Non-degenerate Hilbert Cubes in Random Sets

par Csaba SÁNDor

Abstract

Résumé. Une légère modification de la démonstration du lemme des cubes de Szemerédi donne le résultat plus précis suivant: si une partie S de $\{1, \ldots, n\}$ vérifie $|S| \geq \frac{n}{2}$, alors S contient un cube de Hilbert non dégénéré de dimension $\left\lfloor\log _{2} \log _{2} n-3\right\rfloor$. Dans cet article nous montrons que dans un ensemble aléatoire avec les probabilités $\operatorname{Pr}\{s \in S\}=1 / 2$ indépendantes pour $1 \leq s \leq n$, la plus grande dimension d'un cube de Hilbert non dégénéré est proche de $\log _{2} \log _{2} n+\log _{2} \log _{2} \log _{2} n$ presque sûrement et nous déterminons la fonction seuil pour avoir un k-cube non dégénéré.

Abstract

A slight modification of the proof of Szemerédi's cube lemma gives that if a set $S \subset[1, n]$ satisfies $|S| \geq \frac{n}{2}$, then S must contain a non-degenerate Hilbert cube of dimension $\left\lfloor\log _{2} \log _{2} n-3\right\rfloor$. In this paper we prove that in a random set S determined by $\operatorname{Pr}\{s \in S\}=\frac{1}{2}$ for $1 \leq s \leq n$, the maximal dimension of non-degenerate Hilbert cubes is a.e. nearly $\log _{2} \log _{2} n+\log _{2} \log _{2} \log _{2} n$ and determine the threshold function for a non-degenerate k-cube.

1. Introduction

Throughout this paper we use the following notations: let $[1, n]$ denote the first n positive integers. The coordinates of the vector $\mathbf{A}^{(k, n)}=\left(a_{0}, a_{1}, \ldots, a_{k}\right)$ are selected from the positive integers such that $\sum_{i=0}^{k} a_{i} \leq n$. The vectors $\mathbf{B}^{(k, n)}, \mathbf{A}_{\mathbf{i}}^{(k, n)}$ are interpreted similarly. The set S_{n} is a subset of $[1, n]$. The notations $f(n)=o(g(n))$ means $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$. An arithmetic progression of length k is denoted by $A P_{k}$. The rank of a matrix A over the field \mathbb{F} is denoted by $r_{\mathbb{F}}(A)$. Let \mathbb{R} denote the set of real numbers and \mathbb{F}_{2} for the finite field of order 2 .

Let n be a positive integer, $0 \leq p_{n} \leq 1$. The random set $S\left(n, p_{n}\right)$ is the random variable taking its values in the set of subsets of $[1, n]$ with the law determined by the independence of the events $\left\{k \in S\left(n, p_{n}\right)\right\}, 1 \leq k \leq n$ with the probability $\operatorname{Pr}\left\{k \in S\left(n, p_{n}\right)\right\}=p_{n}$. This model is often used for proving the existence of certain sequences. Given any combinatorial number theoretic property P, there is a probability that $S\left(n, p_{n}\right)$ satisfies P, which we write $\operatorname{Pr}\left\{S\left(n, p_{n}\right) \models P\right\}$. The function $r(n)$ is called a threshold function for a combinatorial number theoretic property P if
(i) When $p_{n}=o(r(n)), \lim _{n \rightarrow \infty} \operatorname{Pr}\left\{S\left(n, p_{n}\right) \models P\right\}=0$,

[^0](ii) When $r(n)=o(p(n)), \lim _{n \rightarrow \infty} \operatorname{Pr}\left\{S\left(n, p_{n}\right) \models P\right\}=1$,
or visa versa. It is clear that threshold functions are not unique. However, threshold functions are unique within factors $m(n), 0<\lim \inf _{n \rightarrow \infty} m(n) \leq \lim \sup _{n \rightarrow \infty} m(n)<\infty$, that is if p_{n} is a threshold function for P then p_{n}^{\prime} is also a threshold function iff $p_{n}=O\left(p_{n}^{\prime}\right)$ and $p_{n}^{\prime}=O\left(p_{n}\right)$. In this sense we can speak of the threshold function of a property.

We call $H \subset[1, n]$ a Hilbert cube of dimension k or, simply, a k-cube if there is a vector $\mathbf{A}^{(k, n)}$ such that

$$
H=\mathbf{H}_{\mathbf{A}^{(k, n)}}=\left\{a_{0}+\sum_{i=1}^{k} \epsilon_{i} a_{i}: \epsilon_{i} \in\{0,1\}\right\} .
$$

The positive integers a_{1}, \ldots, a_{k} are called the generating elements of the Hilbert cube. The k-cube is non-degenerate if $|H|=2^{k}$ i.e. the vertices of the cube are distinct, otherwise it is called degenerate. The maximal dimension of a non-degenerate Hilbert cube in S_{n} is denoted by $H_{\max }\left(S_{n}\right)$, i.e. $H_{\max }\left(S_{n}\right)$ is the largest integer l such that there exists a vector $\mathbf{A}^{(1, \mathbf{n})}$ for which the non-degenerate Hilbert cube $\mathbf{H}_{\mathbf{A}^{(l, n)}} \subset S_{n}$.

Hilbert originally proved that if the positive integers are colored with finitely many colors then one color class contains a k-cube. The density version of theorem was proved by Szemerédi and has since become known as "Szemerédi's cube lemma". The best known result is due to Gunderson and Rödl (see [3]):

Theorem 1.1 (Szemerédi). For every $d \geq 3$ there exists $n_{0} \leq\left(2^{d}-2 / \ln 2\right)^{2}$ so that, for every $n \geq n_{0}$, if $A \subset[1, n]$ satisfies $|A| \geq 2 n^{1-\frac{1}{2^{d-1}}}$, then A contains a d-cube.

A direct consequence is the following:
Corollary 1.2. Every subset S_{n} such that $\left|S_{n}\right| \geq \frac{n}{2}$ contains a $\left\lfloor\log _{2} \log _{2} n\right\rfloor$-cube.
A slight modification of the proof gives that the above set S_{n} must contain a non-degenerate $\left\lfloor\log _{2} \log _{2} n-3\right\rfloor$-cube.

Obviously, a sequence S has the Sidon property (that is the sums $s_{i}+s_{j}, s_{i} \leq s_{j}, s_{i}, s_{j} \in S$ are distinct) iff S contains no 2-cube. Godbole, Janson, Locantore and Rapoport studied the threshold function for the Sidon property and gave the exact probability distribution in 1999 (see [2]):

Theorem 1.3 (Godbole, Janson, Locantore and Rapoport). Let $c>0$ be arbitrary. Let P denote the Sidon property. Then with $p_{n}=c n^{-3 / 4}$,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{S\left(n, p_{n}\right) \models P\right\}=e^{-\frac{c^{4}}{12}} .
$$

Clearly, a subset $H \subset[1, n]$ is a degenerate 2-cube iff it is an $A P_{3}$. Moreover, an easy argument gives that the threshold function for the event " $A P_{3}$-free" is $p_{n}=n^{-2 / 3}$. Hence

Corollary 1.4. Let $c>0$ be arbitrary. Then with $p_{n}=c n^{-3 / 4}$,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{S\left(n, p_{n}\right) \text { contains no non-degenerate 2-cube }\right\}=e^{-\frac{c^{4}}{12}}
$$

In Theorem 1.5 we extend the previous Corollary.
Theorem 1.5. For any real number $c>0$ and any integer $k \geq 2$, if $p_{n}=c n^{-\frac{k+1}{2^{k}}}$ then

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{S\left(n, p_{n}\right) \text { contains no non-degenerate } k \text {-cube }\right\}=e^{-\frac{c^{k^{k}}}{(k+1) \cdot k]}} .
$$

In the following we shall find bounds on the maximal dimension of non-degenerate Hilbert cubes in the random subset $S\left(n, \frac{1}{2}\right)$. Let

$$
D_{n}(\epsilon)=\left\lfloor\log _{2} \log _{2} n+\log _{2} \log _{2} \log _{2} n+\frac{(1-\epsilon) \log _{2} \log _{2} \log _{2} n}{\log 2 \log _{2} \log _{2} n}\right\rfloor
$$

and

$$
E_{n}(\epsilon)=\left\lfloor\log _{2} \log _{2} n+\log _{2} \log _{2} \log _{2} n+\frac{(1+\epsilon) \log _{2} \log _{2} \log _{2} n}{\log 2 \log _{2} \log _{2} n}\right\rfloor .
$$

The next theorem implies that for almost all $n, H_{\max }\left(S\left(n, \frac{1}{2}\right)\right)$ concentrates on a single value because for every $\epsilon>0, D_{n}(\epsilon)=E_{n}(\epsilon)$ except for a sequence of zero density.

Theorem 1.6. For every $\epsilon>0$

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{D_{n}(\epsilon) \leq H_{\max }\left(S\left(n, \frac{1}{2}\right)\right) \leq E_{n}(\epsilon)\right\}=1 .
$$

2. Proofs

In order to prove the theorems we need some lemmas.
Lemma 2.1. For $k_{n}=o\left(\frac{\log n}{\log \log n}\right)$ the number of non-degenerate k_{n}-cubes in $[1, n]$ is $(1+$ $o(1))\binom{n}{k_{n}+1} \frac{1}{k_{n}!}$, as $n \rightarrow \infty$.

Proof. All vectors $\mathbf{A}^{\left(k_{n}, n\right)}$ are in 1-1 correspondence with all vectors $\left(v_{0}, v_{1}, \ldots, v_{k_{n}}\right)$ with $1 \leq v_{1}<v_{2}<\cdots<v_{k_{n}} \leq n$ in $\mathbb{R}^{k_{n}+1}$ according to the formulas $\left(a_{0}, a_{1}, \ldots, a_{k_{n}}\right) \mapsto$ $\left(v_{0}, v_{1}, \ldots, v_{k_{n}}\right)=\left(a_{0}, a_{0}+a_{1}, \ldots, a_{0}+a_{1}+\cdots+a_{k_{n}}\right)$; and $\left(v_{0}, v_{1}, \ldots, v_{k_{n}}\right) \mapsto\left(a_{0}, a_{1}, \ldots, a_{k_{n}}\right)=$ $\left(v_{0}, v_{1}-v_{0}, \ldots, v_{k_{n}}-v_{k_{n}-1}\right)$. Consequently,

$$
\left.\binom{n}{k_{n}+1}=\mid\left\{\mathbf{A}^{\left(k_{n}, n\right)}: \mathbf{H}_{\mathbf{A}^{\left(k_{n}, n\right)}} \text { is non-degenerate }\right\}|+|\left\{\mathbf{A}^{\left(k_{n}, n\right)}: \mathbf{H}_{\mathbf{A}^{\left(k_{n}, n\right)}} \text { is degenerate }\right\} \right\rvert\, .
$$

By the definition of a non-degenerate cube we have
$\mid\left\{\mathbf{A}^{\left(k_{n}, n\right)}: \mathbf{H}_{\mathbf{A}^{\left(k_{n}, n\right)}}\right.$ is non-degenerate $\}\left|=k_{n}!\right|\left\{\right.$ non-degenerate k_{n}-cubes in $\left.[1, n]\right\} \mid$,
because permutations of a_{1}, \ldots, a_{k} give the same k_{n}-cube. It remains to verify that the number of vectors $\mathbf{A}^{\left(k_{n}, n\right)}$ which generate degenerate k_{n}-cubes is $o\left(\left({ }_{k_{n}+1}^{n}\right)\right)$. Let $\mathbf{A}^{\left(k_{n}, n\right)}$ be a vector for which $\mathbf{H}_{\mathbf{A}^{\left(k_{n}, n\right)}}$ is a degenerate k_{n}-cube. Then there exist integers $1 \leq u_{1}<u_{2}<\ldots<u_{s} \leq k_{n}$, $1 \leq v_{1}<v_{2}<\ldots<v_{t} \leq k_{n}$ such that

$$
a_{0}+a_{u_{1}}+\ldots+a_{u_{s}}=a_{0}+a_{v_{1}}+\ldots+a_{v_{t}},
$$

where we may assume that the indices are distinct, therefore $s+t \leq k_{n}$. Then the equation

$$
x_{1}+x_{2}+\ldots+x_{s}-x_{s+1}-\ldots-x_{s+t}=0
$$

can be solved over the set $\left\{a_{1}, a_{2} \ldots, a_{k_{n}}\right\}$. The above equation has at most $n^{s+t-1} \leq n^{k_{n}-1}$ solutions over $[1, n]$. Since we have at most k_{n}^{2} possibilities for (s, t) and at most n possibilities for a_{0}, therefore the number of vectors $\mathbf{A}^{\left(k_{n}, n\right)}$ for which $\mathbf{H}_{\mathbf{A}^{\left(k_{n}, n\right)}}$ is degenerate is at most $k_{n}^{2} n^{k_{n}}=o\left(\binom{n}{k_{n}+1}\right)$.

In the remaining part of this section the Hilbert cubes are non-degenerate.
The proofs of Theorem 1.5 and 1.6 will be based on the following definition. For two intersecting k-cubes $\mathbf{H}_{\mathbf{A}^{(k, n)}}, \mathbf{H}_{\mathbf{B}^{(k, n)}}$ let $\mathbf{H}_{\mathbf{A}^{(k, n)}} \cap \mathbf{H}_{\mathbf{B}^{(k, n)}}=\left\{c_{1}, \ldots, c_{m}\right\}$ with $c_{1}<\ldots<c_{m}$, where

$$
c_{d}=a_{0}+\sum_{l=1}^{k} \alpha_{d, l} a_{l}=b_{0}+\sum_{l=1}^{k} \beta_{d, l} b_{l}, \quad \alpha_{d, l}, \beta_{d, l} \in\{0,1\} \quad \text { for } 1 \leq d \leq m \text { and } 1 \leq l \leq k .
$$

The rank of the intersection of two k-cubes $\mathbf{H}_{\mathbf{A}^{(k, n)}}, \mathbf{H}_{\mathbf{B}^{(k, n)}}$ is defined as follows: we say that $r\left(\mathbf{H}_{\mathbf{A}^{(k, n)}}, \mathbf{H}_{\mathbf{B}^{(k, n)}}\right)=(\mathrm{s}, \mathrm{t})$ if for the matrices $A=\left(\alpha_{d, l}\right)_{m \times k}, B=\left(\beta_{d, l}\right)_{m \times k}$ we have $r_{\mathbb{R}}(A)=s$ and $r_{\mathbb{R}}(B)=t$. The matrices A and B are called matrices of the common vertices of $\mathbf{H}_{\mathbf{A}^{(k, n)}}, \mathbf{H}_{\mathbf{B}^{(k, n)}}$.

Lemma 2.2. The condition $r\left(\mathbf{H}_{\mathbf{A}^{(k, n)}}, \mathbf{H}_{\mathbf{B}^{(k, n)}}\right)=(s, t)$ implies that $\left|\mathbf{H}_{\mathbf{A}^{(k, n)}} \cap \mathbf{H}_{\mathbf{B}^{(k, n)}}\right| \leq$ $2^{\min \{s, t\}}$.

Proof. We may assume that $s \leq t$. The inequality $\left|\mathbf{H}_{\mathbf{A}^{(k, n)}} \cap \mathbf{H}_{\mathbf{B}^{(k, n)}}\right| \leq 2^{s}$ is obviously true for $s=k$. Let us suppose that $s<k$ and the number of common vertices is greater than 2^{s}. Then the corresponding ($0-1$)-matrices A and B have more than 2^{s} different rows, therefore $r_{\mathbb{F}_{2}}(A)>s$, but we know from elementary linear algebra that for an arbitrary ($0-1$)-matrix M we have $r_{\mathbb{F}_{2}}(M) \geq r_{\mathbb{R}}(M)$, which is a contradiction.

Lemma 2.3. Let us suppose that the sequences $\mathbf{A}^{(k, n)}$ and $\mathbf{B}^{(k, n)}$ generate non-degenerate k-cubes. Then

$$
\begin{equation*}
\left|\left\{\left(\mathbf{A}^{(k, n)}, \mathbf{B}^{(k, n)}\right): r\left(\mathbf{H}_{\mathbf{A}^{(k, n)}}, \mathbf{H}_{\mathbf{B}^{(k, n)}}\right)=(s, t)\right\}\right| \leq 2^{2 k^{2}}\binom{n}{k+1} n^{k+1-\max \{s, t\}} \tag{1}
\end{equation*}
$$

for all $0 \leq s, t \leq k$;

$$
\begin{equation*}
\left|\left\{\left(\mathbf{A}^{(k, n)}, \mathbf{B}^{(k, n)}\right): r\left(\mathbf{H}_{\mathbf{A}^{(k, n)}}, \mathbf{H}_{\mathbf{B}^{(k, n)}}\right)=(r, r),\left|\mathbf{H}_{\mathbf{A}^{(k, n)}} \cap \mathbf{H}_{\mathbf{B}^{(k, n)}}\right|=2^{r}\right\}\right| \leq 2^{2 k^{2}}\binom{n}{k+1} n^{k-r} \tag{2}
\end{equation*}
$$

for all $0 \leq r<k$;

$$
\begin{equation*}
\left|\left\{\left(\mathbf{A}^{(k, n)}, \mathbf{B}^{(k, n)}\right): r\left(\mathbf{H}_{\mathbf{A}^{(k, n)}}, \mathbf{H}_{\mathbf{B}^{(k, n)}}\right)=(k, k),\left|\mathbf{H}_{\mathbf{A}^{(k, n)}} \cap \mathbf{H}_{\mathbf{B}^{(k, n)}}\right|>2^{k-1}\right\}\right| \leq 2^{2 k^{2}+2 k}\binom{n}{k+1} . \tag{3}
\end{equation*}
$$

Proof. (1): We may assume that $s \leq t$. In this case we have to prove that the number of corresponding pairs $\left(\mathbf{A}^{(k, n)}, \mathbf{B}^{(k, n)}\right)$ is at most $\binom{n}{k+1} 2^{2 k^{2}} n^{k+1-t}$. We have already seen in the proof of Lemma 1 that the number of vectors $\mathbf{A}^{(k, n)}$ is at most $\binom{n}{k+1}$. Fix a vector $\mathbf{A}^{(k, n)}$ and count the suitable vectors $\mathbf{B}^{(k, n)}$. Then the matrix B has t linearly independent rows, namely $r_{\mathbb{R}}\left(\left(\beta_{d_{i}},\right)_{t \times k}\right)=t$, for some $1 \leq d_{1}<\cdots<d_{t} \leq m$, where

$$
a_{0}+\sum_{l=1}^{k} \alpha_{d_{i}, l} a_{l}=b_{0}+\sum_{l=1}^{k} \beta_{d_{i}, l} b_{l}, \quad \alpha_{d_{i}, l}, \beta_{d_{i}, l} \in\{0,1\} \quad \text { for } 1 \leq i \leq t .
$$

The number of possible $b_{0} \mathrm{~s}$ is at most n. For fixed $b_{0}, \alpha_{d_{i}, l}, \beta_{d_{i}, l}$ let us study the system of equations

$$
a_{0}+\sum_{l=1}^{k} \alpha_{d_{i}, l} a_{l}=b_{0}+\sum_{l=1}^{k} \beta_{d_{i}, l} x_{l}, \quad \alpha_{d_{i}, l}, \beta_{d_{i}, l} \in\{0,1\} \quad \text { for } 1 \leq i \leq t
$$

The assumption $r_{\mathbb{R}}\left(\beta_{d_{i}, l}\right)_{t \times k}=t$ implies that the number of solutions over $[1, n]$ is at most n^{k-t}. Finally, we have at most $2^{k t}$ possibilities on the left-hand side for $\alpha_{d_{i}, l} \mathrm{~S}$ and, similarly, we have at most $2^{k t}$ possibilities on the right-hand side for $\beta_{d_{i}, l} \mathrm{~S}$, therefore the number of possible systems of equations is at most $2^{2 k^{2}}$
(2): The number of vectors $\mathbf{A}^{(k, n)}$ is $\binom{n}{k+1}$ as in Part 1. Fix a vector $\mathbf{A}^{(k, n)}$ and count the suitable vectors $\mathbf{B}^{(k, n)}$. It follows from the assumptions $r\left(\mathbf{H}_{\mathbf{A}^{(k, n)}}, \mathbf{H}_{\mathbf{B}^{(k, n)}}\right)=(r, r), \mid \mathbf{H}_{\mathbf{A}^{(\mathbf{k})}} \cap$ $\mathbf{H}_{\mathbf{B}(\mathrm{k})} \mid=2^{r}$ that the vectors $\left(\alpha_{d, 1}, \ldots, \alpha_{d, k}\right), d=1, \ldots, 2^{r}$ and the vectors $\left(\beta_{d, 1}, \ldots, \beta_{d, k}\right)$, $d=1, \ldots, 2^{r}$, respectively form r-dimensional subspaces of \mathbb{F}_{2}^{k}. Considering the zero vectors of these subspaces we get $a_{0}=b_{0}$. The integers b_{1}, \ldots, b_{k} are solutions of the system of equations

$$
a_{0}+\sum_{l=1}^{k} \alpha_{d, l} a_{l}=b_{0}+\sum_{l=1}^{k} \beta_{d, l} x_{l} \quad \alpha_{d, l}, \beta_{d, l} \in\{0,1\} \quad \text { for } 1 \leq d \leq 2^{r} .
$$

Similarly to the previous part this system of equation has at most n^{k-r} solutions over $[1, n]$ and the number of choices for the r linearly independent rows is at most $2^{2 k^{2}}$.
(3): Fix a vector $\mathbf{A}^{(k, n)}$. Let us suppose that for a vector $\mathbf{B}^{(k, n)}$ we have $r\left(\mathbf{H}_{\mathbf{A}^{(k, n)}}, \mathbf{H}_{\mathbf{B}^{(k, n)}}\right)=$ (k, k) and $\left|\mathbf{H}_{\mathbf{A}^{(k, n)}} \cap \mathbf{H}_{\mathbf{B}^{(k, n)}}\right|>2^{k-1}$. Let the common vertices be

$$
a_{0}+\sum_{l=1}^{k} \alpha_{d, l} a_{l}=b_{0}+\sum_{l=1}^{k} \beta_{d, l} b_{l}, \quad \alpha_{d, l}, \beta_{d, l} \in\{0,1\} \quad \text { for } 1 \leq d \leq m
$$

where we may assume that the rows d_{1}, \ldots, d_{k} are linearly independent, i.e. the matrix $B_{k}=$ $\left(\beta_{d_{i}, l}\right)_{k \times k}$ is regular. Write the rows d_{1}, \ldots, d_{k} in matrix form as

$$
\begin{equation*}
\underline{a}=b_{0} \underline{1}+B_{k} \underline{b}, \tag{1}
\end{equation*}
$$

with vectors $\underline{a}=\left(a_{0}+\sum_{l=1}^{k} \alpha_{d_{i}, l} a_{l}\right)_{k \times 1}, \underline{1}=(1)_{k \times 1}$ and $\underline{b}=\left(b_{i}\right)_{k \times 1}$. It follows from (1) that

$$
\underline{b}=B_{k}^{-1}\left(\underline{a}-b_{0} \underline{1}\right)=B_{k}^{-1} \underline{a}-b_{0} B_{k}^{-1} \underline{1} .
$$

Let $B_{k}^{-1} \underline{1}=\left(d_{i}\right)_{k \times 1}$ and $B_{k}^{-1} \underline{a}=\left(c_{i}\right)_{k \times 1}$. Obviously, the number of subsets $\left\{i_{1}, \ldots i_{l}\right\} \subset$ $\{1, \ldots, k\}$ for which $d_{i_{1}}+\ldots+d_{i_{l}} \neq 1$ is at least 2^{k-1}, therefore there exist $1 \leq u_{1}<\ldots<u_{s} \leq k$ and $1 \leq v_{1}<\ldots<v_{t} \leq k$ such that $a_{0}+a_{u_{1}}+\ldots+a_{u_{s}}=b_{0}+b_{v_{1}}+\ldots+b_{v_{t}}$, and $d_{v_{1}}+\ldots+d_{v_{t}} \neq 1$. Hence

$$
\begin{gathered}
a_{0}+a_{u_{1}}+\ldots+a_{u_{s}}=b_{0}+b_{v_{1}}+\ldots+b_{v_{t}}=b_{0}+c_{v_{1}}+\ldots+c_{v_{t}}-b_{0}\left(d_{v_{1}}+\ldots+d_{v_{t}}\right) \\
b_{0}=\frac{a_{0}+a_{u_{1}}+\ldots+a_{u_{s}}-c_{v_{1}}-\ldots-c_{v_{t}}}{1-\left(d_{v_{1}}+\ldots+d_{v_{t}}\right)}
\end{gathered}
$$

To conclude the proof we note that the number of sets $\left\{u_{1}, \ldots, u_{s}\right\}$ and $\left\{v_{1}, \ldots, v_{t}\right\}$ is at most $2^{2 k}$ and there are at most $2^{k^{2}}$ choices for B_{k} and \underline{a}, respectively. Finally, for given $B_{k}, \underline{a}, b_{0}$, $1 \leq u_{1}<\ldots<u_{s} \leq k$ and $1 \leq v_{1}<\ldots<v_{t} \leq k$, the vector $\mathbf{B}^{(k, n)}$ is determined uniquely.

In order to prove the theorems we need two lemmas from probability theory (see e.g. [1] p. 41, 95-98.). Let X_{i} be the indicator function of the event A_{i} and $S_{n}=X_{1}+\ldots+X_{N}$. For indices
i, j write $i \sim j$ if $i \neq j$ and the events A_{i}, A_{j} are depandant. We set $\Gamma=\sum_{i \sim j} \operatorname{Pr}\left\{A_{i} \cap A_{j}\right\}$ (the sum over ordered pairs).

Lemma 2.4. If $E\left(S_{n}\right) \rightarrow \infty$ and $\Gamma=o\left(E\left(S_{n}\right)^{2}\right)$, then $S_{n}>0$ a.e.
In many instances, we would like to bound the probability that none of the bad events B_{i}, $i \in I$, occur. If the events are mutually independent, then $\operatorname{Pr}\left\{\cap_{i \in I} \overline{B_{i}}\right\}=\prod_{i \in I} \operatorname{Pr}\left\{\overline{B_{i}}\right\}$. When the B_{i} are "mostly" independent, the Janson's inequality allows us, sometimes, to say that these two quantities are "nearly" equal. Let Ω be a finite set and R be a random subset of Ω given by $\operatorname{Pr}\{r \in R\}=p_{r}$, these events being mutually independent over $r \in \Omega$. Let $E_{i}, i \in I$ be subsets of Ω, where I a finite index set. Let B_{i} be the event $E_{i} \subset R$. Let X_{i} be the indicator random variable for B_{i} and $X=\sum_{i \in I} X_{i}$ be the number of $E_{i} \mathrm{~s}$ contained in R. The event $\cap_{i \in I} \overline{B_{i}}$ and $X=0$ are then identical. For $i, j \in I$, we write $i \sim j$ if $i \neq j$ and $E_{i} \cap E_{j} \neq \emptyset$. We define $\Delta=\sum_{i \sim j} \operatorname{Pr}\left\{B_{i} \cap B_{j}\right\}$, here the sum is over ordered pairs. We set $M=\prod_{i \in I} \operatorname{Pr}\left\{\overline{B_{i}}\right\}$.

Lemma 2.5 (Janson's inequality). Let $\varepsilon \in] 0,1\left[\right.$, let $B_{i}, i \in I, \Delta, M$ be as above and assume that $\operatorname{Pr}\left\{B_{i}\right) \leq \varepsilon$ for all i. Then

$$
M \leq \operatorname{Pr}\left\{\cap_{i \in I} \overline{B_{i}}\right) \leq M e^{\frac{1}{1-\varepsilon} \frac{\Delta}{2}} .
$$

Proof of Theorem 1.5. Let $\mathbf{H}_{\mathbf{A}_{1}^{(k, n)}}, \ldots, \mathbf{H}_{\mathbf{A}_{\mathrm{N}}^{(k, n)}}$ be the distinct non-degenerate k-cubes in $[1, n]$. Let B_{i} be the event $\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(k, n)}} \subset S\left(n, c n^{-\frac{k+1}{2^{k}}}\right)$. Then $\operatorname{Pr}\left\{B_{i}\right\}=c^{2^{k}} n^{-(k+1)}=o(1)$ and $N=$ $(1+o(1))\binom{n}{k+1} \frac{1}{k!}$. It is enough to prove

$$
\Delta=\sum_{i \sim j} \operatorname{Pr}\left\{B_{i} \cap B_{j}\right\}=o(1)
$$

since then Janson's inequality implies

$$
\begin{aligned}
& \operatorname{Pr}\left\{S\left(n, c n^{-\frac{k+1}{2^{k}}}\right) \text { does not contain any } k \text {-cubes }\right\}=\operatorname{Pr}\left\{\cap_{i=1}^{N} \overline{B_{i}}\right\}= \\
& \left.(1+o(1))\left(1-\left(c n^{-\frac{k+1}{2^{k}}}\right)^{2^{k}}\right)\right)^{(1+o(1))\left(C_{k+1}^{n}\right) \frac{1}{k!}}=(1+o(1)) e^{-\frac{c^{c^{k}}}{(k+1)!k!}} .
\end{aligned}
$$

It remains to verify that $\sum_{i \sim j} \operatorname{Pr}\left\{B_{i} \cap B_{j}\right\}=o(1)$. We split this sum according to the ranks in the following way

$$
\begin{aligned}
& \sum_{i \sim j} \operatorname{Pr}\left\{B_{i} \cap B_{j}\right\}=\sum_{s=0}^{k} \sum_{t=0}^{k} \sum_{\substack{i \sim j \\
r\left(\mathbf{H}_{\mathbf{A}_{\mathbf{i}}}^{(k, n)}, \mathbf{H}_{\mathbf{A}_{\mathrm{i}}}^{(k, n)}\right)=(s, t)}} \operatorname{Pr}\left\{B_{i} \cap B_{j}\right\}= \\
& 2 \sum_{s=1}^{k} \sum_{t=0}^{s-1} \sum_{\substack{i \sim j \\
r\left(\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(k, n)}}, \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(k, n)}}^{(k)}\right)=(s, t)}} \operatorname{Pr}\left\{B_{i} \cap B_{j}\right\}+ \\
& \sum_{r=0}^{k-1} \sum_{\substack{i \sim j \\
r\left(\mathbf{H}_{\mathbf{A}_{\mathbf{i}}}^{(k, n)}, \mathbf{H}_{\mathbf{A}_{\mathbf{j}}}^{(k, n)}\right)=(r, r) \\
\mid \mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(k, n)} \cap \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(k, n)}} \mid=2^{r}}}} \operatorname{Pr}\left\{B_{i} \cap B_{j}\right\}+\sum_{r=1}^{k-1} \sum_{\substack{i \sim j \\
r\left(\mathbf{H}_{\left.\mathbf{A}_{\mathbf{i}}^{(k, r)}, \mathbf{H}_{\mathbf{A}^{(k, n)}}\right)=(r, r)}\right.}} \operatorname{Pr}\left\{B_{i} \cap B_{j}\right\}+
\end{aligned}
$$

$$
\sum_{\substack{i \sim j \\ r\left(\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(k, n)},}, \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(k, n)}}\right)=(k, k) \\\left|\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(k, n)}} \cap \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(k, n)}}\right| \leq 2^{k-1}}} \operatorname{Pr}\left\{B_{i} \cap B_{j}\right\}+\sum_{\substack{i \sim j \\ r\left(\mathbf{H}_{\mathbf{A}_{\mathbf{i}}(k, n)}, \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(k, n)}}\right)=(k, k)}} \operatorname{Pr}\left\{B_{i} \cap B_{j}\right\} .
$$

The first sum can be estimated by Lemmas 2.2 and 2.3 (3)

$$
\begin{gathered}
\sum_{s=1}^{k} \sum_{t=0}^{s-1} \sum_{\substack{i \sim j \\
r\left(\mathbf{H}_{\left.\mathbf{A}_{\mathbf{i}}^{(k, n)}, \mathbf{\mathbf { H } _ { \mathbf { A } _ { \mathbf { j } } } (k , n)}\right)}\right)=(s, t)}} \operatorname{Pr}\left\{B_{i} \cap B_{j}\right\} \leq \sum_{s=1}^{k} \sum_{t=0}^{s-1} 2^{2 k^{2}}\binom{n}{k+1} n^{k+1-s}\left(\frac{c}{n^{\frac{k+1}{2^{k}}}}\right)^{2 \cdot 2^{k}-2^{t}}= \\
n^{o(1)} \sum_{s=1}^{k} \frac{n^{2^{s-1} \frac{k+1}{2^{k}}}}{n^{s}}=n^{o(1)}\left(n^{\frac{k+1}{2^{k}-1}}+n^{\frac{k+1}{2}-k}\right)=o(1)
\end{gathered}
$$

since the sequence $a_{s}=2^{s-1} \frac{k+1}{2^{k}}-s$ is decreasing for $1 \leq s \leq k-\log _{2}(k+1)+1$ and increasing for $k-\log _{2}(k+1)+1<s \leq k$.

To estimate the second sum we apply Lemma 2.3 (2)

$$
\begin{gathered}
\sum_{r=0}^{k-1} \sum_{\substack{i \sim j \\
r\left(\mathbf{H}_{\left.\mathbf{A}_{\mathbf{i}}^{(k, n)}, \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(k, n)}}\right)=(r, r)}^{\mid \mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(k, n)} \cap \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(k, n)}} \mid=2^{r}}} \operatorname{Pr}\left\{B_{i} \cap B_{j}\right\} \leq \sum_{r=0}^{k-1} 2^{2 k^{2}}\left(\begin{array}{c}
n \\
k+1
\end{array}\right) n^{k-r}\left(\frac{c}{\left.n^{\frac{k+1}{2^{k}}}\right)^{2 \cdot 2^{k}-2^{r}}=} \\
n^{-1+o(1)} \sum_{r=0}^{k-1} \frac{n^{2^{r} \frac{k+1}{2^{k}}}}{n^{r}}=n^{-1+o(1)}\left(n^{\frac{k+1}{2^{k}}}+n^{\frac{k+1}{2}-(k-1)}\right)=o(1) .\\
\\
\right.\right.}}^{l} .
\end{gathered}
$$

The third sum can be bounded using Lemma 2.3 (1)

$$
\begin{aligned}
& \sum_{r=1}^{k-1} \sum_{\substack{i \sim j \\
r\left(\mathbf{H}_{\left.\mathbf{A}_{\mathbf{i}}^{(k, n)}, \mathbf{H}_{\mathbf{A}_{\mathbf{j}}(k, n)}\right)=(r, r)}^{\begin{subarray}{c}{\mathbf{H}_{\mathbf{A}_{\mathbf{i}}}^{(k, n)} \cap \mathbf{H}_{\mathbf{A}_{\mathbf{j}}}^{(k, n) \mid<2^{r}}} }} \mid\right.}\end{subarray}} \operatorname{Pr}\left\{B_{i} \cap B_{j}\right\} \leq \sum_{r=1}^{k-1} 2^{2 k^{2}}\binom{n}{k+1} n^{k+1-r}\left(\frac{c}{\left.n^{\frac{k+1}{2^{k}}}\right)^{2 \cdot 2^{k}-2^{r}+1} \leq}\right. \\
& n^{o(1)-\frac{k+1}{2^{k}}} \sum_{r=1}^{k-1} \frac{n^{2^{r} \frac{k+1}{2^{k}}}}{n^{r}}=n^{o(1)-\frac{k+1}{2^{k}}}\left(n^{2 \frac{k+1}{2^{k}}-1}+n^{\frac{k+1}{2}-(k-1)}\right)=o(1) .
\end{aligned}
$$

Similarly, for the fourth sum we apply Lemma 2.3 (1)

$$
\sum_{\substack{i \sim j \\ r\left(\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(k, n)}}, \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{(k, n)}}\right)=(k, k) \\\left|\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{(k, n)}} \cap \mathbf{H}_{\mathbf{A}_{\mathbf{j}}(k, n)}\right| \leq 2^{k-1}}} \operatorname{Pr}\left\{B_{i} \cap B_{j}\right\} \leq n^{o(1)} n^{k+2}\left(\frac{c}{\left.n^{\frac{k+1}{2^{k}}}\right)^{1.5 \cdot 2^{k}}=o(1) . .}\right.
$$

To estimate the fifth sum we note that $\left|\mathbf{H}_{\mathbf{A}_{\mathrm{i}}^{(k, n)}} \cup \mathbf{H}_{\mathbf{A}_{\mathrm{j}}^{(k, n)}}\right| \geq 2^{k}+1$. It follows from Lemma 3.3 that

$$
\sum_{\substack{i \sim j \\ r\left(\mathbf{H}_{A_{i}}^{\left.(k, n), \mathbf{H}_{A_{j}}^{(k, n)}\right)=(k, k)} \\ \mid \mathbf{H}_{\mathbf{A}_{\mathrm{i}}^{(k, n)}}^{\left(\mathbf{H}_{\mathbf{A}_{\mathrm{j}}}^{(k, n)} \mid>2^{k-1}\right.}\right.}} \operatorname{Pr}\left\{B_{i} \cap B_{j}\right\} \leq 2^{2 k^{2}+2 k} n^{k+1}\left(\frac{c}{n^{\frac{k+1}{2 k}}}\right)^{2^{k}+1}=o(1),
$$

which completes the proof.

Proof of Theorem 1.6. Let $\epsilon>0$ and for simplicity let $D_{n}=D_{n}(\epsilon)$ and $E_{n}=E_{n}(\epsilon)$. In the proof we use the estimations

$$
\begin{equation*}
2^{2^{D_{n}}} \leq 2^{2^{\log _{2} \log _{2} n+\log _{2} \log _{2} \log _{2} n+\frac{(1-\epsilon) \log _{2} \log _{2} \log _{2} n}{\log _{2} \log _{2} \log _{2} n}}}=n^{\log _{2} \log _{2} n+(1-\epsilon+o(1)) \log _{2} \log _{2} \log _{2} n} \tag{2}
\end{equation*}
$$

and
(3) $\quad 2^{2^{E_{n}+1}} \geq 2^{2^{\log _{2} \log _{2} n+\log _{2} \log _{2} \log _{2} n+\frac{(1+\epsilon) \log _{2} \log _{2} \log _{2} n}{\log _{2 \text { 薙2 }} \log _{2} n}}}=n^{\log _{2} \log _{2} n+(1+\epsilon+o(1)) \log _{2} \log _{2} \log _{2} n}$

In order to verify Theorem 2 we have to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{S\left(n, \frac{1}{2}\right) \text { contains a } D_{n} \text {-cube }\right\}=1 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{S\left(n, \frac{1}{2}\right) \text { contains an }\left(E_{n}+1\right) \text {-cube }\right\}=0 \tag{5}
\end{equation*}
$$

To prove the limit in (4) let $\mathbf{H}_{\mathbf{A}_{1}^{\left(D_{n}, n\right)}}, \ldots, \mathbf{H}_{\mathbf{A}_{\mathbf{N}}^{\left(D_{n}, n\right)}}$ be the different non-degenerate D_{n}-cubes in $[1, n], B_{i}$ be the event $H_{\mathbf{A}_{\mathbf{i}}^{\left(D_{n}, n\right)}} \subset S\left(n, \frac{1}{2}\right), X_{i}$ be the indicator random variable for B_{i} and $X=X_{1}+\ldots+X_{N}$ be the number of $\mathbf{H}_{\mathbf{A}_{\mathrm{i}}^{\left(D_{n}, n\right)}} \subset S\left(n, \frac{1}{2}\right)$. The linearity of expectation gives by Lemma 1 and inequality (2)

$$
\begin{gathered}
E(X)=N E\left(X_{i}\right)=(1+o(1))\binom{n}{D_{n}+1} \frac{1}{D_{n}!} 2^{-2^{D_{n}}} \geq \\
n^{\log _{2} \log _{2} n+(1+o(1)) \log _{2} \log _{2} \log _{2} n} n^{-\log _{2} \log _{2} n-(1-\epsilon+o(1)) \log _{2} \log _{2} \log _{2} n}=n^{(\epsilon+o(1)) \log _{2} \log _{2} \log _{2} n},
\end{gathered}
$$

therefore $E(X) \rightarrow \infty$, as $n \rightarrow \infty$. By Lemma 2.4 it remains to prove that

$$
\sum_{i \sim j} \operatorname{Pr}\left\{B_{i} \cap B_{j}\right\}=o\left(E(X)^{2}\right)
$$

where $i \sim j$ means that the events B_{i}, B_{j} are not independent i.e. the cubes $\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{\left(D_{n}, n\right)}}, \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{\left(D_{n}, n\right)}}$ have common vertices. We split this sum according to the ranks
(6)

$$
\begin{aligned}
& \sum_{i \sim j} \operatorname{Pr}\left\{B_{i} \cap B_{j}\right\}=\sum_{s=0}^{D_{n}} \sum_{t=0}^{D_{n}} \sum_{\substack{i \sim j \\
r\left(\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{\left(D_{n}, n\right)},}, \mathbf{H}_{\mathbf{A}_{\mathbf{j}}}^{\left(D_{n}, n\right)}\right)=(s, t)}} \operatorname{Pr}\left\{B_{i} \cap B_{j}\right) \leq \\
& \sum_{\substack{i \sim j \\
r\left(\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{\left(D_{n}, n\right)},}, \mathbf{H}_{\mathbf{A}_{\mathbf{j}}}^{\left(D_{n}, n\right)}\right)=(0,0)}} \operatorname{Pr}\left\{B_{i} \cap B_{j}\right)+2 \sum_{s=1}^{D_{n}} \sum_{t=0}^{s} \sum_{\substack{i \sim j \\
r\left(\mathbf{H}_{\left.\mathbf{A}_{\mathbf{i}}^{\left(D_{2}, n\right)}, \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{\left(D_{n}, n\right)}}\right)=(s, t)}\right.}} \operatorname{Pr}\left\{B_{i} \cap B_{j}\right\} .
\end{aligned}
$$

The condition $r\left(\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{\left(D_{n, n}\right)}}, \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{\left(D_{n}, n\right)}}\right)=(0,0)$ implies that $\left|\mathbf{H}_{\mathbf{A}_{\mathbf{i}}^{\left(D_{n}, n\right)}} \cup \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{\left(D_{n}, n\right)}}\right|=2^{D_{n}+1}-1$, thus by Lemma 3.2

$$
\begin{aligned}
& \sum_{\substack{\left.i \sim j \\
(2, n), \mathbf{H}_{A_{\mathbf{j}}}^{\left(D_{n}, n\right)}\right)=(0,0)}} \operatorname{Pr}\left\{B_{i} \cap B_{j}\right\} \leq 2^{2 D_{n}^{2}}\binom{n}{D_{n}+1} n^{D_{n}} 2^{-2^{D_{N}+1}+1}= \\
& o\left(\left(\binom{n}{D_{n}+1} \frac{1}{D_{n}!} 2^{-2^{D_{n}}}\right)^{2}\right)=o\left(E(X)^{2}\right) .
\end{aligned}
$$

In the light of Lemmas 2.2 and 2.3 (1) the second term in (6) can be estimated as

$$
\begin{gathered}
\sum_{s=1}^{D_{n}} \sum_{t=0}^{s} \sum_{\substack{i \sim j \\
r\left(\mathbf{H}_{\left.\mathbf{A}_{\mathbf{i}}^{\left(D_{n}, n\right)}, \mathbf{H}_{\mathbf{A}_{\mathbf{j}}^{\left(D_{n}, n\right)}}\right)=(s, t)}\right.}} \operatorname{Pr}\left\{B_{i} \cap B_{j}\right\} \leq \sum_{s=1}^{D_{n}} \sum_{t=0}^{s}\binom{n}{D_{n}+1} 2^{2 D_{n}^{2}} n^{D_{n}+1-s} 2^{-2 \cdot 2^{D_{n}}+2^{t}}= \\
\left(\binom{n}{D_{n}+1} \frac{1}{D_{n}!} 2^{-2^{D_{n}}}\right)^{2} n^{o(1)} \sum_{s=1}^{D_{n}} \sum_{t=0}^{s} \frac{2^{2^{t}}}{n^{s}}=\left(\binom{n}{D_{n}+1} \frac{1}{D_{n}!} 2^{-2^{D_{n}}}\right)^{2} n^{o(1)} \sum_{s=1}^{D_{n}} \frac{2^{2^{s}}}{n^{s}}
\end{gathered}
$$

Finally, the function $f(x)=\frac{2^{2 x}}{n^{x}}$ decreases on $\left(-\infty, \log _{2} \log n-2 \log _{2} \log 2\right]$ and increases on $\left[\log _{2} \log n-2 \log _{2} \log 2, \infty\right)$, therefore by (2)

$$
\sum_{s=1}^{D_{n}} \frac{2^{2^{s}}}{n^{r}}=n^{o(1)}\left(\frac{4}{n}+\frac{2^{2^{D_{n}}}}{n^{D_{n}}}\right)=n^{-1+o(1)}
$$

which proves the limit in (4).
In order to prove the limit in (5) let $\mathbf{H}_{\mathbf{C}_{\mathbf{1}}^{\left(E_{n}+1, n\right)}}, \ldots, \mathbf{H}_{\mathbf{C}_{\mathbf{K}}^{\left(E_{n}+1, n\right)}}$ be the distinct $\left(E_{n}+1\right)$-cubes in $[1, n]$ and let F_{i} be the event $\mathbf{H}_{\mathbf{C}_{\mathbf{i}}^{\left(E_{n}+1, n\right)}} \subset S\left(n, \frac{1}{2}\right)$. By (3) we have

$$
\begin{gathered}
\operatorname{Pr}\left\{S_{n} \text { contains an }\left(E_{n}+1\right) \text {-cube }\right\}=\operatorname{Pr}\left\{\cup_{i=1}^{K} F_{i}\right\} \leq \sum_{i=1}^{K} \operatorname{Pr}\left\{F_{i}\right\} \leq \\
\binom{n}{E_{n}+2} 2^{-2^{E_{n}+1}} \leq \frac{n^{\log _{2} \log _{2} n+(1+o(1)) \log _{2} \log _{2} \log _{2} n}}{n^{\log _{2} \log _{2} n+(1+\epsilon+o(1)) \log _{2} \log _{2} \log _{2} n}}=o(1),
\end{gathered}
$$

which completes the proof.

3. Concluding remarks

The aim of this paper is to study non-degenerate Hilbert cubes in a random sequence. A natural problem would be to give analogous theorems for Hilbert cubes, where degenerate cubes are allowed. In this situation the dominant terms may come from arithmetic progressions. An $A P_{k+1}$ forms a k-cube. One can prove by the Janson inequality (see Lemma 2.5) that for a fixed $k \geq 2$

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{S\left(n, c n^{-\frac{2}{k+1}}\right) \text { contains no } A P_{k+1}\right\}=e^{-\frac{c^{k+1}}{2 k}}
$$

An easy argument shows (using Janson's inequality again) that for all $c>0$, with $p_{n}=c n^{-2 / 5}$

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{S\left(n, p_{n}\right) \text { contains no } 4 \text {-cubes }\right\}=e^{-\frac{c^{5}}{8}}
$$

Conjecture 3.1. For $k \geq 4$

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{S\left(n, c n^{-\frac{2}{k+1}}\right) \text { contains no } k \text {-cubes }\right\}=e^{-\frac{e^{k+1}}{2 k}} .
$$

A simple calculation implies that in the random subset $S(n, 1 / 2)$ the length of the longest arithmetic progression is a.e. nearly $2 \log _{2} n$, therefore it contains a Hilbert cube of dimension $(2-\varepsilon) \log _{2} n$.

Conjecture 3.2. For every $\varepsilon>0$
$\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{\right.$ the maximal dimension of Hilbert cubes in $S\left(n, \frac{1}{2}\right)$ is $\left.<(2+\varepsilon) \log _{2} n\right\}=1$.
N. Hegyvári (see [5]) studied the special case where the generating elements of Hilbert cubes are distinct. He proved that in this situation the maximal dimension of Hilbert cubes is a.e. between $c_{1} \log n$ and $c_{2} \log n \log \log n$. In this problem the lower bound seems to be the correct magnitude.

References

[1] N. Alon, and J. Spencer, The Probabilistic Method, Wiley-Interscience, Series in Discrete Math. and Optimization, 1992.
[2] A. Godbole, S. Janson, N. Locantore and R. Rapoport, Random Sidon Seqence, J. Number Theory, 75 (1999), no. 1, 7-22.
[3] D. S. Gunderson and V. Rödl, Extremal problems for Affine Cubes of Integers, Combin. Probab. Comput., 7 (1998), no. 1, 65-79.
[4] R. L. Graham, B. L. Rothchild and J. Spencer, Ramsey Theory, Wiley-Interscience, Series in Discrete Math. and Optimization, 1990.
[5] N. Hegyvári, On the dimension of the Hilbert cubes, J. Number Theory, 77 (1999), no. 2, 326-330.

Csaba SÁndor

Department of Stochastics
Budapest University of Technology and Economics
Egry J. u. 1, 1111 Budapest
Hungary
E-mail: csandor@math.bme.hu

[^0]: Supported by Hungarian National Foundation for Scientific Research, Grant No. T 049693 and 61908.

