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Non-degenerate Hilbert Cubes in Random Sets

par Csaba Sándor

Résumé. Une légère modification de la démonstration du lemme des cubes de Szemerédi
donne le résultat plus précis suivant: si une partie S de {1, . . . , n} vérifie |S| ≥ n

2 , alors S
contient un cube de Hilbert non dégénéré de dimension blog2 log2 n−3c. Dans cet article
nous montrons que dans un ensemble aléatoire avec les probabilités Pr{s ∈ S} = 1/2
indépendantes pour 1 ≤ s ≤ n, la plus grande dimension d’un cube de Hilbert non
dégénéré est proche de log2 log2 n+log2 log2 log2 n presque sûrement et nous déterminons
la fonction seuil pour avoir un k-cube non dégénéré.

Abstract. A slight modification of the proof of Szemerédi’s cube lemma gives that if
a set S ⊂ [1, n] satisfies |S| ≥ n

2 , then S must contain a non-degenerate Hilbert cube of
dimension blog2 log2 n− 3c. In this paper we prove that in a random set S determined
by Pr{s ∈ S} = 1

2 for 1 ≤ s ≤ n, the maximal dimension of non-degenerate Hilbert
cubes is a.e. nearly log2 log2 n + log2 log2 log2 n and determine the threshold function
for a non-degenerate k-cube.

1. Introduction

Throughout this paper we use the following notations: let [1, n] denote the first n positive
integers. The coordinates of the vector A(k ,n) = (a0, a1, . . . , ak) are selected from the positive
integers such that

∑k
i=0 ai ≤ n. The vectors B(k ,n), A(k ,n)

i are interpreted similarly. The set
Sn is a subset of [1, n]. The notations f(n) = o(g(n)) means limn→∞

f(n)
g(n) = 0. An arithmetic

progression of length k is denoted by APk. The rank of a matrix A over the field F is denoted
by rF(A). Let R denote the set of real numbers and F2 for the finite field of order 2.

Let n be a positive integer, 0 ≤ pn ≤ 1. The random set S(n, pn) is the random variable
taking its values in the set of subsets of [1, n] with the law determined by the independence
of the events {k ∈ S(n, pn)}, 1 ≤ k ≤ n with the probability Pr{k ∈ S(n, pn)} = pn. This
model is often used for proving the existence of certain sequences. Given any combinatorial
number theoretic property P , there is a probability that S(n, pn) satisfies P , which we write
Pr{S(n, pn) |= P}. The function r(n) is called a threshold function for a combinatorial number
theoretic property P if

(i) When pn = o(r(n)), limn→∞ Pr{S(n, pn) |= P} = 0,
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(ii) When r(n) = o(p(n)), limn→∞ Pr{S(n, pn) |= P} = 1,

or visa versa. It is clear that threshold functions are not unique. However, threshold functions
are unique within factors m(n), 0 < lim infn→∞m(n) ≤ lim supn→∞m(n) < ∞, that is if pn is
a threshold function for P then p′n is also a threshold function iff pn = O(p′n) and p′n = O(pn).
In this sense we can speak of the threshold function of a property.

We call H ⊂ [1, n] a Hilbert cube of dimension k or, simply, a k-cube if there is a vector
A(k ,n) such that

H = HA(k,n) = {a0 +
k∑

i=1

εiai : εi ∈ {0, 1}}.

The positive integers a1, . . . , ak are called the generating elements of the Hilbert cube. The
k-cube is non-degenerate if |H| = 2k i.e. the vertices of the cube are distinct, otherwise it is
called degenerate. The maximal dimension of a non-degenerate Hilbert cube in Sn is denoted
by Hmax(Sn), i.e. Hmax(Sn) is the largest integer l such that there exists a vector A(l,n) for
which the non-degenerate Hilbert cube HA(l,n) ⊂ Sn.

Hilbert originally proved that if the positive integers are colored with finitely many colors
then one color class contains a k-cube. The density version of theorem was proved by Szemerédi
and has since become known as ”Szemerédi’s cube lemma”. The best known result is due to
Gunderson and Rödl (see [3]):

Theorem 1.1 (Szemerédi). For every d ≥ 3 there exists n0 ≤ (2d − 2/ ln 2)2 so that, for every
n ≥ n0, if A ⊂ [1, n] satisfies |A| ≥ 2n

1− 1

2d−1 , then A contains a d-cube.

A direct consequence is the following:

Corollary 1.2. Every subset Sn such that |Sn| ≥ n
2 contains a blog2 log2 nc-cube.

A slight modification of the proof gives that the above set Sn must contain a non-degenerate
blog2 log2 n− 3c-cube.

Obviously, a sequence S has the Sidon property (that is the sums si + sj , si ≤ sj , si, sj ∈ S
are distinct) iff S contains no 2-cube. Godbole, Janson, Locantore and Rapoport studied the
threshold function for the Sidon property and gave the exact probability distribution in 1999
(see [2]):

Theorem 1.3 (Godbole, Janson, Locantore and Rapoport). Let c > 0 be arbitrary. Let P

denote the Sidon property. Then with pn = cn−3/4,

lim
n→∞Pr{S(n, pn) |= P} = e−

c4

12 .

Clearly, a subset H ⊂ [1, n] is a degenerate 2-cube iff it is an AP3. Moreover, an easy
argument gives that the threshold function for the event ”AP3-free” is pn = n−2/3. Hence

Corollary 1.4. Let c > 0 be arbitrary. Then with pn = cn−3/4,

lim
n→∞Pr{S(n, pn) contains no non-degenerate 2-cube} = e−

c4

12 .
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In Theorem 1.5 we extend the previous Corollary.

Theorem 1.5. For any real number c > 0 and any integer k ≥ 2, if pn = cn
− k+1

2k then

lim
n→∞Pr{S(n, pn) contains no non-degenerate k-cube} = e

− c2
k

(k+1)!k! .

In the following we shall find bounds on the maximal dimension of non-degenerate Hilbert
cubes in the random subset S(n, 1

2). Let

Dn(ε) = blog2 log2 n + log2 log2 log2 n +
(1− ε) log2 log2 log2 n

log 2 log2 log2 n
c

and

En(ε) = blog2 log2 n + log2 log2 log2 n +
(1 + ε) log2 log2 log2 n

log 2 log2 log2 n
c.

The next theorem implies that for almost all n, Hmax(S(n, 1
2)) concentrates on a single value

because for every ε > 0, Dn(ε) = En(ε) except for a sequence of zero density.

Theorem 1.6. For every ε > 0

lim
n→∞Pr{Dn(ε) ≤ Hmax(S(n,

1
2
)) ≤ En(ε)} = 1.

2. Proofs

In order to prove the theorems we need some lemmas.

Lemma 2.1. For kn = o( log n
log log n) the number of non-degenerate kn-cubes in [1, n] is (1 +

o(1))
(

n
kn+1

)
1

kn! , as n →∞.

Proof. All vectors A(kn ,n) are in 1-1 correspondence with all vectors (v0, v1, . . . , vkn) with
1 ≤ v1 < v2 < · · · < vkn ≤ n in Rkn+1 according to the formulas (a0, a1, . . . , akn) 7→
(v0, v1, . . . , vkn) = (a0, a0+a1, . . . , a0+a1+ · · ·+akn); and (v0, v1, . . . , vkn) 7→ (a0, a1, . . . , akn) =
(v0, v1 − v0, . . . , vkn − vkn−1). Consequently,

(
n

kn + 1

)
= |{A(kn ,n) : HA(kn ,n) is non-degenerate}|+ |{A(kn ,n) : HA(kn ,n) is degenerate}|.

By the definition of a non-degenerate cube we have

|{A(kn ,n) : HA(kn ,n) is non-degenerate}| = kn!|{non-degenerate kn-cubes in [1, n]}|,
because permutations of a1, . . . , ak give the same kn-cube. It remains to verify that the number
of vectors A(kn ,n) which generate degenerate kn-cubes is o(

(
n

kn+1

)
). Let A(kn ,n) be a vector for

which HA(kn ,n) is a degenerate kn-cube. Then there exist integers 1 ≤ u1 < u2 < . . . < us ≤ kn,
1 ≤ v1 < v2 < . . . < vt ≤ kn such that

a0 + au1 + . . . + aus = a0 + av1 + . . . + avt ,

where we may assume that the indices are distinct, therefore s + t ≤ kn. Then the equation

x1 + x2 + . . . + xs − xs+1 − . . .− xs+t = 0
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can be solved over the set {a1, a2 . . . , akn}. The above equation has at most ns+t−1 ≤ nkn−1

solutions over [1, n]. Since we have at most k2
n possibilities for (s, t) and at most n possibilities

for a0, therefore the number of vectors A(kn ,n) for which HA(kn ,n) is degenerate is at most
k2

nnkn = o(
(

n
kn+1

)
). ¤

In the remaining part of this section the Hilbert cubes are non-degenerate.

The proofs of Theorem 1.5 and 1.6 will be based on the following definition. For two in-
tersecting k-cubes HA(k,n) ,HB(k,n) let HA(k,n) ∩ HB(k,n) = {c1, . . . , cm} with c1 < . . . < cm,
where

cd = a0 +
k∑

l=1

αd,lal = b0 +
k∑

l=1

βd,lbl, αd,l, βd,l ∈ {0, 1} for 1 ≤ d ≤ m and 1 ≤ l ≤ k.

The rank of the intersection of two k-cubes HA(k,n) , HB(k,n) is defined as follows: we say
that r(HA(k,n) ,HB(k,n))=(s,t) if for the matrices A = (αd,l)m×k, B = (βd,l)m×k we have
rR(A) = s and rR(B) = t. The matrices A and B are called matrices of the common ver-
tices of HA(k,n) ,HB(k,n) .

Lemma 2.2. The condition r(HA(k,n) ,HB(k,n)) = (s, t) implies that |HA(k,n) ∩ HB(k,n) | ≤
2min{s,t}.

Proof. We may assume that s ≤ t. The inequality |HA(k,n) ∩HB(k,n) | ≤ 2s is obviously true
for s = k. Let us suppose that s < k and the number of common vertices is greater than 2s.
Then the corresponding (0− 1)-matrices A and B have more than 2s different rows, therefore
rF2(A) > s, but we know from elementary linear algebra that for an arbitrary (0 − 1)-matrix
M we have rF2(M) ≥ rR(M), which is a contradiction. ¤

Lemma 2.3. Let us suppose that the sequences A(k ,n) and B(k ,n) generate non-degenerate
k-cubes. Then

(1) |{(A(k ,n),B(k ,n)) : r(HA(k,n) ,HB(k,n)) = (s, t)}| ≤ 22k2( n
k+1

)
nk+1−max{s,t}

for all 0 ≤ s, t ≤ k;

(2) |{(A(k ,n),B(k ,n)) : r(HA(k,n) ,HB(k,n)) = (r, r), |HA(k,n) ∩HB(k,n) | = 2r}| ≤ 22k2( n
k+1

)
nk−r

for all 0 ≤ r < k;

(3) |{(A(k ,n),B(k ,n)) : r(HA(k,n) ,HB(k,n)) = (k, k), |HA(k,n)∩HB(k,n) | > 2k−1}| ≤ 22k2+2k
(

n
k+1

)
.

Proof. (1): We may assume that s ≤ t. In this case we have to prove that the number of
corresponding pairs (A(k ,n),B(k ,n)) is at most

(
n

k+1

)
22k2

nk+1−t. We have already seen in the
proof of Lemma 1 that the number of vectors A(k ,n) is at most

(
n

k+1

)
. Fix a vector A(k ,n) and

count the suitable vectors B(k ,n). Then the matrix B has t linearly independent rows, namely
rR((βdi,l)t×k) = t, for some 1 ≤ d1 < · · · < dt ≤ m, where

a0 +
k∑

l=1

αdi,lal = b0 +
k∑

l=1

βdi,lbl, αdi,l, βdi,l ∈ {0, 1} for 1 ≤ i ≤ t.
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The number of possible b0s is at most n. For fixed b0, αdi,l, βdi,l let us study the system of
equations

a0 +
k∑

l=1

αdi,lal = b0 +
k∑

l=1

βdi,lxl, αdi,l, βdi,l ∈ {0, 1} for 1 ≤ i ≤ t.

The assumption rR(βdi,l)t×k = t implies that the number of solutions over [1, n] is at most
nk−t. Finally, we have at most 2kt possibilities on the left-hand side for αdi,ls and, similarly, we
have at most 2kt possibilities on the right-hand side for βdi,ls , therefore the number of possible
systems of equations is at most 22k2

(2): The number of vectors A(k ,n) is
(

n
k+1

)
as in Part 1. Fix a vector A(k ,n) and count the

suitable vectors B(k ,n). It follows from the assumptions r(HA(k,n) ,HB(k,n)) = (r, r), |HA(k) ∩
HB(k) | = 2r that the vectors (αd,1, . . . , αd,k), d = 1, . . . , 2r and the vectors (βd,1, . . . , βd,k),
d = 1, . . . , 2r, respectively form r-dimensional subspaces of Fk

2. Considering the zero vectors of
these subspaces we get a0 = b0. The integers b1, . . . , bk are solutions of the system of equations

a0 +
k∑

l=1

αd,lal = b0 +
k∑

l=1

βd,lxl αd,l, βd,l ∈ {0, 1} for 1 ≤ d ≤ 2r.

Similarly to the previous part this system of equation has at most nk−r solutions over [1, n] and
the number of choices for the r linearly independent rows is at most 22k2

.

(3): Fix a vector A(k ,n). Let us suppose that for a vector B(k ,n) we have r(HA(k,n) ,HB(k,n)) =
(k, k) and |HA(k,n) ∩HB(k,n) | > 2k−1. Let the common vertices be

a0 +
k∑

l=1

αd,lal = b0 +
k∑

l=1

βd,lbl, αd,l, βd,l ∈ {0, 1} for 1 ≤ d ≤ m,

where we may assume that the rows d1, . . . , dk are linearly independent, i.e. the matrix Bk =
(βdi,l)k×k is regular. Write the rows d1, . . . , dk in matrix form as

(1) a = b01 + Bkb,

with vectors a = (a0 +
∑k

l=1 αdi,lal)k×1, 1 = (1)k×1 and b = (bi)k×1. It follows from (1) that

b = B−1
k (a− b01) = B−1

k a− b0B
−1
k 1.

Let B−1
k 1 = (di)k×1 and B−1

k a = (ci)k×1. Obviously, the number of subsets {i1, . . . il} ⊂
{1, . . . , k} for which di1+. . .+dil 6= 1 is at least 2k−1, therefore there exist 1 ≤ u1 < . . . < us ≤ k
and 1 ≤ v1 < . . . < vt ≤ k such that a0+au1+. . .+aus = b0+bv1+. . .+bvt , and dv1+. . .+dvt 6= 1.
Hence

a0 + au1 + . . . + aus = b0 + bv1 + . . . + bvt = b0 + cv1 + . . . + cvt − b0(dv1 + . . . + dvt)

b0 =
a0 + au1 + . . . + aus − cv1 − . . .− cvt

1− (dv1 + . . . + dvt)
.

To conclude the proof we note that the number of sets {u1, . . . , us} and {v1, . . . , vt} is at most
22k and there are at most 2k2

choices for Bk and a, respectively. Finally, for given Bk, a, b0,
1 ≤ u1 < . . . < us ≤ k and 1 ≤ v1 < . . . < vt ≤ k, the vector B(k ,n) is determined uniquely. ¤

In order to prove the theorems we need two lemmas from probability theory (see e.g. [1] p.
41, 95-98.). Let Xi be the indicator function of the event Ai and Sn = X1+. . .+XN . For indices
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i, j write i ∼ j if i 6= j and the events Ai, Aj are depandant. We set Γ =
∑

i∼j Pr{Ai ∩ Aj}
(the sum over ordered pairs).

Lemma 2.4. If E(Sn) →∞ and Γ = o(E(Sn)2), then Sn > 0 a.e.

In many instances, we would like to bound the probability that none of the bad events Bi,
i ∈ I, occur. If the events are mutually independent, then Pr{∩i∈IBi} =

∏
i∈I Pr{Bi}. When

the Bi are ”mostly” independent, the Janson’s inequality allows us, sometimes, to say that
these two quantities are ”nearly” equal. Let Ω be a finite set and R be a random subset of Ω
given by Pr{r ∈ R} = pr, these events being mutually independent over r ∈ Ω. Let Ei, i ∈ I be
subsets of Ω, where I a finite index set. Let Bi be the event Ei ⊂ R. Let Xi be the indicator
random variable for Bi and X =

∑
i∈I Xi be the number of Eis contained in R. The event

∩i∈IBi and X = 0 are then identical. For i, j ∈ I, we write i ∼ j if i 6= j and Ei ∩ Ej 6= ∅. We
define ∆ =

∑
i∼j Pr{Bi ∩Bj}, here the sum is over ordered pairs. We set M =

∏
i∈I Pr{Bi}.

Lemma 2.5 (Janson’s inequality). Let ε ∈]0, 1[, let Bi, i ∈ I, ∆,M be as above and assume
that Pr{Bi) ≤ ε for all i. Then

M ≤ Pr{∩i∈IBi) ≤ Me
1

1−ε
∆
2 .

Proof of Theorem 1.5. Let H
A

(k,n)
1

, . . . ,H
A

(k,n)
N

be the distinct non-degenerate k-cubes in [1, n].

Let Bi be the event H
A

(k,n)
i

⊂ S(n, cn
− k+1

2k ). Then Pr{Bi} = c2k
n−(k+1) = o(1) and N =

(1 + o(1))
(

n
k+1

)
1
k! . It is enough to prove

∆ =
∑

i∼j

Pr{Bi ∩Bj} = o(1)

since then Janson’s inequality implies

Pr{S(n, cn
− k+1

2k ) does not contain any k-cubes} = Pr{∩N
i=1Bi} =

(1 + o(1))(1− (cn−
k+1

2k )2
k
)(1+o(1))( n

k+1) 1
k! = (1 + o(1))e−

c2
k

(k+1)!k! .

It remains to verify that
∑

i∼j Pr{Bi ∩Bj} = o(1). We split this sum according to the ranks in
the following way

∑

i∼j

Pr{Bi ∩Bj} =
k∑

s=0

k∑

t=0

∑

i∼j
r(H

A
(k,n)
i

,H
A

(k,n)
j

)=(s,t)

Pr{Bi ∩Bj} =

2
k∑

s=1

s−1∑

t=0

∑

i∼j
r(H

A
(k,n)
i

,H
A

(k,n)
j

)=(s,t)

Pr{Bi ∩Bj}+

k−1∑

r=0

∑

i∼j
r(H

A
(k,n)
i

,H
A

(k,n)
j

)=(r,r)

|H
A

(k,n)
i

∩H
A

(k,n)
j

|=2r

Pr{Bi ∩Bj}+
k−1∑

r=1

∑

i∼j
r(H

A
(k,n)
i

,H
A

(k,n)
j

)=(r,r)

|H
A

(k,n)
i

∩H
A

(k,n)
j

|<2r

Pr{Bi ∩Bj}+
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∑

i∼j
r(H

A
(k,n)
i

,H
A

(k,n)
j

)=(k,k)

|H
A

(k,n)
i

∩H
A

(k,n)
j

|≤2k−1

Pr{Bi ∩Bj}+
∑

i∼j
r(H

A
(k,n)
i

,H
A

(k,n)
j

)=(k,k)

|H
A

(k,n)
i

∩H
A

(k,n)
j

|>2k−1

Pr{Bi ∩Bj}.

The first sum can be estimated by Lemmas 2.2 and 2.3 (3)

k∑

s=1

s−1∑

t=0

∑

i∼j
r(H

A
(k,n)
i

,H
A

(k,n)
j

)=(s,t)

Pr{Bi ∩Bj} ≤
k∑

s=1

s−1∑

t=0

22k2

(
n

k + 1

)
nk+1−s

(
c

n
k+1

2k

)2·2k−2t

=

no(1)
k∑

s=1

n
2s−1 k+1

2k

ns
= no(1)(n

k+1

2k −1 + n
k+1
2
−k) = o(1),

since the sequence as = 2s−1 k+1
2k − s is decreasing for 1 ≤ s ≤ k− log2(k +1)+1 and increasing

for k − log2(k + 1) + 1 < s ≤ k.

To estimate the second sum we apply Lemma 2.3 (2)

k−1∑

r=0

∑

i∼j
r(H

A
(k,n)
i

,H
A

(k,n)
j

)=(r,r)

|H
A

(k,n)
i

∩H
A

(k,n)
j

|=2r

Pr{Bi ∩Bj} ≤
k−1∑

r=0

22k2

(
n

k + 1

)
nk−r(

c

n
k+1

2k

)2·2
k−2r

=

n−1+o(1)
k−1∑

r=0

n
2r k+1

2k

nr
= n−1+o(1)(n

k+1

2k + n
k+1
2
−(k−1)) = o(1).

The third sum can be bounded using Lemma 2.3 (1)

k−1∑

r=1

∑

i∼j
r(H

A
(k,n)
i

,H
A

(k,n)
j

)=(r,r)

|H
A

(k,n)
i

∩H
A

(k,n)
j

|<2r

Pr{Bi ∩Bj} ≤
k−1∑

r=1

22k2

(
n

k + 1

)
nk+1−r(

c

n
k+1

2k

)2·2
k−2r+1 ≤

n
o(1)− k+1

2k

k−1∑

r=1

n
2r k+1

2k

nr
= n

o(1)− k+1

2k (n2 k+1

2k −1 + n
k+1
2
−(k−1)) = o(1).

Similarly, for the fourth sum we apply Lemma 2.3 (1)
∑

i∼j
r(H

A
(k,n)
i

,H
A

(k,n)
j

)=(k,k)

|H
A

(k,n)
i

∩H
A

(k,n)
j

|≤2k−1

Pr{Bi ∩Bj} ≤ no(1)nk+2(
c

n
k+1

2k

)1.5·2k
= o(1).
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To estimate the fifth sum we note that |H
A

(k,n)
i

∪H
A

(k,n)
j

| ≥ 2k + 1. It follows from Lemma

3.3 that ∑

i∼j
r(H

A
(k,n)
i

,H
A

(k,n)
j

)=(k,k)

|H
A

(k,n)
i

∩H
A

(k,n)
j

|>2k−1

Pr{Bi ∩Bj} ≤ 22k2+2knk+1(
c

n
k+1

2k

)2
k+1 = o(1),

which completes the proof. ¤

Proof of Theorem 1.6. Let ε > 0 and for simplicity let Dn = Dn(ε) and En = En(ε). In the
proof we use the estimations

(2) 22Dn ≤ 22
log2 log2 n+log2 log2 log2 n+

(1−ε) log2 log2 log2 n
log 2 log2 log2 n

= nlog2 log2 n+(1−ε+o(1)) log2 log2 log2 n

and

(3) 22En+1 ≥ 22
log2 log2 n+log2 log2 log2 n+

(1+ε) log2 log2 log2 n
log 2 log2 log2 n

= nlog2 log2 n+(1+ε+o(1)) log2 log2 log2 n

In order to verify Theorem 2 we have to show that

(4) lim
n→∞Pr{S(n,

1
2
) contains a Dn-cube} = 1

and

(5) lim
n→∞Pr{S(n,

1
2
) contains an (En + 1)-cube} = 0.

To prove the limit in (4) let H
A

(Dn ,n)
1

, . . . ,H
A

(Dn ,n)
N

be the different non-degenerate Dn-cubes

in [1, n], Bi be the event H
A

(Dn ,n)
i

⊂ S(n, 1
2), Xi be the indicator random variable for Bi and

X = X1 + . . . + XN be the number of H
A

(Dn ,n)
i

⊂ S(n, 1
2). The linearity of expectation gives

by Lemma 1 and inequality (2)

E(X) = NE(Xi) = (1 + o(1))
(

n

Dn + 1

)
1

Dn!
2−2Dn ≥

nlog2 log2 n+(1+o(1)) log2 log2 log2 nn− log2 log2 n−(1−ε+o(1)) log2 log2 log2 n = n(ε+o(1)) log2 log2 log2 n,

therefore E(X) →∞, as n →∞. By Lemma 2.4 it remains to prove that
∑

i∼j

Pr{Bi ∩Bj} = o(E(X)2)

where i ∼ j means that the events Bi, Bj are not independent i.e. the cubes H
A

(Dn ,n)
i

,H
A

(Dn ,n)
j

have common vertices. We split this sum according to the ranks

∑

i∼j

Pr{Bi ∩Bj} =
Dn∑

s=0

Dn∑

t=0

∑

i∼j
r(H

A
(Dn ,n)
i

,H
A

(Dn ,n)
j

)=(s,t)

Pr{Bi ∩Bj) ≤

(6)
∑

i∼j
r(H

A
(Dn ,n)
i

,H
A

(Dn ,n)
j

)=(0,0)

Pr{Bi ∩Bj) + 2
Dn∑

s=1

s∑

t=0

∑

i∼j
r(H

A
(Dn ,n)
i

,H
A

(Dn ,n)
j

)=(s,t)

Pr{Bi ∩Bj}.
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The condition r(H
A

(Dn ,n)
i

,H
A

(Dn ,n)
j

) = (0, 0) implies that |H
A

(Dn ,n)
i

∪H
A

(Dn ,n)
j

| = 2Dn+1 − 1,

thus by Lemma 3.2
∑

i∼j
r(H

A
(Dn ,n)
i

,H
A

(Dn ,n)
j

)=(0,0)

Pr{Bi ∩Bj} ≤ 22D2
n

(
n

Dn + 1

)
nDn2−2DN +1+1 =

o

(((
n

Dn + 1

)
1

Dn!
2−2Dn

)2
)

= o(E(X)2).

In the light of Lemmas 2.2 and 2.3 (1) the second term in (6) can be estimated as
Dn∑

s=1

s∑

t=0

∑

i∼j
r(H

A
(Dn ,n)
i

,H
A

(Dn ,n)
j

)=(s,t)

Pr{Bi ∩Bj} ≤
Dn∑

s=1

s∑

t=0

(
n

Dn + 1

)
22D2

nnDn+1−s2−2·2Dn+2t
=

((
n

Dn + 1

)
1

Dn!
2−2Dn

)2

no(1)
Dn∑

s=1

s∑

t=0

22t

ns
=

((
n

Dn + 1

)
1

Dn!
2−2Dn

)2

no(1)
Dn∑

s=1

22s

ns

Finally, the function f(x) = 22x

nx decreases on (−∞, log2 log n − 2 log2 log 2] and increases on
[log2 log n− 2 log2 log 2,∞), therefore by (2)

Dn∑

s=1

22s

nr
= no(1)(

4
n

+
22Dn

nDn
) = n−1+o(1),

which proves the limit in (4).

In order to prove the limit in (5) let H
C

(En+1 ,n)
1

, . . . ,H
C

(En+1 ,n)
K

be the distinct (En +1)-cubes

in [1, n] and let Fi be the event H
C

(En+1 ,n)
i

⊂ S(n, 1
2). By (3) we have

Pr{Sn contains an (En + 1)-cube} = Pr{∪K
i=1Fi} ≤

K∑

i=1

Pr{Fi} ≤
(

n

En + 2

)
2−2En+1 ≤ nlog2 log2 n+(1+o(1)) log2 log2 log2 n

nlog2 log2 n+(1+ε+o(1)) log2 log2 log2 n
= o(1),

which completes the proof. ¤

3. Concluding remarks

The aim of this paper is to study non-degenerate Hilbert cubes in a random sequence. A
natural problem would be to give analogous theorems for Hilbert cubes, where degenerate cubes
are allowed. In this situation the dominant terms may come from arithmetic progressions. An
APk+1 forms a k-cube. One can prove by the Janson inequality (see Lemma 2.5) that for a
fixed k ≥ 2

lim
n→∞Pr{S(n, cn−

2
k+1 ) contains no APk+1} = e−

ck+1

2k .

An easy argument shows (using Janson’s inequality again) that for all c > 0, with pn = cn−2/5

lim
n→∞Pr{S(n, pn) contains no 4-cubes} = e−

c5

8 .
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Conjecture 3.1. For k ≥ 4

lim
n→∞Pr{S(n, cn−

2
k+1 ) contains no k-cubes} = e−

ck+1

2k .

A simple calculation implies that in the random subset S(n, 1/2) the length of the longest
arithmetic progression is a.e. nearly 2 log2 n, therefore it contains a Hilbert cube of dimension
(2− ε) log2 n.

Conjecture 3.2. For every ε > 0

lim
n→∞Pr{the maximal dimension of Hilbert cubes in S(n, 1

2) is < (2 + ε)log2n} = 1.

N. Hegyvári (see [5]) studied the special case where the generating elements of Hilbert cubes
are distinct. He proved that in this situation the maximal dimension of Hilbert cubes is a.e.
between c1 log n and c2 log n log log n. In this problem the lower bound seems to be the correct
magnitude.
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