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Abstract

In this note we determine a threshold function for B, and additive basis properties in Z,.

1 Introduction

Throughout this paper we use the following notations: let Z denote the integers 0,+1,+2,.... Let N
be the set of positive integers. We denote by Z, the additive cyclic group of order n. Members of a
set S are referred to as {s1,s2,...}. The cardinality of a finite set S is denoted by |S|. A multiset
a=1{q,-..,qk}m can be formally defined as a pair (@, m), where @ is the set of distinct elements of g
and m : @ — N, where m(q) is the multiplicity of ¢ € q for each ¢ € ). The number of distinct elements
of q is denoted by |q|4. The usual set operations such as union, intersection and Cartesian product can
be easily generalized for multisets. In this paper we use the intersection: suppose that (A, m) and (B,n)

are multisets, then the intersection can be defined as (A N B, f), where f(x) = min{m(z),n(z)}.

For a given S C Z, and = € Z, denote by rg(z) the number of different representations x =
s$1+ -+ s, with s; € S, that is

ren(r) ={{s1,....sntm 514+ +sp =1z, s €85}

A set S C Z, is called By, set if the number of distinct representation of = as s; + -+ + s, s; € S is at
most 1, that is rg p(x) <1 for all x € Z,,. A set S C Z,, is called additive h-basis if every element in Z,,
can be represented as the sum of not necessarily distinct h elements of the set S, that is rg,(x) > 1 for

every x € Zy,.

Let n be a positive integer, 0 < p,, < 1. The random subset S(n,p,) is a probabilistic space over
the set of subsets of Z, determined by Pr(k € S,) = p, for every k € Z,, with these events being
mutually independent. This model is often used for proving the existence of certain sequences. Given
any combinatorial number theoretic property P, there is a probability that S(n,p,) satisfies P, which
we write Pr{S(n,p,} | P). The function r(n) is called a threshold function for a combinatorial number

theoretic property P if

(i) When py, = o(r(n)), limy o0 P{S(n, py) = P} = 0,
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(ii) When r(n) = o(p(n)), lim,—co Pr{S(n,p,) E P} =1,
or visa versa.

The goal of this paper is to determine a threshold function for By, sets and additive h-bases in Z,.

Theorem 1.1. Let ¢ > 0 be arbitrary. Let us suppose that p, = T? and the random set A,, C Zy, is
2h
defined the following way: for every k € Z, we have Pr(k € A ) Dn. Then

7c2h

lim Pr{A, is a By set} = e2(:H?,

n—oo

(h‘nlogn)l/h(lJr hlsgn )

Theorem 1.2. Let ¢ be an arbitrary real number. Let us suppose that p, = and the
random set A, C Z, is defined the following way: for every k € Z,, we have Pr{k € A } =pn. Then

—c

lim Pr(A, is an additive h-basis) = e ¢

n—oo

2. Proofs

In order to prove the theorems we need two lemmas from probability theory (see e.g. [1] p. 41, 95-98.).
In many instances, we would like to bound the probability that none of the bad events B;, i € I, occur.
If the events are mutually independent, then Pr(NierB;) = [[;c; Pr(B;). When the B; are "mostly”
independent, the Janson’s inequality allows us, sometimes, to say that these two quantities are "nearly”
equal. Let  be a finite universal set and R be a random subset of ) given by Pr(r € R) = p,, these
events being mutually independent over r € Q). Let E;, i € I be subsets of €2, where I a finite index set.
Let B; be the event E; C R. Let X; be the indicator random variable for B; and X = Ziel X; be the
number of E;s contained in R. The event N;c;B; and X = 0 are then identical. For 1,7 € I, we write
i~jifi#jand E;NE; #0. We define A =37, Pr(B; N Bj), here the sum is over ordered pairs.
We set M = [[,c; Pr(B;).

Lemma 1.3 (Janson’s inequality). Let B;,i € I,A, M be as above and assume that Pr(B;) < e for all
1. Then

1A
2

M < Pr(NierB;) < MeT—=

The more traditional approach to the Poisson paradigm is called Brun’s sieve, for its use by the
number theorist T. Brun. Let Fi,...,F,, be events, X; the indicator random variable for F;, and
X = X1 + -+ X,,, the number of B; that hold. Let there be a hidden parameter n (so that actually
m =m(n), B; = BZ-(n), X = X () which will define our O notations. Define

S =>"Pr{B;, A---AB;,},
the sum over all sets {iy,...,i.} C {1,...,m}. The inclusion-exclusion principle gives that

Pr{X=0}=Pr{BiA---ABp}t=1-8M 483 _...4 (—1)r§" ...



Lemma 1.4. Suppose there is a constant u so that
E(X)=8W =y

and such that for every fixed r,
x ) ur
= (T) —

Then

and indeed for every t

In order to prove the theorems we need two lemmas. In the sequel, for the sake of brevity, we write
u={uy,...,uptm and v ={v1,...,0p}sm with u# v. For every a € Z,, and h,t e N, 0 <t < h let

h
Sant=|{u: w€Zn > ui=a, [ulg=1t}
i=1

and for every ai,as € Z,, and h,t,s,k € N with 0 < k < min{s,t} let

h h
Ca17a27h,t75,7€ = |{{u7V} : Zul = ay, Z'Ui = @2, |u|d =3, |V|d =1, |U-m V|d = k}l
=1 =1

Lemma 1.5. For every a € Z,, and h > 2 we have

1. Sa,h,h = % + Oh(nhfz);

2. Sant=0p(n"1) for1<t<h-1.
Proof. Case (1): By the definition of S, 5.5

h
RUSann = {(u1,...;un) s w; € Zy, Zui:a, and w; #u; for i#j} (1)
i=1

An upper bound for (1) is n(n —1)...(n — h + 2) and a lower bound is n(n —1)...(n — h + 3)(n —
(h—2) — (h—2) — 2) because we have n(n — 1)...(n — (h — 3)) possibilities for uq,...,up—o2 and the
conditions up_1 # u;, up # u; for 1 <i < h—2 and up_1 # up exclude at most h —2 4+ h — 2 4 2 choices

for up_1.

Case (2): The condition |ulg = ¢ implies that there is a partition {1,...,h} = U!_; A; such that
u; = uy; iff 1 < 4,7 < h are in the same A;. Fix such a partition. Then there are n choices for the
elements u;,7 € Az, then (n — 1) possibilities for the elements u;,i € A etc. and finally (n — (¢ — 2))
choices for the elements u;,i € A;_1. It follows from this that if we have already chosen the elements
Ui, 1 € UE;%AZ- then we have at most ¢t < h possibilities for the elements u;, 7 € A;. In order to finish the

proof we mention that the number of suitable partitions is Op(1). O



Lemma 1.6. For every ai,as € Zy, and h > 2 we have

2h—2
2h— .
1. Cayaz,hhho = {rryzg + On(n72);

2. Colanhit,s ke = On(nt+*=F=2) fort > s andt > k > 0;

3. Cayanihsss = On(n®=2) for every 2 < s < h.

Proof. Case (1): By the definition of Co, 45,5550

2(M)2Clay an hhh0 =

h h
|{((u1,...,uh),(vl,...,vh)) DU F Uy, F VU ;évj,Zuizal,ZUi =as}| (2)

i=1 i=1
An upper bound for (2) is n"~In"~! and a lower bound for (2) is n(n —1)...(n — (h — 3))(n — (h —
2) — (h—2) = 2)(n—h)n—(h+1))...(n—h— (h—3))(n — (2h — 2) — (2h — 2) — 2), because we

have n(n —1)...(n — (h — 3)) choices for uq,...,up—o2. After choosing ui,...,u,_o there are at least
n— (h—2) — (h—2) — 2 possibilities left for uj_1 because up—1 # u; and up # uj for 1 < j < h—2 and
Up—1 7 up. After fixing uq,...,up we have (n —h)...(n— (2h —2)) choices for vy, ...,v,—2. Finally, we

have at least n — 2h — (2h — 4) — 2 choices for v,_1 because vy_1 # uj, v, # uj, for 1 < j < h, vp_1 # vy,
vp #vj for 1 <j<h—2andv,_1 # vp.

Case (2): Obviously,

Cay,as,hit,sk <
h

h
{((urs - oun), (01, vm) 0 Y i = a1, Y vi = ag, [ulg =t,[v]a = s, [unv|s = k}|.
i=1 i=1
By the conditions |u|g = s, |v|q = t there are partitions {1,...,h} = U!_; A; = U{_, B; such that u; = u;
iff there exists an 1 < [ < ¢ such that 4,5 € A;, and v; = v; iff there exists an 1 < I < s such that
i,j € B;. We have at most hn*~! choices for (v1,...,vy) with Z?:l v; = az. The condition [uNvl|; =k
implies that there are injections x, : {1,...,k} = {1,...,t} and x, : {1,...,k} — {1,..., s} such that
u; = v; iff there exists a 1 <1 < k such that u; € A, ) and v; € B, (). Hence we get that there are
at most hn'~*! choices for the v;s, i € {1,...,h} \ Ui B, (;). Since the numbers of partitions and

injections are Oy, (1), the proof is completed.

Case (3): Evidently,

Car,az,hys,s5 <

h h
H (w1, un), (v1,...,00)) Zul = al,Zvi =ag,u# v,|ulqg =s,|v]g = s, lunv|s = s}.

i=1 i=1

By the conditions |u|q = s, |[v|q = s there are partitions {1,...,h} = U]_; A; = UJ_; B; such that u; = u;
iff there exists an 1 < [ < s such that i,j € A; and v; = v; iff there exists an 1 < m < s such that
i,j € By,. The condition |[uNv|g = k implies that there is a bijection x : {1,...,s} — {1,...,s} such
that u; = v; iff there exists a 1 <1 < s such that i € A; and j € B, (). Since u # v, therefore there



exists a 1 <1 < s such that |4;| # |B,)|- Fix such an . Then there exists a 1 < k < s such that

[Ag| | A
[ By (k) | 7 [Bxyl?

because otherwise |Ax| = |B, || 4 ll  for every 1 <k <'s, but

| & |Al|
g B = h
| | X(k)| |B ’

) &= x|

s |Al
h=2 A=
Pt | By

which is a contradiction. Fix such a k. Let {i1,...,is—2} ={1,...,s} \ {k,I}. We have n(n—1).. ( -
(s — 3)) choices for the elements w;, i € Uj_ 2A After ﬁxmg the elements u;, i € Ui TA;,
Zj;f EmeAij Um = U and ijl ZmeBX(ij) Upp = V. Then we need z,y € Z, such that U + |Ak|x +
|Aily = a1 and V + | By iy |x + | By@yly = az. Hence

(Al Byey| = 1Al By )y = a1|Byyl + VI Ax| = U|Byiy | — az|Ax|. (3)

After fixing 1 < k,I < s and the elements u; i € Uj_ 2AZ , the elements U and V are determined,
therefore the right-hand side in (3) is unique. Since 0 < [|A||Byy| — |Ak|| By || < h?, therefore the
number of possible ys is at most h? and after fixing y we have at most h choices for 2. Finally we

mention that we have got Oy (1) choices for the partitions and bijection. O

Proof of Theorem 1. For each unordered, different uq,...,un € Z, and vy, ...,v, € Z, with Z?:l u; =
E?:l v;. Let By be the event that wi,...,up,v1,...,v, € A,. In the following we suppose that
E?:l u; = Z?:l vi. If we could prove A = 3", o1 juav) >0 PT{Buv} = o(1), then by Janson-inequality

we have

Pr{dy is By set} = (1+0(1)) J] Pr{Buv} = (1+0(1))( II Pr{Buu})

{u,v} {u,v}:|ula=h,|v|a=h,|unv|4=0
h—1 -
L Il Priduh)-(1 I1 Pr{(Bun))
k=1{u,v}:lulg=h;|v]a=h,[unv]a=k 5=2 {u,v}:|u|g=s,|v]s=s,|unv|s=s

h—1s—1

(H H H Pr{Bu v} H H H H Pr{Bu,v}) _

s=1 k=0 {u,v}:lula=s,|vla=s,lunv]a=k s=1t=s+1k=0 {u,v}:[ulg=s,|v]s=t,Junv|qs=Fk

Py Py P3Py P,
where by Lemma 1.6.1
A wlig o, (1Y)
Pl = H H Pr{Bu,v} = (1 — th_l ) 2(h1)2 _
a€Zn {u,v}:|ulg=h,|v|a=h,lunv[4=0,""_ w;=3"  v;=a
_ 2
(1 -+ 0(1))@ 2(h)?
by Lemma 1.6.2
h—1 -
= H H H Pr{Bu,v} = H(l _p?lh—k;)oh(,n?h—kfl) _
a€Zn k=1 {u,v}:|ulg=h,|v|a=h,lunv|s=k,3 " u;=3"  vi=a Pt

1:[ () Ou(E) — o),



by Lemma 1.6.3

h—1 h—1 .
= 1111 II Pr{Buy} = [J0-pp)2 " =
a€ln $=2 fu,v}:|ulg=s,|v|a=s,lunv]s=s,3"  w;=>"_ vi=a 5=2

(=pam)*On(%) _ o))

F:

k=1
by Lemma 1.6.3

h—1s—1

=TT 1 Pe{Buy) -

a€Zy 5=1 k=0 {uv}:|ula=s,[v|¢=s,[unv]e=k,S1_, u;=5"_, vi=a

h s—1 h s—1

H H 25 k Oh(n25 koly H H —(pan)2F O, (1) _ 60(1),

s=1k=0 s=1k=0
and by Lemma 1.6.2

P=TITTIT T i Pr(Bas) =

A€y s=1t=s+1k=0 {u,v}:[ulg=s,|v]a=t,[unv]e=k, ", u;=3"", vi=a

h—1 h s
H H H s+t k O(ns+t k= 1) _ (1),

therefore it remains to prove that A = o(1). In order to prove A = o(1) we partition A as

A= > Pr{Buy}=

{u,v}:lunv|s>0

T
L

s—1

h
Pr{Buv}+ ) > Pr{By }+

1 {u,v}:|ulg=s,|v]a=s,|unv]s=s s=2 k=1 {u,v}:|ulqg=s,|v|a=s,|unv|qs=k

hi Zh: Z 3 Pr{Bu,v}:zl:ng};.

s=1t=s+1 k=0 {u,v},|ulqa=s,|v]a=t,|unv]s=k

HM

By Lemma 1.6.3

h—1

Z Z Z Z Pr{Bu~} = Z Oh(ns_l)pfl =

a€ln s=1 fu,v}:|u|g=s,|v[qa=s,lunv]s=s,>"  u;=>"_ vi=a

1 h—1
Oh(ﬁ (pnn)?®) = o(1),
s=2
by Lemma 1.6.2
h s—1 h s—1
2=22 > Pr{Bavk =3 > On(n®*HpiF =
a€Ln 5=2 k=1 {u,v}:[ulg=s,|v]a=s,junv]s=k, 5", =31, vi=a s=2 k=1
1 h s—1
(52 2 (pam)™ ™) = o(1),
n
s=2 k=1



and by Lemma 1.6.2

2= Sy > D Pr{Buy) =

a€lp s=1t=s+1 k=0 {u,v},|ulg=s,|v]a=t,|unv]e=k,3 7 wi=3]_; vi=a

h—1 h s 1 h—1 h s
Z Oh(ntJrsfkfl)p;Jrs k Oh(E Z (pnn)tJrsfk) — 0(1)7
s=1t=s+1k=1 s=1t=s+1k=1
which completes the proof. o

Proof of Theorem 2. For a fixed z € Z,, and y1,...,yn € Z, with E? \Yi=2 let v={y1...,yn} and

let By, be the event y1,...,yn € Ay,. For a fixed z € Zy, let Cp =Ny 5 By .. Obviously,

i=1Yi=%

Pr{A, is an h-basis} = Pr(N,ez,Cy).

By Lemma 1.4 it is sufficient to show that for every fixed positive integer r we have

—Trc

e
> Pr{C;, N---NCy} — —
{&1.0,@0 }: 2 €L i £ "
In order to estimate
Z Pr{cxl n---N C:E'r} = Z Pr{mlgiSTﬂ my:Z?:1 Yj=T; Fyymi}

{z1..,xr} 121 €E2Zp ,xiF T {z1..., 20} €L,z F

we use Janson’s inequality. Obviously, Pr{By ,,} = o(1). If we could prove A = o(1), then by Lemmas
1.3, 1.5 and the definition of p,,

Z Pr{mlSiSTﬂ r-]y:Z;.‘:l Yj=x; y T } - 1 + 0 H H Pr{Eyyri} =

{z1...,2,} 12 €2y i F i=1y: ZJZI Y=,

T

— k—1 nh— 1
(1+o(1 H H II (1-pj) = (1+o(1 H (1—pk)© N((1—pk)™m @Y =
i=1k=1y:y1+-+ypn=xi|ula=k =1 k=1
Z — ES k _ ()" h 1 1
(1 + (0(1))) H((e Oh(n)zlgkghfﬂpnn) )(6 2 (1+Oh,(20n))(n+oh(n2 ))) —
i=1
h!nlogn(l#»log%)(l#»Oh,c(Fng—n)) L e—cr
(I+o(1))(e™" 2 7) =1 +o(1))—-,
therefore
n\e e °r
RN SCHURTeA BRI () BRI ehEs
{21, }, i €ELpaiFT; !
Let u={uy...,up} with ug +--- +up =2; and v = {vy,..., v} with vy + -+ + v, = z;. In order to

finish the proof we separate A as

h—1
A=Y 3 Pr{Bus, N Bys} = > Y. > Pt

1<4,5<r {u,z; },{v,z; }:|lunv|z>0 1<i,j<r s=2 {u,x;},{v,z; }:[ulg=s,|v]a=s,|unv]s=s



Sy 3 —

1<4,j<r s=2 k=1 {u,z;},{v,z; }:|ula=s,|v]a=s,|unv|s=k

s+t k Z+Z+Z,
1 2 3

1<i,j<r s=1lt=s+1k=1{u,z;},{v,z;}:[ula=s,|v|a=t,[un{v1...,vr }|a=Fk

S

where by Lemma 1.6.3

h—1 h—1
_ 1 s
Z <r? prth(nS %) = Oh,r(ﬁ Z(pnn) ) =o(1),
1 s=2 s=2
by lemma 1.6.2
h s—1 1 h s—1
Z <2 Z P2 RO, (n25h2) = Oh’r(ﬁ Z (pan)2%) = o(1),
2 s=2 k=1 s=2 k=1
and by lemma 1.6.2
1 h—1 h s
2 = Z Z S Btk () = Onr(=3 D D2 Y pan) ™) = 0(1)
s=1t=s+1k=1 s=1t=s+1k=1
which completes the proof. o
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