}\right.$. This means that for these l, m we have $\bar{d}(\mathcal{A} \cap(\mathcal{A}+l) \cap(\mathcal{A}+m) \cap(\mathcal{A}+m+l)) \geq \frac{\alpha^{4}}{64}$. The proof follows from the inequalities $0<(a+l)(a+m)-(a+l+m) a=l m<\frac{16}{a^{3}}$.

Proof of Theorem 1.1. One of the classical diophantine problems is to find integers $e_{1}, e_{2}, \ldots, e_{k}$ and $f_{1}, f_{2}, \ldots, f_{k}$ satisfying

$$
\begin{equation*}
\sum_{i=1}^{k} e_{i}^{s}=\sum_{i=1}^{k} f_{i}^{s} \quad \text { for } s=1,2, \ldots k-1 \tag{1}
\end{equation*}
$$

(Prouhet-Tarry-Escott problem). We know that for $k=2,3, \ldots 10,12$ there exist nontrivial solution of this problem, for instance:

$$
\begin{aligned}
& k=2:\{0,2\},\{1,1\} \\
& k=3:\{1,2,6\},\{0,4,5\} \\
& k=4:\{0,4,7,11\},\{1,2,9,10\} \\
& k=5:\{1,2,10,14,18\},\{0,4,8,16,17\} \\
& k=6:\{0,4,9,17,22,26\},\{1,2,12,14,24,25\} \\
& k=7:\{-51,-33--24,7,13,38,50\},\{-50,-38,-13,-7,24,33,51\} \\
& k=8:\{0,4,9,23,27,41,46,50\},\{1,2,11,20,30,39,48,49\} \\
& k=9:\{1,25,31,84,87,134,158,182,198\},\{2,18,42,66,113,116,169,175,199\} \\
& k=10:\{-313,-301,-188,-100,-99,99,100,188,301,313\} \\
&\{-308,-307,-180,-131,-71,71,131,180,307,308\} \\
& k=12:\{0,11,24,65,90,129,173,212,237,278,291,302\}, \\
&\{3,5,30,57,104,116,186,198,245,272,297,299\} .
\end{aligned}
$$

One can easily to see that (1) is equivalent that
$\left(x+e_{1}\right)\left(x+e_{2}\right) \ldots\left(x+e_{k}\right)-\left(x+f_{1}\right)\left(x+f_{2}\right) \ldots\left(x+f_{k}\right)=e_{1} e_{2} \ldots e_{k}-f_{1} f_{2} \ldots f_{k}=g_{k}$.
Let $m_{k}=\min \left\{e_{1}, e_{2}, \ldots, e_{k}, f_{1}, f_{2}, \ldots f_{k}\right\}$ and $M_{k}=\max \left\{e_{1}, e_{2}, \ldots, e_{k}, f_{1}, f_{2}, \ldots f_{k}\right\}$. Szemerédi's theorem [3] implies that for every $0<\alpha \leq 1$ and positive integer N there exist positive constants $c_{2}(\alpha, N)$ such that for every subset $S \subset \mathbb{N}$ with $\bar{d}(S)=\alpha$ there exists a positive difference d such that $d \leq c_{2}(\alpha, N)$ and there exists infinitely many $s \in \mathcal{S}$ such that $\{s, s+d, s+2 d, \ldots, s+N d\} \subset \mathcal{S}$. Hence we get that there exists infinitely many $a \in \mathcal{A}$ and $0<d \leq c_{2}\left(M_{k}-m_{k}, \alpha\right)$ such that $\left\{a+m_{k} d, a+\left(m_{k}+1\right) d, \ldots, a+\left(M_{k}\right) d\right\} \in \mathcal{A}$. Then $a+e_{i} d, a+f_{i} d \in \mathcal{A}$ for $1 \leq i \leq k$ and

$$
\left(a+e_{1} d\right)\left(a+e_{2} d\right) \ldots\left(a+e_{k} d\right)-\left(a+f_{1} d\right)\left(a+f_{2} d\right) \ldots\left(a+f_{k} d\right)=g_{k} d^{k}
$$

Therefore $g_{k} c_{2}\left(M_{k}-m_{k}, \alpha\right)^{k}$ is suitable for $c(k, \alpha)$.

References

[1] G. BÉRCZI, On the distribution of products of members of a sequence with positive density. Period. Math. Hungar. 44 (2002), no. 2, 137-145.
[2] A. SÁrkÖzy, Unsolved problems in number theory. Period. Math. Hungar. 42 (2001), no. 1-2, 17-35.
[3] E. Szemerédi,textitOn sets of integers containing no k elements in arithmetic progression. Acta Arithmetica 27 (1975), 299-345.

Csaba SÁndor, Department of Stochastics, Budapest University of Technology and Economics, Egry J. u. 1, 1111 Budapest, Hungary

E-mail address: csandor@math.bme.hu

[^0]: Supported by Hungarian National Foundation for Scientific Research, Grant No. T 049693 and 61908.

