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Abstract

For a given integer n and a set S ⊆ N denote by R
(1)
h,S(n) the number of solutions of

the equation n = si1 + · · ·+ sih , sij ∈ S, j = 1, . . . , h. In this paper we determine

all pairs (A,B), A,B ⊆ N for which R
(1)
h,A(n) = R

(1)
h,B(n) from a certain point on,

where h is a power of a prime. We also discuss the composite case.
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1 Introduction

Let N be the set of nonnegative integers. For a given infinite set A ⊂ N the representation
functions R

(1)
h,A(n), R

(2)
h,A(n) and R

(3)
h,A(n) are defined in the following way:

R
(1)
h,A(n) = # {(ai1 , . . . , aih) : ai1 + · · ·+ aih = n, ai1 , . . . , aih ∈ A} ,

R
(2)
h,A(n) = # {(ai1 , . . . , aih) : ai1 + · · ·+ aih = n, ai1 , . . . , aih ∈ A, ai1 ≤ · · · ≤ aih} ,

R
(3)
h,A(n) = # {(ai1 , . . . , aih) : ai1 + · · ·+ aih = n, ai1 , . . . , aih ∈ A, ai1 < · · · < aih} .

Representation functions have been extensively studied by many authors and are still a
fruitful area of research in additive number theory. Using generating functions, Nathanson
[7] proved the following result.
Let FA, FB and T be finite sets of integers. If each residue class modulo m contains
exactly the same number of elements of FA as elements of FB, then we write FA ≡ FB
(mod m). If the number of solutions of the congruence a+ t ≡ n (mod m) with a ∈ FA,
t ∈ T equals to the number of solutions of the congruence b+t ≡ n (mod m) with b ∈ FB,
t ∈ T for each residue class n modulo m then we write FA + T ≡ FB + T (mod m).
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Nathanson’s Theorem. Let A and B be infinite sets of nonnegative integers, A 6= B.
Then R

(1)
2,A(n) = R

(1)
2,B(n) from a certain point on if and only if there exist positive integers

N , m and finite sets FA, FB, T with FA ∪ FB ⊂ {0, 1, . . . , N} and T ⊂ {0, 1, . . . ,m− 1}
such that FA + T ≡ FB + T (mod m), and A = FA ∪ C and B = FB ∪ C, where C = {c >
N |c ≡ t (mod m) for some t ∈ T}.

It is clear that R
(2)
2,A(n) =

⌈
R

(1)
2,A(n)

2

⌉
and R

(3)
2,A(n) =

⌊
R

(1)
2,A(n)

2

⌋
, thus for the sets A,B in

Nathanson’s Theorem we have R
(2)
2,A(n) = R

(2)
2,B(n) and R

(3)
2,A(n) = R

(3)
2,B(n) from a certain

point on. It is easy to see that the symmetric difference of the sets A and B in the above
theorem is finite. A. Sárközy asked whether there exist two infinite sets of nonnegative
integers A and B with infinite symmetric difference, i.e.

|(A ∪ B) \ (A ∩ B)| =∞

and
R

(i)
2,A(n) = R

(i)
2,B(n)

if n ≥ n0, for i = 1, 2, 3. For i = 1 the answer is negative (see in [3]). For i = 2 G. Dombi
[3] and for i = 3 Y. G. Chen and B. Wang [2] proved that the set of nonnegative integers

can be partitioned into two subsets A and B such that R
(i)
2,A(n) = R

(i)
2,B(n) for all n ≥ n0.

In [6] Lev gave a common proof to the above mentioned results of Dombi [3] and Chen
and Wang [2]. Using generating functions Cs. Sándor [8] determined the sets A ⊂ N for
which either

R
(2)
2,A(n) = R

(2)
2,N\A(n) for all n ≥ n0

or
R

(3)
2,A(n) = R

(3)
2,N\A(n) for all n ≥ n0.

In [9] M. Tang gave an elementary proof of Cs. Sándor’s results. Y. G. Chen and M.
Tang studied related questions in [1] .

Let C be a finite set of integers. Let FA(z), FB, T (z) denote polynomials and A(z), B(z)

denote power series having coefficients from the set C (i.e. A(z) =
∞∑
n=0

anz
n, where an ∈ C

and z is a complex number, z = r · e2πiθ). These series converge in the open unit disc. If
C = {0, 1} then the generating functions of the sets A, B, FA, FB and T ⊆ N are special
kind of these polynomials and power series.

To make the proofs easier we will use the following notation: A(z) ∼ B(z) means
that A(z) − B(z) is a polynomial. Using these we can rewrite Nathanson’s Theorem in
equivalent form:

Equivalent form of Nathanson’s Theorem. Let A(z) =
∞∑
n=0

anz
n, B(z) =

∞∑
n=0

bnz
n,

an, bn ∈ {0, 1}. Then A(z)2 ∼ B(z)2 if and only if there exist positive integers N0, m and

polynomials FA(z) =

mN0−1∑
n=0

dnz
n, FB(z) =

mN0−1∑
n=0

enz
n, dn, en ∈ {0, 1} and T (z) =

m−1∑
n=0

tnz
n,
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tn ∈ {0, 1} such that

A(z) = FA(z) +
T (z)zmN0

1− zm
,

B(z) = FB(z) +
T (z)zmN0

1− zm

and
1− zm|T (z) (FA(z)− FB(z))

holds.

S. Z. Kiss, R. Rozgonyi and Cs. Sándor [4] conjectured that Nathanson’s theorem can
be generalized as follows.

Conjecture. Let h ≥ 2, A and B be infinite sets of nonnegative integers, A 6= B. Then
R

(1)
h,A(n) = R

(1)
h,B(n) from a certain point on if and only if there exist positive integers N0,

m and sets FA, FB and T such that FA∪FB ⊂ {0, 1, . . . ,mN0−1}, T ⊂ {0, 1. . . . ,m−1},

A = FA ∪ {km+ t : k ≥ N0, t ∈ T},
B = FB ∪ {km+ t : k ≥ N0, t ∈ T},

and
(1− zm)h−1

∣∣T (z)h−1 (FA(z)− FB(z)) ,

where FA(z), FB(z) and T (z) denote the generating functions of the sets FA, FB and T .

In [4] they proved the sufficiency part of the Conjecture, and they also proved the Con-
jecture for the case h = 3.
Using power series, we can rewrite the Conjecture in equivalent form.

Equivalent form of the Conjecture. Let A(z) =
∞∑
n=0

anz
n, B(z) =

∞∑
n=0

bnz
n, an, bn ∈

{0, 1}. Then A(z)h ∼ B(z)h if and only if there exist positive integers N0, m and poly-

nomials FA(z) =

mN0−1∑
n=0

dnz
n, FB(z) =

mN0−1∑
n=0

enz
n, dn, en ∈ {0, 1} and T (z) =

m−1∑
n=0

tnz
n,

tn ∈ {0, 1} such that

A(z) = FA(z) +
T (z)zmN0

1− zm
,

B(z) = FB(z) +
T (z)zmN0

1− zm

and
(1− zm)h−1

∣∣T (z)h−1 (FA(z)− FB(z))

holds.
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In this paper we prove the above Conjecture in the case h = ps, where p is prime.

Theorem 1. Let h = ps and let C ⊆ Z be a finite set which contains incongruent inte-

gers modulo p. Let A(z) =
∞∑
n=0

anz
n, B(z) =

∞∑
n=0

bnz
n be power series, where an, bn ∈ C.

Then A(z)h ∼ B(z)h if and only if there exist positive integers N0, m and polynomials

FA(z) =

mN0−1∑
n=0

dnz
n, FB(z) =

mN0−1∑
n=0

enz
n, dn, en ∈ C and T (z) =

m−1∑
n=0

tnz
n, tn ∈ C such

that

A(z) = FA(z) +
T (z)zmN0

1− zm
,

B(z) = FB(z) +
T (z)zmN0

1− zm

and
(1− zm)h−1|T (z)h−1 (FA(z)− FB(z))

holds.

Corollary. The case C = {0, 1} implies that the Conjecture is true for the case h = ps.

In order to prove Theorem 1. we verify the following three lemmas.

Lemma 1. Let C be a set of integers. Suppose that there exist positive integers N0, m and

polynomials FA(z) =

mN0−1∑
n=0

dnz
n, FB(z) =

mN0−1∑
n=0

enz
n, dn, en ∈ C and T (z) =

m−1∑
n=0

tnz
n,

tn ∈ C such that

A(z) = FA(z) +
T (z)zmN0

1− zm
,

B(z) = FB(z) +
T (z)zmN0

1− zm

and
(1− zm)h−1

∣∣T (z)h−1 (FA(z)− FB(z))

holds. Then A(z)h ∼ B(z)h.

The following example shows that for any C ⊆ Z, |C| ≥ 2 and h ≥ 2 there exist different
power series A(z), B(z) having their coefficients from C with the property A(z)h ∼ B(z)h.

Proposition 1. Let C ⊆ Z, |C| ≥ 2. Then there exist series A(z) =
∞∑
n=0

anz
n, B(z) =

∞∑
n=0

bnz
n,

an, bn ∈ C such that A(z) 6= B(z) and A(z)h ∼ B(z)h.

In the proof of Theorem 1. we only use the fact that h is a power of prime in Lemma 2.
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Lemma 2. Let h = ps and let C ⊆ Z, where no element of C are congruent modulo p.

Let A(z) =
∞∑
n=0

anz
n, B(z) =

∞∑
n=0

bnz
n, an, bn ∈ C. The condition A(z)h ∼ B(z)h implies

that A(z) ∼ B(z).

The condition of Lemma 2. that C contains incongruent integers modulo p is important,
because Imre Z. Ruzsa gave the identity(

−1 +
2z4

1− z2

)2

−
(

2z5

1− z2

)2

= 1− 4z4 + 4z6.

It means that there exist power series A(z) and B(z) having coefficients from the set
C = {−1, 0, 2} such that A(z)2 ∼ B(z)2, but A(z) 6∼ B(z), because

−1 +
2z4

1− z2
− 2z5

1− z2
= −1 + 2

∞∑
n=4

(−1)nzn.

We can generalize Imre Z. Ruzsa’s construction in the following way:

Proposition 2. Let h be a prime number. Then there exist a set Ch = {c1, c2, . . . , ch+1},
c1, . . . , ch+1 ∈ Z such that c1, . . . ch form a complete set of residues modulo h and power
series A(z) =

∑∞
n=0 anz

n, B(z) =
∑∞

n=0 bnz
n , an, bn ∈ C such that A(z)h ∼ B(z)h but

A(z) 6∼ B(z).

Problem. Let C ⊂ Z be a finite set, A(z) =
∞∑
n=0

anz
n, B(z) =

∞∑
n=0

bnz
n, an, bn ∈ C. Is

it true that the condition A(z)h ∼ B(z)h implies that the coefficients of the power series
A(z) and B(z) are periodic?

Lemma 3. Let C be a finite set of integers, A(z) =
∞∑
n=0

anz
n, B(z) =

∞∑
n=0

bnz
n, an, bn ∈ C.

If A(z)h ∼ B(z)h and A(z) ∼ B(z) holds, then there exist positive integers N0, m and

polynomials FA(z) =

mN0−1∑
n=0

dnz
n, FB(z) =

mN0−1∑
n=0

enz
n, dn, en ∈ C and T (z) =

m−1∑
n=0

tnz
n,

tn ∈ C such that

A(z) = FA(z) +
T (z)zmN0

1− zm
,

B(z) = FB(z) +
T (z)zmN0

1− zm

and
(1− zm)h−1

∣∣T (z)h−1 (FA(z)− FB(z)) . (1)
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2 Proofs

Proof of Lemma 1. We have to show that A(z)h ∼ B(z)h, that is A(z)h−B(z)h = P (z),
where P (z) is a polynomial. Using the binomial theorem and the assumptions of Lemma
1 we get that

A(z)h −B(z)h =

(
FA(z) +

T (z)zmN0

1− zm

)h
−
(
FB(z) +

T (z)zmN0

1− zm

)h
=

=
h∑
i=1

(
h

i

)(
FA(z)i − FB(z)i

) T (z)h−i · z(h−i)mN0

(1− zm)h−i
.

Since
FA(z)− FB(z)

∣∣FA(z)i − FB(z)i ,

so
T (z)h−i (FA(z)− FB(z))

∣∣(FA(z)i − FB(z)i
)
T (z)h−i · z(h−i)mN0 .

Therefore it is enough to show that for every 1 ≤ i ≤ h− 1 we have

(1− zm)h−i
∣∣T (z)h−i (FA(z)− FB(z)) . (2)

From the assumptions we know that (1− zm)h−1
∣∣T h−1(z) (FA(z)− FB(z)) holds.

For a given integer d let denote by φd(z) the dth cyclotomic polynomial. It remains to
prove that

φd(z)h−i
∣∣T (z)h−i (FA(z)− FB(z)) . (3)

Let T (z) = φd(z)k1u(z) and FA(z) − FB(z) = φd(z)k2v(z), where u(z) and v(z) are
polynomials with the property φd(z) 6 | u(z)v(z) . By assumptions of Lemma 1 we know
that (h− 1)k1 + k2 ≥ h− 1. Thus either k1 = 0, then k2 ≥ h− 1, therefore

φd(z)h−i | FA(z)− FB(z)

or k1 ≥ 1, therefore φd(z) | T (z) so

φd(z)h−i | T (z)h−i.

This completes the proof of Lemma 1. �

Proof of Proposition 1: Let Bin(i) denote the parity of the number of 1’s in the
binary form of i. (i.e. Bin(i) = 1, if the number of 1s in the binary form of i is even and
Bin(i) = −1, if the number of the 1-s in the binary form of i is odd.)

It is easy to see that
h−2∏
i=0

(1− z2i) =
2h−1−1∑
i=0

Bin(i)zi.

Suppose that c1, c2 ∈ C. Let A(z) =
∞∑
n=0

anz
n, where for n ≤ 2h−1 − 1

an =

{
c1 if Bin(n) = 1

c2 if Bin(n) = −1,
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and an = c1, for n ≥ 2h−1.

Let B(z) =
∞∑
n=0

bnz
n, where for n ≤ 2h−1 − 1

bn =

{
c2 if Bin(n) = 1

c1 if Bin(n) = −1,

and bn = c1, for n ≥ 2h−1.

Then

A(z) = FA(z) +
c1z

2h−1

1− z
,

and

B(z) = FB(z) +
c1z

2h−1

1− z
.

We may apply Lemma 1 with m = 1 and FA(z)− FB(z) = (c1 − c2)
h−2∏
i=0

(1− z2i) and

T (z) = c1, because
(1− zm)h−1

∣∣T (z)h−1(FA(z)− FB(z))

is equivalent with

(1− z)h−1
∣∣∣ch−11 (c1 − c2)

h−2∏
i=0

(1− z2i),

which is obviously true. �

Proof of Lemma 2. It is clear that

A(z)h =

(
∞∑
n=0

anz
n

)h

=
∞∑
n=0

gnz
n,

where

gn =
∑

(i1,i2,...,ih)
i1+i2+···+ih=n

ai1ai2 . . . aih =
h∑
t=1

∑
(j1,...,jt)
ji∈N

0≤j1<j2<···<jt

∑
(m1,...,mt),mi∈Z+

m1+···+mt=h
m1j1+···+mtjt=n

h!

m1!m2! . . .mt!
am1
j1
am2
j2
. . . amtjt .

(4)
Using (4), the formula of Legendre and Fermat’s Theorem we get that modulo p we have

h!

m1!m2! . . .mt!
am1
j1
am2
j2
. . . amtjt =

ps!

m1!m2! . . .mt!
am1
j1
am2
j2
. . . amtjt ≡

≡

{
0 for t ≥ 2

ap
s

i1
= ap

s

n
ps
≡ a n

ps
for t = 1.

(5)
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So gn ≡ 0 (mod p) if ps 6 |n and gn ≡ a n
ps

(mod p), if ps | n.

Similarly for B(z)h we get that

B(z)h =

(
∞∑
n=0

bnz
n

)h

=
∑

hnz
n,

where hn ≡ 0 (mod p) if ps 6 |n and hn ≡ b n
ps

(mod p), if ps|n.

We know that gn ≡ hn (mod p) for n ≥ n0. For nps ≥ n0 the congruence gnps ≡ hnps
(mod p) implies that an ≡ bn (mod p). Using the condition that the set C contains in-
congruent integers modulo p we get that an = bn for n ≥ n0/p

s. This completes the proof
of Lemma 2. �

Proof of Lemma 3. Since A(z) ∼ B(z) and A(z)h ∼ B(z)h we can write that A(z) =
B(z) + P (z) and A(z)h = B(z)h +Q(z), where P (z) and Q(z) are polynomials. Thus

Q(z) = A(z)h −B(z)h = (B(z) + P (z))h −B(z)h =
h∑
i=1

(
h

i

)
P (z)iB(z)h−i.

Multiply both side by P (z)h−2, we get that

Q(z)P (z)h−2 = (P (z)B(z))h−1
(
h+

(
h
2

)
P (z)

B(z)
+

(
h
3

)
P (z)2

B(z)2
+ . . .

)
. (6)

We show that P (z)B(z) is bounded in the open unit disc (|z| < 1, z ∈ C). Assume,
that it is not true. Then there is an infinite sequence z1, z2, . . . , zn . . . , |zn| < 1 for which
|P (zn)B(zn)| → ∞ (so |B(zn)| → ∞), and thus

∣∣Q(zn)P (zn)h−2
∣∣ =

∣∣∣∣∣(P (zn)B(zn))h−1
(
h+

(
h
2

)
P (zn)

B(zn)
+

(
h
3

)
P (zn)2

B(zn)2
+ . . .

)∣∣∣∣∣→∞,
while the left hand side is bounded. So P (z)B(z) is bounded in the open unit disc.

Next we show, that P (z)B(z) is a polynomial. Suppose indirectly, that P (z)B(z) =
∞∑
k=0

knz
n,

kn ∈ Z and kn 6= 0 for infinitely many integers n. Let z = re2πiϕ. For r < 1 the Parseval-
formula gives ∫ 1

0

∣∣P (re2πiϕ)B(re2πiϕ)
∣∣2 dϕ =

∞∑
n=0

k2nr
2n. (7)

Since P (z)B(z) is bounded, if r → 1− then the left-hand side of (7) is bounded, but the
right-hand side of (7) tends to infinity. So P (z)B(z) = R(z), where R(z) is a polynomial.

Write P (z) in the form P (z) =
m∑
i=0

λiz
i. Then bn fulfils the following linear recursion

when n ≥ n1

bn = − 1

λ0
(λ1bn−1 + λ2bn−2 + · · ·+ λmbn−m) .
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This means, that bn is determinded by bn−1, bn−2, . . . , bn−m. Since we can choose bn in
finitely many way we conclude that bn is periodic. Therefore there exist positive integers

N0, m and series FA(z) =

mN0−1∑
n=0

dnz
n, FB(z) =

mN0−1∑
n=0

enz
n, dn, en ∈ C and T (z) =

m−1∑
n=0

tnz
n,

tn ∈ C such that

A(z) = FA(z) +
T (z)zmN0

1− zm
,

B(z) = FB(z) +
T (z)zmN0

1− zm
.

In the last step we have to show (1). We show by induction on k that for every 1 ≤ k ≤
h− 1

(1− zm)k
∣∣T (z)k (FA(z)− FB(z)) (8)

holds. It is clear that

A(z)h −B(z)h =

(
FA(z) +

T (z)zmN0

1− zm

)h
−
(
FB(z) +

T (z)zmN0

1− zm

)h
= Q(z),

where Q(z) is a polynomial. Using the binomial theorem we get

(1− zm)h
∣∣∣(FA(z)(1− zm) + T (z)zmN0

)h − (FB(z)(1− zm) + T (z)zmN0
)h

=

=
h∑
i=0

(
h

i

)
T i(z)zimN0

(
FA(z)h−i − FB(z)h−i

)
(1− zm)h−i . (9)

Obviously if in (9) i = 0 then (1−zm)h
∣∣∣(h0)T (z)0z0·mN0

(
FA(z)h − FB(z)h

)
(1− zm)h and

also if in (9) i = h then (1− zm)h
∣∣(h
h

)
T h(z)zhmN0 · (FA(z)0 − FB(z)0) (1− zm)0 holds. So

(9) is equivalent to

(1− zm)h
∣∣∣ h−1∑
i=1

(
h

i

)
T (z)izimN0

(
FA(z)h−i − F h−i

B (z)
)

(1− zm)h−i . (10)

At first let k = 1. In (10) if i ≤ h− 2 then

(1− zm)2
∣∣∣(h
i

)
zimN0T (z)i

(
FA(z)h−i − FB(z)h−i

)
(1− zm)h−i . (11)

So in (10) if i = h− 1 then

(1− zm)2
∣∣∣( h

h− 1

)
z(h−1)mN0T (z)h−1 (FA(z)− FB(z)) (1− zm) (12)

should be also true. Since (z,1− zm) = 1 from (12) we have

1− zm
∣∣T (z)h−1 (FA(z)− FB(z)) . (13)
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We know, that 1− zm = −
∏
d|m

φd(z), where φd(z) denotes the dth cyclotomic polynomial.

1− zm has no multiple root, which implies

1− zm |T (z) (FA(z)− FB(z)) . (14)

Now assume that for 1 ≤ l ≤ k − 1, k ≤ h− 1 we have

(1− zm)l
∣∣T (z)l (FA(z)− FB(z)) .

We have to prove that
(1− zm)k

∣∣T (z)k (FA(z)− FB(z)) . (15)

In (10)

T (z)i (FA(z)− FB(z)) (1− zm)h−i
∣∣∣(h
i

)
zimN0T (z)i

(
FA(z)h−i − FB(z)h−i

)
(1− zm)h−i .

(16)
Using the assumption of the induction we get

(1− zm)h−i+min{k−1,i}
∣∣∣T (z)i (FA(z)− FB(z)) (1− zm)h−i . (17)

From (16) and (17) we obtain that

(1− zm)h−i+min{k−1,i}
∣∣∣(h
i

)
zimN0T (z)i

(
FA(z)h−i − FB(z)h−i

)
(1− zm)h−i . (18)

So from (10) we know

(1− zm)k+1
∣∣∣ (1− zm)h

∣∣∣ h−1∑
i=1

(
h

i

)
T (z)izimN0

(
FA(z)h−i − FB(z)h−i

)
(1− zm)h−i . (19)

If min{k− 1, i} = i, which means i ≤ k− 1 then h− i+ min{k− 1, i} = h ≥ k+ 1. Thus

(1− zm)k+1 |
(
h

i

)
T (z)izimN0

(
FA(z)h−i − FB(z)h−i

)
(1− zm)h−i (20)

holds.
If min{k − 1, i} = k − 1, then k − 1 ≤ i ≤ h − 1. If k − 1 ≤ i ≤ h − 2, then
h− i+ min{k − 1, i} ≥ 2 + k − 1 = k + 1. Thus

(1− zm)k+1 |
(
h

i

)
T (z)izimN0

(
FA(z)h−i − FB(z)h−i

)
(1− zm)h−i . (21)

So (10), (20) and (21) imply that for i = h− 1 we have

(1− zm)k+1
∣∣∣( h

h− 1

)
T (z)h−1z(h−1)mN0 (FA(z)− FB(z)) (1− zm) , (22)

which means that
(1− zm)k

∣∣T (z)h−1 (FA(z)− FB(z)) . (23)
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We use, that 1− zm = −
∏
d|m

φd(z), where φd(z) denotes the dth cyclotomic polynomial.

This means that for every d, d |m we have φd(z)k | T (z)h−1 (FA(z)− FB(z)).
If φd(z) | T (z) then φd(z)k | T (z)k is also true. If φd(z) 6 |T (z) then φd(z)k | FA(z)−FB(z).
So for every d | m, φd(z)k | T (z)k (FA(z)− FB(z)) which means that

(1− zm)k | T (z)k (FA(z)− FB(z)) . (24)

This ends the the induction and the proof of Lemma 3.�

Proof of Proposition 2. Let

a′i =

∏i−1
j=0(h

2 + 1− jh)

i!
· (−1)ihh−1−i − (−1)i

(
h

i

)
hh−1,

for 1 ≤ i ≤ h− 1 and

A(z) =
h−1∑
i=1

a′i(1− zh)i−1 +
hh−1zh

2

1− zh
,

B(z) =
hh−1zh

2+1

1− zh
.

We will show that

1. A(z)h ∼ B(z)h

2. There exists a set of integers Ch = {c1, c2, . . . , ch+1} such that c1, . . . ch form a

complete set of residues modulo h and for the previous power series A(z) =
∞∑
n=0

anz
n,

B(z) =
∞∑
n=0

bnz
n we have an, bn ∈ Ch.

It is easy to see that A(z) 6∼ B(z).
First we prove statement 1.

A(z)h −B(z)h =

(
h−1∑
i=1

a′i(1− zh)i−1 +
hh−1zh

2

1− zh

)h

−

(
hh−1zh

2+1

1− zh

)h

. (25)

From (25) we see that to prove A(z)h ∼ B(z)h we need to show

(1− zh)h
∣∣∣(h−1∑

i=1

a′i(1− zh)i + hh−1zh
2

)h

−
(
hh−1zh

2+1
)h
. (26)

Let x = 1− zh. (26) is equivalent to the following

xh|

(
h−1∑
i=1

a′ix
i + hh−1(1− x)h

)h

− hh2−h(1− x)h
2+1. (27)

11



So it is enough to show (27). For −1 < x < 1 by the binomial series expansion we get

hh
2−h(1− x)h

2+1 =
(
hh−1(1− x)

h2+1
h

)h
= (28)(

hh−1
∞∑
i=0

(
h2+1
h

i

)
(−1)ixi

)h

=

(
hh−1

h−1∑
i=0

(
h2+1
h

i

)
(−1)ixi + hh−1

∞∑
i=h

(
h2+1
h

i

)
(−1)ixi

)h

=

=

(
h−1∑
i=0

hh−1−i
∏i−1

j=0(h
2 + 1− jh)

i!
(−1)ixi + hh−1

∞∑
i=h

(
h2+1
h

i

)
(−1)ixi

)h

=

(
h−1∑
i=0

hh−1−i
∏i−1

j=0(h
2 + 1− jh)

i!
(−1)ixi

)h

+

+
h∑
k=1

(
h

k

)(h−1∑
i=0

hh−1−i
∏i−1

j=0(h
2 + 1− jh)

i!
(−1)ixi

)h−k(
hh−1

∞∑
i=h

(
h2+1
h

i

)
(−1)ixi

)k

=

=

(
h−1∑
i=0

hh−1−i
∏i−1

j=0(h
2 + 1− jh)

i!
(−1)ixi

)h

+
∞∑
i=h

dix
i.

Thus

hh
2−h(1−x)h

2+1−

(
h−1∑
i=0

hh−1−i
∏i−1

j=0(h
2 + 1− jh)

i!
(−1)ixi

)h

=
∞∑
i=h

dix
i =

h2+1∑
i=h

dix
i. (29)

Hence

xh|

(
h−1∑
i=0

hh−1−i
∏i−1

j=0(h
2 + 1− jh)

i!
(−1)ixi

)h

− hh2−h(1− x)h
2+1. (30)

Since for every 1 ≤ i ≤ h− 1

(−1)ihh−1−i
∏i−1

j=0(h
2 + 1− jh)

i!
= a′i + (−1)ihh−1

(
h

i

)
,

from (30) we get that

xh|

(
h−1∑
i=1

a′ix
i + hh−1 + hh−1

h−1∑
i=1

(−1)i
(
h

i

)
xi

)h

− hh2−h(1− x)h
2+1. (31)

Thus

xh
∣∣∣(h−1∑

i=1

a′ix
i + hh−1

h∑
i=0

(−1)i
(
h

i

)
xi

)h

− hh2−h(1− x)h
2+1 (32)

is also true. Using the binomial theorem we get that
h∑
i=0

(−1)i
(
h

i

)
xi = (1− x)h, which

proves statement 1.
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Now we prove statement 2. We will show that

∏i−1
j=0(h

2 + 1− jh)

i!
∈ Z. When p is a

prime number and pα < h, then (pα, h) = 1. Therefore among the numbers h2 + 1, h2 +

1− h, . . . , h2 + 1−
(⌊

i
pα

⌋
pα − 1

)
h there are

⌊
i

pα

⌋
, which are divisible by pα. So

p
∑∞
α=1b i

pα c|
i−1∏
j=1

(h2 + 1− jh).

By the Legendre’s formula, in the prime factorization of i! (i < h) the exponent of p is
∞∑
α=1

⌊
i

pα

⌋
.

Let

A(z) =
h−1∑
i=1

a′i(1− zh)i−1 +
hh−1zh

2

1− zh
=
∞∑
n=0

anz
n.

Then an = 0 or an = hh−1 holds for n 6= ih, 0 ≤ i ≤ h− 2.
Clearly,

B(z) =
hh−1zh

2+1

1− zh
=
∞∑
n=0

bnz
n,

where bn = 0 or bn = hh−1.

It remains to show that the integers a0, ah, a2h, . . . , a(h−2)h form primitive residue classes
modulo h. If 0 ≤ k ≤ h− 2 we get that

akh =
h−1∑
j=k+1

(−1)ka′j

(
j − 1

k

)
.

For 1 ≤ j ≤ h− 2 we have h|a′j, thus using Wilson’s Theorem we get

akh ≡ (−1)ka′h−1

(
h− 2

k

)
≡ (−1)k

∏h−2
j=0 (h2 + 1− jh)

(h− 1)!
· (−1)h−1

(h− 2)!

k!(h− 2− k)!
≡

≡ (−1)k · 1

−1
· (−1)h−1

(h− 1)!

(−1)(k + 1)!(h− 2− k)!
· (k + 1) ≡

≡ (−1)k+h−1
(h− 1)!(−1)k+1

(h− 1)(h− 2) . . . (h− k − 1)(h− k − 2)!
· (k + 1) ≡

≡ (−1)h
(h− 1)!

(h− 1)!
(k + 1) ≡ −(k + 1) (mod h).

This show that statement 2 holds. This completes the proof of Theorem 2. �
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