An Extension of a Nathanson’s Theorem on
representation functions
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Abstract
For a given integer n and a set S C N denote by Rg‘)g(n) the number of solutions of
the equation n = s;, +--- +s;,, s;; €S, = 1,...,h. In this paper we determine
all pairs (A, B), A,B C N for which R,(llll(n) = Ré%(n) from a certain point on,
where h is a power of a prime. We also discuss the composite case.
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1 Introduction

Let N be the set of nonnegatlve mte?;ers For a given infinite set A C N the representation

functions Rh A( n), R,(f ’y(n) and R ) are defined in the following way:

Rl(zl,zél(n):#{(aila“'aaih):ai1+"'+&ih =T, Ay - -5 Qg EA}7

R,(f (n) = #{(iy,---,ai,) iy +--+a, =n,0;,,...,6, € Aa, <---<a;,},

R(3 W) =#{(ai,. ..,a;) ca +Fay, =n,a;,.. 0,0, € Aa, < <a,}.

Representation functions have been extensively studied by many authors and are still a
fruitful area of research in additive number theory. Using generating functions, Nathanson
[7] proved the following result.

Let F4, Fg and T be finite sets of integers. If each residue class modulo m contains
exactly the same number of elements of F4 as elements of Fj, then we write F4 = Fj
(mod m). If the number of solutions of the congruence a +t =n (mod m) with a € Fy,
t € T equals to the number of solutions of the congruence b+t = n (mod m) with b € Fjp,
t € T for each residue class n modulo m then we write Fy +71 = Fg+ T (mod m).
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Nathanson s Theorem. Let A and B be infinite sets of nonnegative integers, A # B.
Then R2 A( ) = RSB( ) from a certain point on if and only if there exist positive integers
N, m andﬁmte sets Fp, Fg, T with F,U Fg C {0,1,...,N} and T C {0,1,...,m — 1}
such that Fx+T = Fg+T (mod m), and A= F,UC and B = FgUC, where C = {c >
Nl|e =t (mod m) for some teT}.

R, (n)
2

W ()
It is clear that Réﬂ(n) = [ and R(S) an) = {RQ‘A( )J, thus for the sets A, B in

2

Nathanson’s Theorem we have R(QQJ)L‘(n) = Rfl)g(n) and Rgi)‘l(n) = Régl)g(n) from a certain
point on. It is easy to see that the symmetric difference of the sets A and B in the above
theorem is finite. A. Sarkozy asked whether there exist two infinite sets of nonnegative
integers A and B with infinite symmetric difference, i.e.

((AUB)\ (AN B)| =

and

RY,(n) = R{%(n)

if n > ng, fori=1, 2, 3. For i = 1 the answer is negative (see in [3]). For i = 2 G. Dombi
[3] and for i = 3 Y. G. Chen and B. Wang [2] proved that the set of nonnegative integers
can be partitioned into two subsets A and B such that R;’L(n) = Rg%g(n) for all n > ny.
In [6] Lev gave a common proof to the above mentioned results of Dombi [3] and Chen
and Wang [2]. Using generating functions Cs. Sédndor [8] determined the sets A C N for
which either

Réﬂ(n) = R%)N\ a(n) forall n>ng

or
Ré?’A( ) = Régli]\A(n) for all n > ny.

In [9] M. Tang gave an elementary proof of Cs. Sandor’s results. Y. G. Chen and M.
Tang studied related questions in [1] .

Let C be a finite set of integers. Let F4(2), F, T(z) denote polynomials and A(z), B(z)

denote power series having coefficients from the set C (i.e. A(z Z a,z", where a, € C

n=0
and z is a complex number, z =1 -¢€ . These series converge in the open unit disc. If

C = {0,1} then the generating functions of the sets A, B, F4, Fz and T' C N are special
kind of these polynomials and power series.

To make the proofs easier we will use the following notation: A(z) ~ B(z) means
that A(z) — B(z) is a polynomial. Using these we can rewrite Nathanson’s Theorem in
equivalent form:

27ri9)

Equivalent form of Nathanson’s Theorem. Let A(z) = Zanz”, B(z) = Z b, 2",
n=0 n=0
an, bp € {0,1}. Then A(2)* ~ B(2)? if and only if there exist positive integers No, m and
mNg—1 mNg—1
polynomials F4(z) = Z d,z", Fg(z) = Z en2", dy, e, € {0,1} and T'(z Zt 2"
n=0 n=0



t, € {0,1} such that

A) = Fa(z) + DT
B(:) = Fulz) + 202
and
1= 27T (2) (Fa(2) - Fi(2)
holds.

S. Z. Kiss, R. Rozgonyi and Cs. Sandor [4] conjectured that Nathanson’s theorem can
be generalized as follows.

Conjecture. Let h > 2, A and B be infinite sets of nonnegative integers, A # B. Then
R;Lll‘(n) = R%(n) from a certain point on if and only if there exist positive integers Ny,
m and sets Fy, Fg and T such that F4UFg C {0,1,...,mNyg—1}, T C {0,1....,m—1},

A=F,U{km+t:k>NyteT},
B=FgU{km+t:k>NyteT},
and
(1= 2™ |T(2)"" (Fa(z) — Fs(2)),
where F4(z), Fp(z) and T(z) denote the generating functions of the sets Fa, Fg and T.
In [4] they proved the sufficiency part of the Conjecture, and they also proved the Con-

jecture for the case h = 3.
Using power series, we can rewrite the Conjecture in equivalent form.

Equivalent form of the Conjecture. Let A(z) = Z a,z", B(z) = Z by2", an, by, €
n=0 n=0
{0,1}. Then A(2)" ~ B(2)" if and only if there exist positive integers Ny, m and poly-

mNg—1 mNg—1

m—1
nomials Fy(z) = Z d,z", Fp(z) = Z enz", dp,en € {0,1} and T(z) = Ztnz”,
n=0 n=0

n=0
tn € {0,1} such that

AG) = Fale) + D222
B(z) = Fp(2) Tl(ZZZ:m i
and
(1= 2™)"HT ()" (Fa(z) = Fs(2))
holds.



In this paper we prove the above Conjecture in the case h = p®, where p is prime.

Theorem 1. Let h = p* and let C C Z be a finite set which contains incongruent inte-

gers modulo p. Let A(z Zan , B(2) = anz” be power series, where a,,b, € C.
n=0
Then A(2)" ~ B(2)" if cmd only if there exist positive integers No, m and polynomials
mNy—1 mNy—1 m—1
Z d,z", Fg(z) = Z enz", dp,e, € C and T(z Zt 2", t, € C such
n= n=0 n=0
that
T (z)zmNo
A(z)=F —_
() = Fale) + A 222
T (z)zmNo
B(z)=F EE
() = Fsz) + S
and

(1= 2™ T (2)"" (Fa(z) — Fg(2))
holds.

Corollary. The case C = {0, 1} implies that the Conjecture is true for the case h = p®.
In order to prove Theorem 1. we verify the following three lemmas.

Lemma 1. Let C be a set of integers. Suppose that there exist positive integers NO, m and

mNg—1 mNg—1
polynomials F4(z Z d,z", Fg(z Z enz", dp e, € C and T(z Zt z"
t, € C such that
T mNg
Az) = Falz) + D2
1—2m
T mNO
B(z) = Fp(z) + %

and
(1= 2™ T ()" (Fa(z) = Fs(2))

holds. Then A(2)" ~ B(z)".
The following example shows that for any C C Z, |C| > 2 and h > 2 there exist different
power series A(z), B(z) having their coefficients from C with the property A(z)" ~ B(z)".

o0

Proposition 1. Let C C Z, |C| > 2. Then there exist series A(z Z a,z", B(z) = Z b, 2",
n=0

n, bp € C such that A(z) # B(z) and A(2)" ~ B(2)".

In the proof of Theorem 1. we only use the fact that h is a power of prime in Lemma 2.

4



Lemma 2. Let h = p® and let C C 7Z, where no element of C are congruent modulo p.

Let A(z Zan , B(z) = anz", n,bp € C. The condition A(2)" ~ B(2)" implies
n=0

that A(z) ~ (z)

The condition of Lemma 2. that C contains incongruent integers modulo p is important,
because Imre Z. Ruzsa gave the identity

224 \? 22 \° A 6
(—1+1_22> —(1_Z2) =1—4z"+4z".

It means that there exist power series A(z) and B(z) having coefficients from the set
C = {-1,0,2} such that A(z)* ~ B(z)?, but A(z) # B(z), because

224 225
1 - — 142
e e s Z

We can generalize Imre Z. Ruzsa’s construction in the following way:

Proposition 2. Let h be a prime number. Then there exist a set Cy, = {c1,¢a,. .., Cpy1},
Cl, ..., Che1 € Z such that ¢y, ...cp form a complete set of residues modulo h and power
series A(z) = > 00 (anz", B(z) = 307 bp2" , an, b, € C such that A(z)" ~ B(2)" but
A(z) # B(z).

Problem. Let C C Z be a finite set, A(z) = Zanzn, B(z) = anz", an, b, € C. Is
n=0 n=0

it true that the condition A(2)" ~ B(z)" implies that the coefficients of the power series
A(z) and B(z) are periodic?

Lemma 3. Let C be a finite set of integers, A(z) = Z a,z", B(z) = Z b,2", an, b, € C.
n=0 n=0
If A(2)" ~ B(2)" and A(z) ~ B(z) holds, then there exist positive integers Ng, m and
mNg—1 mNg—1
polynomials F4(z Z d,z", Fg(z Z enz", dp,e, € C and T(z Zt z"
t, € C such that
T mNo
AG) = Fafe) + DT
1—2zm
T(z)zmNo
B(z) = F
() = Fs(z) + D
and
(1= =" T(2)"" (Falz) = Fs(2)) (1)



2 Proofs

Proof of Lemma 1. We have to show that A(2)" ~ B(z)", that is A(z)"—B(z2)" = P(z),
where P(z) is a polynomial. Using the binomial theorem and the assumptions of Lemma
1 we get that

a6 =5 = (rue) + T (e« T

1—2m 1—2m

h T(Z)h—i . 5 (h=i)mNo

5 (’Z) (Fale)' = Fsl2)) =y

=1
Since

FA(Z) — FB(Z) ‘FA(Z)Z — FB(Z)l s

T(2)"" (Fa(2) = Fs(2)) | (Fa()! = Fs(2)) T()" 0 - 200

Therefore it is enough to show that for every 1 <7 < h — 1 we have
(1= 2™ ()" (Fal2) — Fp(2)) - (2)
From the assumptions we know that (1 — z™)"=1|T"~!(z) (F4(z) — Fg(z)) holds.

For a given integer d let denote by ¢4(z) the dth cyclotomic polynomial. It remains to
prove that

Ga(2)" | T(2)" " (Fa(2) — Fp(2)) . (3)
Let T(2) = ¢q(2)"u(z) and Fyu(z) — Fg(z) = ¢q(2)*v(z), where u(z) and v(z) are
polynomials with the property ¢4(z) fu(z)v(z). By assumptions of Lemma 1 we know
that (h — 1)k; + ko > h — 1. Thus either k; = 0, then ko > h — 1, therefore

¢a(2)" " | Fa(z) — Fi(2)
or ky > 1, therefore ¢4(z) | T'(2) so
¢a(2)" " | T(2)" "

This completes the proof of Lemma 1. B

Proof of Proposition 1: Let Bin(:) denote the parity of the number of 1’s in the
binary form of 4. (i.e. Bin(:) = 1, if the number of 1s in the binary form of i is even and
Bin(:z) = —1, if the number of the 1-s in the binary form of 7 is odd.)

h—2 2h—1_1
It is easy to see that H(l — %) = Z Bin(i)z".
i=0 i=0

Suppose that ¢;, ¢y € C. Let A(z) = Zanz", where for n < 271 —1

n=0

¢; if Bin(n) =1
Ay =
c2 if Bin(n) = —1,

6



and a, = ¢, for n > 2"1,

Let B(z) = Z bn2", where for n < 2"=1 — 1
n=0

po e if Bin(n) =1
" le if Bin(n) = —1,

and b, = ¢;, for n > 2" 1.

Then
Clz2h71
A =F
() = Fa(e) + 25—,
and
0122h71
B = F] .
() = Fi(z) + T

h—
We may apply Lemma 1 with m = 1 and Fy(z) — Fg(z) = (c1 —c2) | [(1 = 2%) and

[\

=0

.

T(z) = ¢, because
(1= 2" [T (2)" " (Fa(z) — Fp(2))

is equivalent with
h

A er — ) [T = 2%,

|
N

(1—2)"1

@
Il
o

which is obviously true. B

Proof of Lemma 2. It is clear that

o) h (o)
A2 = (Z anz"> = Zgnz”,
n=0 n=0

where

= iy ;o= a2 T
Jn = E iy Qi - - - QG g E E ml!ﬂh!'”mt!a]1 ap?...an’.
 (f1,82,0508) =1 (Grendt)  (ma,e..me)m€ZT
i1+i2++ip=n CgiEN e dme=h
0<1<ga<--<jt miji+--+mejt=n
(4)
Using (4), the formula of Legendre and Fermat’s Theorem we get that modulo p we have

h!

S|

mi1 ma me P mi _ma me
ata? . at = atal? .. at =
mylmol..oml 7t T myImg! L omy R gt
0 for t>2 -
E S S
al =d, =an for t=1
1 ps pS



So g, =0 (mod p) if p* fn and g, = az (mod p), if p* | n.
Similarly for B(z)" we get that

B(2)" = (Z bnz"> = Z hn2",

where h,, =0 (mod p) if p* fn and h,, = b (mod p), if p*|n.

We know that g, = h, (mod p) for n > ng. For np® > ny the congruence g,p,s = hpps
(mod p) implies that a,, = b, (mod p). Using the condition that the set C contains in-
congruent integers modulo p we get that a,, = b,, for n > ng/p®. This completes the proof
of Lemma 2. B

Proof of Lemma 3. Since A(z) ~ B(z) and A(2)" ~ B(2)" we can write that A(z) =
B(z) + P(z) and A(2)" = B(2)" + Q(z), where P(z) and Q(z) are polynomials. Thus

h

Q) =AY = B = (B + PO - B = 1 (1) P B

=1

Multiply both side by P(2)"~2, we get that

h—2 _ AB(2) (Z)P<Z) (g)P<Z)2
Q(2)P(z) = (P(2)B(z)) (h—l— B() + Bl2)? —1—) (6)

We show that P(z)B(z) is bounded in the open unit disc (|z| < 1,z € C). Assume,
that it is not true. Then there is an infinite sequence 21, z9,..., 2, ..., |2z,] < 1 for which
|P(2,)B(zn)| — 00 (so |B(zn)| — o0), and thus

(P(z0)B(z))"! (h L PG | QPG ) ‘ o0,

z z)" 72 =
|Q(20) P(20)" 2| B(zy) B(z,)?

while the left hand side is bounded. So P(z)B(z) is bounded in the open unit disc.

Next we show, that P(z)B(z) is a polynomial. Suppose indirectly, that P(z)B(z) = Z k2",
k=0

k, € Z and k, # 0 for infinitely many integers n. Let z = re*™. For r < 1 the Parseval-

formula gives
oo

1
/ |P(re®™#) B(re*™)[*dp = Y k2r*", (7)
0 n=0
Since P(z)B(z) is bounded, if  — 1~ then the left-hand side of (7) is bounded, but the
right-hand side of (7) tends to infinity. So P(z)B(z) = R(z), where R(z) is a polynomial.
Write P(z) in the form P(z) = Z A\iz'. Then b, fulfils the following linear recursion
i=0
_ 1

bn = =3 (Mibn1 + Aabns + -+ Anbpm) -
0

when n > ny



This means, that b, is determinded by b,_1,b,_9,...,b,_m. Since we can choose b, in
finitely many way we conclude that b, is periodic. Therefore there exist positive integers

mNp—1 mNg—1 m—1
Ny, m and series F4(z) = Z d,z", Fg(z) = Z en2", dp, e, € Cand T'(z) = Z tn2",
n=0 n=0 n=0
t, € C such that
T(z)zmNo
Az) = Falz) + D2
1—2zm
T mN[)
B(Z) = FB(Z) + %

In the last step we have to show (1). We show by induction on k that for every 1 < k <
h—1

(1= ="™)" |T(2)" (Fa(2) — Fs(2)) (8)
holds. It is clear that

AGY = B = (Fao) + M) - (ruto) + M) - Q).

1—2zm 1—zm
where @(z) is a polynomial. Using the binomial theorem we get

(1—zm)h ’(FA(Z)(l — 2™+ T(2)2™0)" — (Fg(2)(1 — 2™) + T(2)2™¥0)" =

-2

h
=0

(h) T'(z)2"™N (Fa(2)"" = Fp(2)") (1 - 2™ (9)

]

Obviously if in (9) ¢ = 0 then (1 —2™)" (Z)T(z)ozo'mNO (Fa(2)" = Fa(2)") (1 - ™" and

also if in (9) ¢ = h then (1 —2™)"| Z)Th(z)zthO - (Fa(2)° — F3(2)°) (1 — 2™)° holds. So
(9) is equivalent to

(1-— zm)h) z_: (h> T(2)" "N (Fa(z)"" = Fp(2)) (1 — PO L (10)

]
i=1

At first let k = 1. In (10) if § < h — 2 then

(1- zm)2

(?) LN T () (Fa(2)" ™ — Fp(2)") (1 - 2™)" " (11)
So in (10) if ¢ = h — 1 then
(1—2m) ] <h f 1) APDmNOT ()M (Fa(z) = Fi(2) (1 — 2™) (12)

should be also true. Since (z,1 — 2™) = 1 from (12) we have

1—2" |T(z)h*1 (Fu(2) — Fp(2)). (13)



We know, that 1 — 2™ = — H ¢a(2), where ¢4(z) denotes the dth cyclotomic polynomial.
1 — 2™ has no multiple roo’?,‘ which implies
1= 2" T (2) (Fa(z) — Fs(2)) - (14)
Now assume that for 1 <[ <k —1, k < h — 1 we have
(1= 2™ |T(2)' (Fa(2) — F(2)).

We have to prove that
(1= 2")"|T(2)" (Fa(z) — Fs(2)). (15)
In (10)

T(2)' (Fa(z) = Fp(2)) (1 = z™)""

(h) NP (2) (Faz)" ™ — Fp(2)") (1 — PLO L

1
(16)
Using the assumption of the induction we get

(1= 2m)t T () (Fa(z) = Fis(2)) (1 - 2™)" (17)

From (16) and (17) we obtain that

(1 o Zm)h—i+min{k— 1,4}

(h) ZmNo ()i (FA(z)h_i — Fg(z)h_i) (1-— zm)h_i . (18)

]

So from (10) we know

(1— )k \ (1— 2" \ hz_‘i (2’) T(2)'2"™N0 (Fa(2)"" = Fg(2)") (1 —2™)""". (19)

If min{k — 1,4} = 4, which means ¢ < k— 1 then h —i+min{k —1,i} = h > k+ 1. Thus

(1 amyet | (’7)T<z>fz"m% (Fa()"~" — Fia(2)") (1 — 2m) (20)

]

holds.
If min{k —1,i} = k—1,then k-1 < i< h—-1. Ifk—-1<1i < h—2 then
h—i+4+min{k —1,i} >24+k—1=k+ 1. Thus

(4

(=] ()T () = Rl (-

So (10), (20) and (21) imply that for i = h — 1 we have

(1— 2| (h " 1)T<z>”—lz<h—”m% (Fa(z) = Fis(2)) (1 = =), (22)

which means that
(1= 2™ T ()" (Fa(z) - Fg(2)) . (23)

10



We use, that 1 — 2™ = — H ¢a(2), where ¢4(z) denotes the dth cyclotomic polynomial.

dlm

This means that for every d, d |m we have ¢q(2)* | T'(2)" 1 (Fa(z) — Fg(2)).

If ¢g(2) | T(2) then ¢g(2)* | T'(2)* is also true. If ¢pq(2) fT(2) then ¢q(2)* | Fa(2)— F5(2).

So for every d | m, ¢q(2)* | T(2)* (Fa(z) — Fs(z)) which means that
(L= 2")" | T(2)* (Fa(2) = Fy(2)) .

This ends the the induction and the proof of Lemma 3.1

Proof of Proposition 2. Let

o+ 1= k)

. e

for 1 <¢<h-—1and

h—1 2
) hh_lzh
A — "1 — hyi—1
hh—lzh2+1
Bz)= L %
(2) 1—zh
We will show that
1. A(2)" ~ B(2)"
2. There exists a set of integers C;, = {c1,¢2,...,cp1} such that ¢, ..

complete set of residues modulo h and for the previous power series A(z)

B(z) = anz” we have a,,, b, € Cy,.
n=0

It is easy to see that A(z) ¢ B(z).
First we prove statement 1.

(24)

.¢cp, form a

o0
= E a,z",

n=0

h—1 2 h 2 h
. i hh_lzh hh_lzh +1
A(z)h _ B(z)h — (Z a;(1— Zh) L T ) _ (1_—2]1) ) (25)
1=1

From (25) we see that to prove A(2)" ~ B(2)" we need to show
R\h — h h1h2h he1 n21\"
/ 7 — — +
(1 z)‘(%ai(l 2)' +h z) <h z )
Let x = 1 — 2", (26) is equivalent to the following
h—1 h
2| (Z axt + a1 - x)h> - th_h(l — x)h2+1.
i=1

11

(26)



So it is enough to show (27). For —1 < x < 1 by the binomial series expansion we get

PR (] — )P — (hh (1 J;)hQ;Tl)h - (28)
(W*ﬁfC?)vW#) <m1§f(2j W+m1§3(?>Fwy>_
h—1— zH] O(h2+1 Jh) i, h—1 S hg}jl i, h_
Zh 7 (—1)'z'+h Z( ; )(—1)1‘ =
(g%ﬁliﬁumjljm(wfy+

S0 (S A ) (105 () -

k=1 1=0 i=h

i—1 2 h o]
h*+1—jh . .
(E hh= il 7 J )(—1)%2) +§ d;x".

i=h
Thus
h—1 i—1/12 . h2+1
Jl._o(h*+1—jh ,
hh2,h(1_x>h2+1 - (Z hhfl—z HJ—O( . J ) ) Zd L= Z d x (29)
i=0 ’ i
Hence

7!

Moot +1-gn N :
h| (Z hh 1—i115=0 : (—1>ZIZ> _ hh _h(l _ £)h +1 (30)
Since for every 1 <i < h—1

(—1)'ph=1= ZH olh” +1 - jh) —a§+(—1)ihh1(}.l>,

7!

from (30) we get that

h—1 h—1 h
z"| (Z i’ + R RNy (1) (};) x) — B — ) (31)

i=1 i=1
Thus

) (Z agr’ + ! Z( 1) (if) x) - WML — )t (32)

=0

h
(h\ .
is also true. Using the binomial theorem we get that E (—1)7’( ,)xz = (1 —2)", which
i
i=0
proves statement 1.

12



h*+1—jh
H ( 5 i) € Z. When p is a
7!

prime number and p® < h, then (p®, h) = 1. Therefore among the numbers h? + 1, h? +
1—h,...,h2+1— Q J 1) h there are {LJ , which are divisible by p®. So

Now we prove statement 2. We will show that

il
pZa= b T2 + 1 - ).

J=1

By the Legendre’s formula, in the prime factorization of ¢! (i < h) the exponent of p is

5]

a=1
Let
h—1 it hhilth o0
_ / i— _ n
A(z) = 2 a;(1=2")""+ 57— —nzzoanz :
Then a, = 0 or a, = h"~! holds for n # ih, 0 <i < h — 2.
Clearly,

ph—1 h2+1

B(z) = —~——— sz
where b, =0 or b, = h" L.

It remains to show that the integers ag, an, asp, . . ., ag—2), form primitive residue classes
modulo h. If 0 < k < h — 2 we get that

apy = hj (—1)*d} (j ; 1).

j=k+1

For 1 < j < h —2 we have h|0L;»7 thus using Wilson’s Theorem we get

T e N § (o e L BN ()
apn = (—1) ahl( I ) = (-1 (h—1)! (=1) m -
_ 1 4 (h—1)! _
=V O e e FHYE
_ kth—1 (h = D=1 _
A (e oy sy ey R
E(_1)hEZ:Bi(/€+1)E_(k+1) (mod h).

This show that statement 2 holds. This completes the proof of Theorem 2. W
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