An Extension of a Nathanson's Theorem on representation functions

Eszter Rozgonyi , Csaba Sándor ${ }^{\dagger}$

Abstract

For a given integer n and a set $\mathcal{S} \subseteq \mathbb{N}$ denote by $R_{h, \mathcal{S}}^{(1)}(n)$ the number of solutions of the equation $n=s_{i_{1}}+\cdots+s_{i_{h}}, s_{i_{j}} \in \mathcal{S}, j=1, \ldots, h$. In this paper we determine all pairs $(\mathcal{A}, \mathcal{B}), \mathcal{A}, \mathcal{B} \subseteq \mathbb{N}$ for which $R_{h, \mathcal{A}}^{(1)}(n)=R_{h, \mathcal{B}}^{(1)}(n)$ from a certain point on, where h is a power of a prime. We also discuss the composite case.

2000 AMS Mathematics subject classification number: 11B34.
Key words and phrases: additive number theory, representation functions

1 Introduction

Let \mathbb{N} be the set of nonnegative integers. For a given infinite set $\mathcal{A} \subset \mathbb{N}$ the representation functions $R_{h, \mathcal{A}}^{(1)}(n), R_{h, \mathcal{A}}^{(2)}(n)$ and $R_{h, \mathcal{A}}^{(3)}(n)$ are defined in the following way:

$$
\begin{gathered}
R_{h, \mathcal{A}}^{(1)}(n)=\#\left\{\left(a_{i_{1}}, \ldots, a_{i_{h}}\right): a_{i_{1}}+\cdots+a_{i_{h}}=n, a_{i_{1}}, \ldots, a_{i_{h}} \in \mathcal{A}\right\}, \\
R_{h, \mathcal{A}}^{(2)}(n)=\#\left\{\left(a_{i_{1}}, \ldots, a_{i_{h}}\right): a_{i_{1}}+\cdots+a_{i_{h}}=n, a_{i_{1}}, \ldots, a_{i_{h}} \in \mathcal{A}, a_{i_{1}} \leq \cdots \leq a_{i_{h}}\right\}, \\
R_{h, \mathcal{A}}^{(3)}(n)=\#\left\{\left(a_{i_{1}}, \ldots, a_{i_{h}}\right): a_{i_{1}}+\cdots+a_{i_{h}}=n, a_{i_{1}}, \ldots, a_{i_{h}} \in \mathcal{A}, a_{i_{1}}<\cdots<a_{i_{h}}\right\} .
\end{gathered}
$$

Representation functions have been extensively studied by many authors and are still a fruitful area of research in additive number theory. Using generating functions, Nathanson [7] proved the following result.
Let $F_{\mathcal{A}}, F_{\mathcal{B}}$ and T be finite sets of integers. If each residue class modulo m contains exactly the same number of elements of $F_{\mathcal{A}}$ as elements of $F_{\mathcal{B}}$, then we write $F_{\mathcal{A}} \equiv F_{\mathcal{B}}$ $(\bmod m)$. If the number of solutions of the congruence $a+t \equiv n(\bmod m)$ with $a \in F_{\mathcal{A}}$, $t \in T$ equals to the number of solutions of the congruence $b+t \equiv n(\bmod m)$ with $b \in F_{\mathcal{B}}$, $t \in T$ for each residue class n modulo m then we write $F_{\mathcal{A}}+T \equiv F_{\mathcal{B}}+T(\bmod m)$.

[^0]Nathanson's Theorem. Let \mathcal{A} and \mathcal{B} be infinite sets of nonnegative integers, $\mathcal{A} \neq \mathcal{B}$. Then $R_{2, \mathcal{A}}^{(1)}(n)=R_{2, \mathcal{B}}^{(1)}(n)$ from a certain point on if and only if there exist positive integers N, m and finite sets $F_{\mathcal{A}}, F_{\mathcal{B}}, T$ with $F_{\mathcal{A}} \cup F_{\mathcal{B}} \subset\{0,1, \ldots, N\}$ and $T \subset\{0,1, \ldots, m-1\}$ such that $F_{\mathcal{A}}+T \equiv F_{\mathcal{B}}+T(\bmod m)$, and $\mathcal{A}=F_{\mathcal{A}} \cup \mathcal{C}$ and $\mathcal{B}=F_{\mathcal{B}} \cup \mathcal{C}$, where $\mathcal{C}=\{c>$ $N \mid c \equiv t(\bmod m) \quad$ for some $\quad t \in T\}$.
It is clear that $R_{2, \mathcal{A}}^{(2)}(n)=\left\lceil\frac{R_{2, \mathcal{A}}^{(1)}(n)}{2}\right\rceil$ and $R_{2, \mathcal{A}}^{(3)}(n)=\left\lfloor\frac{R_{2, \mathcal{A}}^{(1)}(n)}{2}\right\rfloor$, thus for the sets \mathcal{A}, \mathcal{B} in Nathanson's Theorem we have $R_{2, \mathcal{A}}^{(2)}(n)=R_{2, \mathcal{B}}^{(2)}(n)$ and $R_{2, \mathcal{A}}^{(3)}(n)=R_{2, \mathcal{B}}^{(3)}(n)$ from a certain point on. It is easy to see that the symmetric difference of the sets \mathcal{A} and \mathcal{B} in the above theorem is finite. A. Sárközy asked whether there exist two infinite sets of nonnegative integers \mathcal{A} and \mathcal{B} with infinite symmetric difference, i.e.

$$
|(\mathcal{A} \cup \mathcal{B}) \backslash(\mathcal{A} \cap \mathcal{B})|=\infty
$$

and

$$
R_{2, \mathcal{A}}^{(i)}(n)=R_{2, \mathcal{B}}^{(i)}(n)
$$

if $n \geq n_{0}$, for $\mathrm{i}=1,2,3$. For $i=1$ the answer is negative (see in [3]). For $i=2 \mathrm{G}$. Dombi [3] and for $i=3 \mathrm{Y}$. G. Chen and B. Wang [2] proved that the set of nonnegative integers can be partitioned into two subsets \mathcal{A} and \mathcal{B} such that $R_{2, \mathcal{A}}^{(i)}(n)=R_{2, \mathcal{B}}^{(i)}(n)$ for all $n \geq n_{0}$. In [6] Lev gave a common proof to the above mentioned results of Dombi [3] and Chen and Wang [2]. Using generating functions Cs. Sándor [8] determined the sets $\mathcal{A} \subset \mathbb{N}$ for which either

$$
R_{2, \mathcal{A}}^{(2)}(n)=R_{2, \mathbb{N} \backslash \mathcal{A}}^{(2)}(n) \quad \text { for all } \quad n \geq n_{0}
$$

or

$$
R_{2, \mathcal{A}}^{(3)}(n)=R_{2, \mathbb{N} \backslash \mathcal{A}}^{(3)}(n) \quad \text { for all } \quad n \geq n_{0} .
$$

In [9] M. Tang gave an elementary proof of Cs. Sándor's results. Y. G. Chen and M. Tang studied related questions in [1] .

Let \mathcal{C} be a finite set of integers. Let $F_{\mathcal{A}}(z), F_{\mathcal{B}}, T(z)$ denote polynomials and $A(z), B(z)$ denote power series having coefficients from the set \mathcal{C} (i.e. $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, where $a_{n} \in \mathcal{C}$ and z is a complex number, $\left.z=r \cdot e^{2 \pi i \theta}\right)$. These series converge in the open unit disc. If $\mathcal{C}=\{0,1\}$ then the generating functions of the sets $\mathcal{A}, \mathcal{B}, F_{\mathcal{A}}, F_{\mathcal{B}}$ and $T \subseteq \mathbb{N}$ are special kind of these polynomials and power series.

To make the proofs easier we will use the following notation: $A(z) \sim B(z)$ means that $A(z)-B(z)$ is a polynomial. Using these we can rewrite Nathanson's Theorem in equivalent form:

Equivalent form of Nathanson's Theorem. Let $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$, $a_{n}, b_{n} \in\{0,1\}$. Then $A(z)^{2} \sim B(z)^{2}$ if and only if there exist positive integers N_{0}, m and polynomials $F_{\mathcal{A}}(z)=\sum_{n=0}^{m N_{0}-1} d_{n} z^{n}, F_{\mathcal{B}}(z)=\sum_{n=0}^{m N_{0}-1} e_{n} z^{n}, d_{n}, e_{n} \in\{0,1\}$ and $T(z)=\sum_{n=0}^{m-1} t_{n} z^{n}$,
$t_{n} \in\{0,1\}$ such that

$$
\begin{aligned}
A(z) & =F_{\mathcal{A}}(z)+\frac{T(z) z^{m N_{0}}}{1-z^{m}} \\
B(z) & =F_{\mathcal{B}}(z)+\frac{T(z) z^{m N_{0}}}{1-z^{m}}
\end{aligned}
$$

and

$$
1-z^{m} \mid T(z)\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right)
$$

holds.
S. Z. Kiss, R. Rozgonyi and Cs. Sándor [4] conjectured that Nathanson's theorem can be generalized as follows.

Conjecture. Let $h \geq 2, \mathcal{A}$ and \mathcal{B} be infinite sets of nonnegative integers, $\mathcal{A} \neq \mathcal{B}$. Then $R_{h, \mathcal{A}}^{(1)}(n)=R_{h, \mathcal{B}}^{(1)}(n)$ from a certain point on if and only if there exist positive integers N_{0}, m and sets $F_{\mathcal{A}}, F_{\mathcal{B}}$ and T such that $F_{\mathcal{A}} \cup F_{\mathcal{B}} \subset\left\{0,1, \ldots, m N_{0}-1\right\}, T \subset\{0,1 \ldots, m-1\}$,

$$
\begin{aligned}
\mathcal{A} & =F_{\mathcal{A}} \cup\left\{k m+t: k \geq N_{0}, t \in T\right\}, \\
\mathcal{B} & =F_{\mathcal{B}} \cup\left\{k m+t: k \geq N_{0}, t \in T\right\},
\end{aligned}
$$

and

$$
\left(1-z^{m}\right)^{h-1} \mid T(z)^{h-1}\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right),
$$

where $F_{\mathcal{A}}(z), F_{\mathcal{B}}(z)$ and $T(z)$ denote the generating functions of the sets $F_{\mathcal{A}}, F_{\mathcal{B}}$ and T.
In [4] they proved the sufficiency part of the Conjecture, and they also proved the Conjecture for the case $h=3$.
Using power series, we can rewrite the Conjecture in equivalent form.
Equivalent form of the Conjecture. Let $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}, a_{n}, b_{n} \in$ $\{0,1\}$. Then $A(z)^{h} \sim B(z)^{h}$ if and only if there exist positive integers N_{0}, m and polynomials $F_{\mathcal{A}}(z)=\sum_{n=0}^{m N_{0}-1} d_{n} z^{n}, F_{\mathcal{B}}(z)=\sum_{n=0}^{m N_{0}-1} e_{n} z^{n}, d_{n}, e_{n} \in\{0,1\}$ and $T(z)=\sum_{n=0}^{m-1} t_{n} z^{n}$, $t_{n} \in\{0,1\}$ such that

$$
\begin{aligned}
A(z) & =F_{\mathcal{A}}(z)+\frac{T(z) z^{m N_{0}}}{1-z^{m}} \\
B(z) & =F_{\mathcal{B}}(z)+\frac{T(z) z^{m N_{0}}}{1-z^{m}}
\end{aligned}
$$

and

$$
\left(1-z^{m}\right)^{h-1} \mid T(z)^{h-1}\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right)
$$

holds.

In this paper we prove the above Conjecture in the case $h=p^{s}$, where p is prime.
Theorem 1. Let $h=p^{s}$ and let $\mathcal{C} \subseteq \mathbb{Z}$ be a finite set which contains incongruent integers modulo p. Let $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ be power series, where $a_{n}, b_{n} \in \mathcal{C}$. Then $A(z)^{h} \sim B(z)^{h}$ if and only if there exist positive integers N_{0}, m and polynomials $F_{\mathcal{A}}(z)=\sum_{n=0}^{m N_{0}-1} d_{n} z^{n}, F_{\mathcal{B}}(z)=\sum_{n=0}^{m N_{0}-1} e_{n} z^{n}, d_{n}, e_{n} \in \mathcal{C}$ and $T(z)=\sum_{n=0}^{m-1} t_{n} z^{n}, t_{n} \in \mathcal{C}$ such that

$$
\begin{aligned}
A(z) & =F_{\mathcal{A}}(z)+\frac{T(z) z^{m N_{0}}}{1-z^{m}} \\
B(z) & =F_{\mathcal{B}}(z)+\frac{T(z) z^{m N_{0}}}{1-z^{m}}
\end{aligned}
$$

and

$$
\left(1-z^{m}\right)^{h-1} \mid T(z)^{h-1}\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right)
$$

holds.
Corollary. The case $\mathcal{C}=\{0,1\}$ implies that the Conjecture is true for the case $h=p^{s}$.
In order to prove Theorem 1. we verify the following three lemmas.
Lemma 1. Let \mathcal{C} be a set of integers. Suppose that there exist positive integers N_{0}, m and polynomials $F_{\mathcal{A}}(z)=\sum_{n=0}^{m N_{0}-1} d_{n} z^{n}, F_{\mathcal{B}}(z)=\sum_{n=0}^{m N_{0}-1} e_{n} z^{n}, d_{n}, e_{n} \in \mathcal{C}$ and $T(z)=\sum_{n=0}^{m-1} t_{n} z^{n}$, $t_{n} \in \mathcal{C}$ such that

$$
\begin{aligned}
A(z) & =F_{\mathcal{A}}(z)+\frac{T(z) z^{m N_{0}}}{1-z^{m}} \\
B(z) & =F_{\mathcal{B}}(z)+\frac{T(z) z^{m N_{0}}}{1-z^{m}}
\end{aligned}
$$

and

$$
\left(1-z^{m}\right)^{h-1} \mid T(z)^{h-1}\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right)
$$

holds. Then $A(z)^{h} \sim B(z)^{h}$.
The following example shows that for any $\mathcal{C} \subseteq \mathbb{Z},|\mathcal{C}| \geq 2$ and $h \geq 2$ there exist different power series $A(z), B(z)$ having their coefficients from \mathcal{C} with the property $A(z)^{h} \sim B(z)^{h}$.

Proposition 1. Let $\mathcal{C} \subseteq \mathbb{Z},|\mathcal{C}| \geq 2$. Then there exist series $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$, $a_{n}, b_{n} \in \mathcal{C}$ such that $A(z) \neq B(z)$ and $A(z)^{h} \sim B(z)^{h}$.

In the proof of Theorem 1. we only use the fact that h is a power of prime in Lemma 2.

Lemma 2. Let $h=p^{s}$ and let $\mathcal{C} \subseteq \mathbb{Z}$, where no element of \mathcal{C} are congruent modulo p. Let $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}, a_{n}, b_{n} \in \mathcal{C}$. The condition $A(z)^{h} \sim B(z)^{h}$ implies that $A(z) \sim B(z)$.

The condition of Lemma 2. that \mathcal{C} contains incongruent integers modulo p is important, because Imre Z. Ruzsa gave the identity

$$
\left(-1+\frac{2 z^{4}}{1-z^{2}}\right)^{2}-\left(\frac{2 z^{5}}{1-z^{2}}\right)^{2}=1-4 z^{4}+4 z^{6}
$$

It means that there exist power series $A(z)$ and $B(z)$ having coefficients from the set $\mathcal{C}=\{-1,0,2\}$ such that $A(z)^{2} \sim B(z)^{2}$, but $A(z) \nsim B(z)$, because

$$
-1+\frac{2 z^{4}}{1-z^{2}}-\frac{2 z^{5}}{1-z^{2}}=-1+2 \sum_{n=4}^{\infty}(-1)^{n} z^{n}
$$

We can generalize Imre Z. Ruzsa's construction in the following way:
Proposition 2. Let h be a prime number. Then there exist a set $\mathcal{C}_{h}=\left\{c_{1}, c_{2}, \ldots, c_{h+1}\right\}$, $c_{1}, \ldots, c_{h+1} \in \mathbb{Z}$ such that $c_{1}, \ldots c_{h}$ form a complete set of residues modulo h and power series $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}, a_{n}, b_{n} \in \mathcal{C}$ such that $A(z)^{h} \sim B(z)^{h}$ but $A(z) \nsim B(z)$.

Problem. Let $\mathcal{C} \subset \mathbb{Z}$ be a finite set, $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}, a_{n}, b_{n} \in \mathcal{C}$. Is it true that the condition $A(z)^{h} \sim B(z)^{h}$ implies that the coefficients of the power series $A(z)$ and $B(z)$ are periodic?

Lemma 3. Let \mathcal{C} be a finite set of integers, $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}, a_{n}, b_{n} \in \mathcal{C}$. If $A(z)^{h} \sim B(z)^{h}$ and $A(z) \sim B(z)$ holds, then there exist positive integers N_{0}, m and polynomials $F_{\mathcal{A}}(z)=\sum_{n=0}^{m N_{0}-1} d_{n} z^{n}, F_{\mathcal{B}}(z)=\sum_{n=0}^{m N_{0}-1} e_{n} z^{n}, d_{n}, e_{n} \in \mathcal{C}$ and $T(z)=\sum_{n=0}^{m-1} t_{n} z^{n}$, $t_{n} \in \mathcal{C}$ such that

$$
\begin{aligned}
A(z) & =F_{\mathcal{A}}(z)+\frac{T(z) z^{m N_{0}}}{1-z^{m}} \\
B(z) & =F_{\mathcal{B}}(z)+\frac{T(z) z^{m N_{0}}}{1-z^{m}}
\end{aligned}
$$

and

$$
\begin{equation*}
\left(1-z^{m}\right)^{h-1} \mid T(z)^{h-1}\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right) . \tag{1}
\end{equation*}
$$

2 Proofs

Proof of Lemma 1. We have to show that $A(z)^{h} \sim B(z)^{h}$, that is $A(z)^{h}-B(z)^{h}=P(z)$, where $P(z)$ is a polynomial. Using the binomial theorem and the assumptions of Lemma 1 we get that

$$
\begin{gathered}
A(z)^{h}-B(z)^{h}=\left(F_{\mathcal{A}}(z)+\frac{T(z) z^{m N_{0}}}{1-z^{m}}\right)^{h}-\left(F_{\mathcal{B}}(z)+\frac{T(z) z^{m N_{0}}}{1-z^{m}}\right)^{h}= \\
=\sum_{i=1}^{h}\binom{h}{i}\left(F_{\mathcal{A}}(z)^{i}-F_{\mathcal{B}}(z)^{i}\right) \frac{T(z)^{h-i} \cdot z^{(h-i) m N_{0}}}{\left(1-z^{m}\right)^{h-i}} .
\end{gathered}
$$

Since

$$
F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z) \mid F_{\mathcal{A}}(z)^{i}-F_{\mathcal{B}}(z)^{i},
$$

so

$$
T(z)^{h-i}\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right) \mid\left(F_{\mathcal{A}}(z)^{i}-F_{\mathcal{B}}(z)^{i}\right) T(z)^{h-i} \cdot z^{(h-i) m N_{0}} .
$$

Therefore it is enough to show that for every $1 \leq i \leq h-1$ we have

$$
\begin{equation*}
\left(1-z^{m}\right)^{h-i} \mid T(z)^{h-i}\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right) . \tag{2}
\end{equation*}
$$

From the assumptions we know that $\left(1-z^{m}\right)^{h-1} \mid T^{h-1}(z)\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right)$ holds.
For a given integer d let denote by $\phi_{d}(z)$ the d th cyclotomic polynomial. It remains to prove that

$$
\begin{equation*}
\phi_{d}(z)^{h-i} \mid T(z)^{h-i}\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right) . \tag{3}
\end{equation*}
$$

Let $T(z)=\phi_{d}(z)^{k_{1}} u(z)$ and $F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)=\phi_{d}(z)^{k_{2}} v(z)$, where $u(z)$ and $v(z)$ are polynomials with the property $\phi_{d}(z) \not \backslash u(z) v(z)$. By assumptions of Lemma 1 we know that $(h-1) k_{1}+k_{2} \geq h-1$. Thus either $k_{1}=0$, then $k_{2} \geq h-1$, therefore

$$
\phi_{d}(z)^{h-i} \mid F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)
$$

or $k_{1} \geq 1$, therefore $\phi_{d}(z) \mid T(z)$ so

$$
\phi_{d}(z)^{h-i} \mid T(z)^{h-i} .
$$

This completes the proof of Lemma 1.

Proof of Proposition 1: Let $\operatorname{Bin}(i)$ denote the parity of the number of 1's in the binary form of i. (i.e. $\operatorname{Bin}(i)=1$, if the number of 1 s in the binary form of i is even and $\operatorname{Bin}(i)=-1$, if the number of the 1 -s in the binary form of i is odd.)
It is easy to see that $\prod_{i=0}^{h-2}\left(1-z^{2^{i}}\right)=\sum_{i=0}^{2^{h-1}-1} \operatorname{Bin}(i) z^{i}$.
Suppose that $c_{1}, c_{2} \in \mathcal{C}$. Let $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, where for $n \leq 2^{h-1}-1$

$$
a_{n}= \begin{cases}c_{1} & \text { if } \operatorname{Bin}(\mathrm{n})=1 \\ c_{2} & \text { if } \operatorname{Bin}(\mathrm{n})=-1,\end{cases}
$$

and $a_{n}=c_{1}$, for $n \geq 2^{h-1}$.
Let $B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$, where for $n \leq 2^{h-1}-1$

$$
b_{n}= \begin{cases}c_{2} & \text { if } \operatorname{Bin}(\mathrm{n})=1 \\ c_{1} & \text { if } \operatorname{Bin}(\mathrm{n})=-1,\end{cases}
$$

and $b_{n}=c_{1}$, for $n \geq 2^{h-1}$.
Then

$$
A(z)=F_{\mathcal{A}}(z)+\frac{c_{1} z^{2^{h-1}}}{1-z}
$$

and

$$
B(z)=F_{\mathcal{B}}(z)+\frac{c_{1} z^{2^{h-1}}}{1-z}
$$

We may apply Lemma 1 with $m=1$ and $F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)=\left(c_{1}-c_{2}\right) \prod_{i=0}^{h-2}\left(1-z^{2^{i}}\right)$ and $T(z)=c_{1}$, because

$$
\left(1-z^{m}\right)^{h-1} \mid T(z)^{h-1}\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right)
$$

is equivalent with

$$
(1-z)^{h-1} \mid c_{1}^{h-1}\left(c_{1}-c_{2}\right) \prod_{i=0}^{h-2}\left(1-z^{2^{i}}\right)
$$

which is obviously true.

Proof of Lemma 2. It is clear that

$$
A(z)^{h}=\left(\sum_{n=0}^{\infty} a_{n} z^{n}\right)^{h}=\sum_{n=0}^{\infty} g_{n} z^{n}
$$

where
$g_{n}=\sum_{\substack{\left(i_{1}, i_{2}, \ldots, i_{h}\right) \\ i_{1}+i_{2}+\cdots+i_{h}=n}} a_{i_{1}} a_{i_{2}} \ldots a_{i_{h}}=\sum_{t=1}^{h} \sum_{\substack{\left(j_{1}, \ldots, j_{t}\right) \\ j_{i} \in \mathbb{N} \\ 0 \leq j_{1}<j_{2}<\cdots<j_{t} \\ m_{t}}} \sum_{\substack{\left.m_{1}, \ldots, m_{t}\right), m_{i} \in \mathbb{Z}^{+} \\ m_{1} j_{1}+\cdots+m_{1}+\cdots+m_{t} \\ m_{t}=h}} \frac{h!}{m_{1}!m_{2}!\ldots m_{t}!} a_{j_{1}}^{m_{1}} a_{j_{2}}^{m_{2}} \ldots a_{j_{t}}^{m_{t}}$.
Using (4), the formula of Legendre and Fermat's Theorem we get that modulo p we have

$$
\begin{gather*}
\frac{h!}{m_{1}!m_{2}!\ldots m_{t}!} a_{j_{1}}^{m_{1}} a_{j_{2}}^{m_{2}} \ldots a_{j_{t}}^{m_{t}}=\frac{p^{s}!}{m_{1}!m_{2}!\ldots m_{t}!} a_{j_{1}}^{m_{1}} a_{j_{2}}^{m_{2}} \ldots a_{j_{t}}^{m_{t}} \equiv \\
\equiv \begin{cases}0 & \text { for } t \geq 2 \\
a_{i_{1}}^{p^{s}}=a_{\frac{n}{p^{s}}}^{p^{s}} \equiv a_{\frac{n}{p^{s}}} & \text { for } \quad t=1 .\end{cases} \tag{5}
\end{gather*}
$$

So $g_{n} \equiv 0(\bmod p)$ if $p^{s} \nmid n$ and $g_{n} \equiv a_{\frac{n}{p^{s}}}(\bmod p)$, if $p^{s} \mid n$.
Similarly for $B(z)^{h}$ we get that

$$
B(z)^{h}=\left(\sum_{n=0}^{\infty} b_{n} z^{n}\right)^{h}=\sum h_{n} z^{n}
$$

where $h_{n} \equiv 0(\bmod p)$ if $p^{s} \nmid n$ and $h_{n} \equiv b_{\frac{n}{p^{s}}}(\bmod p)$, if $p^{s} \mid n$.
We know that $g_{n} \equiv h_{n}(\bmod p)$ for $n \geq n_{0}$. For $n p^{s} \geq n_{0}$ the congruence $g_{n p^{s}} \equiv h_{n p^{s}}$ $(\bmod p)$ implies that $a_{n} \equiv b_{n}(\bmod p)$. Using the condition that the set \mathcal{C} contains incongruent integers modulo p we get that $a_{n}=b_{n}$ for $n \geq n_{0} / p^{s}$. This completes the proof of Lemma 2.

Proof of Lemma 3. Since $A(z) \sim B(z)$ and $A(z)^{h} \sim B(z)^{h}$ we can write that $A(z)=$ $B(z)+P(z)$ and $A(z)^{h}=B(z)^{h}+Q(z)$, where $P(z)$ and $Q(z)$ are polynomials. Thus

$$
Q(z)=A(z)^{h}-B(z)^{h}=(B(z)+P(z))^{h}-B(z)^{h}=\sum_{i=1}^{h}\binom{h}{i} P(z)^{i} B(z)^{h-i}
$$

Multiply both side by $P(z)^{h-2}$, we get that

$$
\begin{equation*}
Q(z) P(z)^{h-2}=(P(z) B(z))^{h-1}\left(h+\frac{\binom{h}{2} P(z)}{B(z)}+\frac{\binom{h}{3} P(z)^{2}}{B(z)^{2}}+\ldots\right) . \tag{6}
\end{equation*}
$$

We show that $P(z) B(z)$ is bounded in the open unit disc $(|z|<1, z \in \mathbb{C})$. Assume, that it is not true. Then there is an infinite sequence $z_{1}, z_{2}, \ldots, z_{n} \ldots,\left|z_{n}\right|<1$ for which $\left|P\left(z_{n}\right) B\left(z_{n}\right)\right| \rightarrow \infty$ (so $\left|B\left(z_{n}\right)\right| \rightarrow \infty$), and thus

$$
\left|Q\left(z_{n}\right) P\left(z_{n}\right)^{h-2}\right|=\left|\left(P\left(z_{n}\right) B\left(z_{n}\right)\right)^{h-1}\left(h+\frac{\binom{h}{2} P\left(z_{n}\right)}{B\left(z_{n}\right)}+\frac{\binom{h}{3} P\left(z_{n}\right)^{2}}{B\left(z_{n}\right)^{2}}+\ldots\right)\right| \rightarrow \infty
$$

while the left hand side is bounded. So $P(z) B(z)$ is bounded in the open unit disc.
Next we show, that $P(z) B(z)$ is a polynomial. Suppose indirectly, that $P(z) B(z)=\sum_{k=0}^{\infty} k_{n} z^{n}$, $k_{n} \in \mathbb{Z}$ and $k_{n} \neq 0$ for infinitely many integers n. Let $z=r \mathrm{e}^{2 \pi i \varphi}$. For $r<1$ the Parsevalformula gives

$$
\begin{equation*}
\int_{0}^{1}\left|P\left(r \mathrm{e}^{2 \pi i \varphi}\right) B\left(r \mathrm{e}^{2 \pi i \varphi}\right)\right|^{2} \mathrm{~d} \varphi=\sum_{n=0}^{\infty} k_{n}^{2} r^{2 n} \tag{7}
\end{equation*}
$$

Since $P(z) B(z)$ is bounded, if $r \rightarrow 1^{-}$then the left-hand side of (7) is bounded, but the right-hand side of (7) tends to infinity. So $P(z) B(z)=R(z)$, where $R(z)$ is a polynomial. Write $P(z)$ in the form $P(z)=\sum_{i=0}^{m} \lambda_{i} z^{i}$. Then b_{n} fulfils the following linear recursion when $n \geq n_{1}$

$$
b_{n}=-\frac{1}{\lambda_{0}}\left(\lambda_{1} b_{n-1}+\lambda_{2} b_{n-2}+\cdots+\lambda_{m} b_{n-m}\right)
$$

This means, that b_{n} is determinded by $b_{n-1}, b_{n-2}, \ldots, b_{n-m}$. Since we can choose b_{n} in finitely many way we conclude that b_{n} is periodic. Therefore there exist positive integers N_{0}, m and series $F_{\mathcal{A}}(z)=\sum_{n=0}^{m N_{0}-1} d_{n} z^{n}, F_{\mathcal{B}}(z)=\sum_{n=0}^{m N_{0}-1} e_{n} z^{n}, d_{n}, e_{n} \in \mathcal{C}$ and $T(z)=\sum_{n=0}^{m-1} t_{n} z^{n}$, $t_{n} \in \mathcal{C}$ such that

$$
\begin{aligned}
& A(z)=F_{\mathcal{A}}(z)+\frac{T(z) z^{m N_{0}}}{1-z^{m}} \\
& B(z)=F_{\mathcal{B}}(z)+\frac{T(z) z^{m N_{0}}}{1-z^{m}}
\end{aligned}
$$

In the last step we have to show (1). We show by induction on k that for every $1 \leq k \leq$ $h-1$

$$
\begin{equation*}
\left(1-z^{m}\right)^{k} \mid T(z)^{k}\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right) \tag{8}
\end{equation*}
$$

holds. It is clear that

$$
A(z)^{h}-B(z)^{h}=\left(F_{\mathcal{A}}(z)+\frac{T(z) z^{m N_{0}}}{1-z^{m}}\right)^{h}-\left(F_{\mathcal{B}}(z)+\frac{T(z) z^{m N_{0}}}{1-z^{m}}\right)^{h}=Q(z)
$$

where $Q(z)$ is a polynomial. Using the binomial theorem we get

$$
\begin{align*}
& \left(1-z^{m}\right)^{h} \mid\left(F_{\mathcal{A}}(z)\left(1-z^{m}\right)+T(z) z^{m N_{0}}\right)^{h}-\left(F_{\mathcal{B}}(z)\left(1-z^{m}\right)+T(z) z^{m N_{0}}\right)^{h}= \\
& =\sum_{i=0}^{h}\binom{h}{i} T^{i}(z) z^{i m N_{0}}\left(F_{\mathcal{A}}(z)^{h-i}-F_{\mathcal{B}}(z)^{h-i}\right)\left(1-z^{m}\right)^{h-i} \tag{9}
\end{align*}
$$

Obviously if in (9) $i=0$ then $\left(1-z^{m}\right)^{h} \left\lvert\,\binom{ h}{0} T(z)^{0} z^{0 \cdot m N_{0}}\left(F_{\mathcal{A}}(z)^{h}-F_{\mathcal{B}}(z)^{h}\right)\left(1-z^{m}\right)^{h}\right.$ and also if in (9) $i=h$ then $\left(1-z^{m}\right)^{h} \left\lvert\,\binom{ h}{h} T^{h}(z) z^{h m N_{0}} \cdot\left(F_{\mathcal{A}}(z)^{0}-F_{\mathcal{B}}(z)^{0}\right)\left(1-z^{m}\right)^{0}\right.$ holds. So (9) is equivalent to

$$
\begin{equation*}
\left(1-z^{m}\right)^{h} \left\lvert\, \sum_{i=1}^{h-1}\binom{h}{i} T(z)^{i} z^{i m N_{0}}\left(F_{\mathcal{A}}(z)^{h-i}-F_{\mathcal{B}}^{h-i}(z)\right)\left(1-z^{m}\right)^{h-i}\right. \tag{10}
\end{equation*}
$$

At first let $k=1$. In (10) if $i \leq h-2$ then

$$
\begin{equation*}
\left(1-z^{m}\right)^{2} \left\lvert\,\binom{ h}{i} z^{i m N_{0}} T(z)^{i}\left(F_{\mathcal{A}}(z)^{h-i}-F_{\mathcal{B}}(z)^{h-i}\right)\left(1-z^{m}\right)^{h-i}\right. \tag{11}
\end{equation*}
$$

So in (10) if $i=h-1$ then

$$
\begin{equation*}
\left(1-z^{m}\right)^{2} \left\lvert\,\binom{ h}{h-1} z^{(h-1) m N_{0}} T(z)^{h-1}\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right)\left(1-z^{m}\right)\right. \tag{12}
\end{equation*}
$$

should be also true. Since $\left(z, 1-z^{m}\right)=1$ from (12) we have

$$
\begin{equation*}
1-z^{m} \mid T(z)^{h-1}\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right) \tag{13}
\end{equation*}
$$

We know, that $1-z^{m}=-\prod_{d \mid m} \phi_{d}(z)$, where $\phi_{d}(z)$ denotes the d th cyclotomic polynomial. $1-z^{m}$ has no multiple root, which implies

$$
\begin{equation*}
1-z^{m} \mid T(z)\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right) \tag{14}
\end{equation*}
$$

Now assume that for $1 \leq l \leq k-1, k \leq h-1$ we have

$$
\left(1-z^{m}\right)^{l} \mid T(z)^{l}\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right) .
$$

We have to prove that

$$
\begin{equation*}
\left(1-z^{m}\right)^{k} \mid T(z)^{k}\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right) . \tag{15}
\end{equation*}
$$

In (10)

$$
\begin{equation*}
T(z)^{i}\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right)\left(1-z^{m}\right)^{h-i} \left\lvert\,\binom{ h}{i} z^{i m N_{0}} T(z)^{i}\left(F_{\mathcal{A}}(z)^{h-i}-F_{\mathcal{B}}(z)^{h-i}\right)\left(1-z^{m}\right)^{h-i}\right. \tag{16}
\end{equation*}
$$

Using the assumption of the induction we get

$$
\begin{equation*}
\left(1-z^{m}\right)^{h-i+\min \{k-1, i\}} \mid T(z)^{i}\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right)\left(1-z^{m}\right)^{h-i} \tag{17}
\end{equation*}
$$

From (16) and (17) we obtain that

$$
\begin{equation*}
\left(1-z^{m}\right)^{h-i+\min \{k-1, i\}} \left\lvert\,\binom{ h}{i} z^{i m N_{0}} T(z)^{i}\left(F_{\mathcal{A}}(z)^{h-i}-F_{\mathcal{B}}(z)^{h-i}\right)\left(1-z^{m}\right)^{h-i}\right. \tag{18}
\end{equation*}
$$

So from (10) we know

$$
\begin{equation*}
\left(1-z^{m}\right)^{k+1}\left|\left(1-z^{m}\right)^{h}\right| \sum_{i=1}^{h-1}\binom{h}{i} T(z)^{i} z^{i m N_{0}}\left(F_{\mathcal{A}}(z)^{h-i}-F_{\mathcal{B}}(z)^{h-i}\right)\left(1-z^{m}\right)^{h-i} \tag{19}
\end{equation*}
$$

If $\min \{k-1, i\}=i$, which means $i \leq k-1$ then $h-i+\min \{k-1, i\}=h \geq k+1$. Thus

$$
\begin{equation*}
\left(1-z^{m}\right)^{k+1} \left\lvert\,\binom{ h}{i} T(z)^{i} z^{i m N_{0}}\left(F_{\mathcal{A}}(z)^{h-i}-F_{\mathcal{B}}(z)^{h-i}\right)\left(1-z^{m}\right)^{h-i}\right. \tag{20}
\end{equation*}
$$

holds.
If $\min \{k-1, i\}=k-1$, then $k-1 \leq i \leq h-1$. If $k-1 \leq i \leq h-2$, then $h-i+\min \{k-1, i\} \geq 2+k-1=k+1$. Thus

$$
\begin{equation*}
\left(1-z^{m}\right)^{k+1} \left\lvert\,\binom{ h}{i} T(z)^{i} z^{i m N_{0}}\left(F_{\mathcal{A}}(z)^{h-i}-F_{\mathcal{B}}(z)^{h-i}\right)\left(1-z^{m}\right)^{h-i}\right. \tag{21}
\end{equation*}
$$

So (10), (20) and (21) imply that for $i=h-1$ we have

$$
\begin{equation*}
\left(1-z^{m}\right)^{k+1} \left\lvert\,\binom{ h}{h-1} T(z)^{h-1} z^{(h-1) m N_{0}}\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right)\left(1-z^{m}\right)\right., \tag{22}
\end{equation*}
$$

which means that

$$
\begin{equation*}
\left(1-z^{m}\right)^{k} \mid T(z)^{h-1}\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right) . \tag{23}
\end{equation*}
$$

We use, that $1-z^{m}=-\prod_{d \mid m} \phi_{d}(z)$, where $\phi_{d}(z)$ denotes the d th cyclotomic polynomial. This means that for every $d, d \mid m$ we have $\phi_{d}(z)^{k} \mid T(z)^{h-1}\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right)$.
If $\phi_{d}(z) \mid T(z)$ then $\phi_{d}(z)^{k} \mid T(z)^{k}$ is also true. If $\phi_{d}(z) X T(z)$ then $\phi_{d}(z)^{k} \mid F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)$. So for every $d\left|m, \phi_{d}(z)^{k}\right| T(z)^{k}\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right)$ which means that

$$
\begin{equation*}
\left(1-z^{m}\right)^{k} \mid T(z)^{k}\left(F_{\mathcal{A}}(z)-F_{\mathcal{B}}(z)\right) . \tag{24}
\end{equation*}
$$

This ends the the induction and the proof of Lemma 3.

Proof of Proposition 2. Let

$$
a_{i}^{\prime}=\frac{\prod_{j=0}^{i-1}\left(h^{2}+1-j h\right)}{i!} \cdot(-1)^{i} h^{h-1-i}-(-1)^{i}\binom{h}{i} h^{h-1}
$$

for $1 \leq i \leq h-1$ and

$$
\begin{gathered}
A(z)=\sum_{i=1}^{h-1} a_{i}^{\prime}\left(1-z^{h}\right)^{i-1}+\frac{h^{h-1} z^{h^{2}}}{1-z^{h}} \\
B(z)=\frac{h^{h-1} z^{h^{2}+1}}{1-z^{h}}
\end{gathered}
$$

We will show that

1. $A(z)^{h} \sim B(z)^{h}$
2. There exists a set of integers $\mathcal{C}_{h}=\left\{c_{1}, c_{2}, \ldots, c_{h+1}\right\}$ such that $c_{1}, \ldots c_{h}$ form a complete set of residues modulo h and for the previous power series $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, $B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ we have $a_{n}, b_{n} \in \mathcal{C}_{h}$.
It is easy to see that $A(z) \nsim B(z)$.
First we prove statement 1.

$$
\begin{equation*}
A(z)^{h}-B(z)^{h}=\left(\sum_{i=1}^{h-1} a_{i}^{\prime}\left(1-z^{h}\right)^{i-1}+\frac{h^{h-1} z^{h^{2}}}{1-z^{h}}\right)^{h}-\left(\frac{h^{h-1} z^{h^{2}+1}}{1-z^{h}}\right)^{h} \tag{25}
\end{equation*}
$$

From (25) we see that to prove $A(z)^{h} \sim B(z)^{h}$ we need to show

$$
\begin{equation*}
\left(1-z^{h}\right)^{h} \mid\left(\sum_{i=1}^{h-1} a_{i}^{\prime}\left(1-z^{h}\right)^{i}+h^{h-1} z^{h^{2}}\right)^{h}-\left(h^{h-1} z^{h^{2}+1}\right)^{h} \tag{26}
\end{equation*}
$$

Let $x=1-z^{h}$. (26) is equivalent to the following

$$
\begin{equation*}
x^{h} \mid\left(\sum_{i=1}^{h-1} a_{i}^{\prime} x^{i}+h^{h-1}(1-x)^{h}\right)^{h}-h^{h^{2}-h}(1-x)^{h^{2}+1} . \tag{27}
\end{equation*}
$$

So it is enough to show (27). For $-1<x<1$ by the binomial series expansion we get

$$
\begin{gathered}
h^{h^{2}-h}(1-x)^{h^{2}+1}=\left(h^{h-1}(1-x)^{\frac{h^{2}+1}{h}}\right)^{h}= \\
\left(h^{h-1} \sum_{i=0}^{\infty}\binom{\frac{h^{2}+1}{h}}{i}(-1)^{i} x^{i}\right)^{h}=\left(h^{h-1} \sum_{i=0}^{h-1}\binom{h^{2}+1}{i}(-1)^{i} x^{i}+h^{h-1} \sum_{i=h}^{\infty}\binom{\frac{h^{2}+1}{h}}{i}(-1)^{i} x^{i}\right)^{h}= \\
=\left(\sum_{i=0}^{h-1} h^{h-1-i} \frac{\prod_{j=0}^{i-1}\left(h^{2}+1-j h\right)}{i!}(-1)^{i} x^{i}+h^{h-1} \sum_{i=h}^{\infty}\binom{\frac{h^{2}+1}{h}}{i}(-1)^{i} x^{i}\right)^{h}= \\
\left(\sum_{i=0}^{h-1} h^{h-1-i} \frac{\prod_{j=0}^{i-1}\left(h^{2}+1-j h\right)}{i!}(-1)^{i} x^{i}\right)^{h}+ \\
+\sum_{k=1}^{h}\binom{h}{k}\left(\sum_{i=0}^{h-1} h^{h-1-i} \frac{\prod_{j=0}^{i-1}\left(h^{2}+1-j h\right)}{i!}(-1)^{i} x^{i}\right)^{h-k}\left(h^{h-1} \sum_{i=h}^{\infty}\binom{\frac{h^{2}+1}{h}}{i}(-1)^{i} x^{i}\right)^{k}= \\
=\left(\sum_{i=0}^{h-1} h^{h-1-i} \frac{\prod_{j=0}^{i-1}\left(h^{2}+1-j h\right)}{i!}(-1)^{i} x^{i}\right)^{h}+\sum_{i=h}^{\infty} d_{i} x^{i} .
\end{gathered}
$$

Thus

$$
\begin{equation*}
h^{h^{2}-h}(1-x)^{h^{2}+1}-\left(\sum_{i=0}^{h-1} h^{h-1-i} \frac{\prod_{j=0}^{i-1}\left(h^{2}+1-j h\right)}{i!}(-1)^{i} x^{i}\right)^{h}=\sum_{i=h}^{\infty} d_{i} x^{i}=\sum_{i=h}^{h^{2}+1} d_{i} x^{i} \tag{29}
\end{equation*}
$$

Hence

$$
\begin{equation*}
x^{h} \left\lvert\,\left(\sum_{i=0}^{h-1} h^{h-1-i} \frac{\prod_{j=0}^{i-1}\left(h^{2}+1-j h\right)}{i!}(-1)^{i} x^{i}\right)^{h}-h^{h^{2}-h}(1-x)^{h^{2}+1} .\right. \tag{30}
\end{equation*}
$$

Since for every $1 \leq i \leq h-1$

$$
(-1)^{i} h^{h-1-i} \frac{\prod_{j=0}^{i-1}\left(h^{2}+1-j h\right)}{i!}=a_{i}^{\prime}+(-1)^{i} h^{h-1}\binom{h}{i},
$$

from (30) we get that

$$
\begin{equation*}
x^{h} \left\lvert\,\left(\sum_{i=1}^{h-1} a_{i}^{\prime} x^{i}+h^{h-1}+h^{h-1} \sum_{i=1}^{h-1}(-1)^{i}\binom{h}{i} x^{i}\right)^{h}-h^{h^{2}-h}(1-x)^{h^{2}+1} .\right. \tag{31}
\end{equation*}
$$

Thus

$$
\begin{equation*}
x^{h} \left\lvert\,\left(\sum_{i=1}^{h-1} a_{i}^{\prime} x^{i}+h^{h-1} \sum_{i=0}^{h}(-1)^{i}\binom{h}{i} x^{i}\right)^{h}-h^{h^{2}-h}(1-x)^{h^{2}+1}\right. \tag{32}
\end{equation*}
$$

is also true. Using the binomial theorem we get that $\sum_{i=0}^{h}(-1)^{i}\binom{h}{i} x^{i}=(1-x)^{h}$, which proves statement 1.

Now we prove statement 2. We will show that $\frac{\prod_{j=0}^{i-1}\left(h^{2}+1-j h\right)}{i!} \in \mathbb{Z}$. When p is a prime number and $p^{\alpha}<h$, then $\left(p^{\alpha}, h\right)=1$. Therefore among the numbers $h^{2}+1, h^{2}+$ $1-h, \ldots, h^{2}+1-\left(\left\lfloor\frac{i}{p^{\alpha}}\right\rfloor p^{\alpha}-1\right) h$ there are $\left\lfloor\frac{i}{p^{\alpha}}\right\rfloor$, which are divisible by p^{α}. So

$$
\left.p^{\sum_{\alpha=1}^{\infty}\left\lfloor\frac{i}{p^{\alpha}}\right\rfloor} \right\rvert\, \prod_{j=1}^{i-1}\left(h^{2}+1-j h\right)
$$

By the Legendre's formula, in the prime factorization of $i!(i<h)$ the exponent of p is $\sum_{\alpha=1}^{\infty}\left\lfloor\frac{i}{p^{\alpha}}\right\rfloor$.
Let

$$
A(z)=\sum_{i=1}^{h-1} a_{i}^{\prime}\left(1-z^{h}\right)^{i-1}+\frac{h^{h-1} z^{h^{2}}}{1-z^{h}}=\sum_{n=0}^{\infty} a_{n} z^{n} .
$$

Then $a_{n}=0$ or $a_{n}=h^{h-1}$ holds for $n \neq i h, 0 \leq i \leq h-2$.
Clearly,

$$
B(z)=\frac{h^{h-1} z^{h^{2}+1}}{1-z^{h}}=\sum_{n=0}^{\infty} b_{n} z^{n},
$$

where $b_{n}=0$ or $b_{n}=h^{h-1}$.
It remains to show that the integers $a_{0}, a_{h}, a_{2 h}, \ldots, a_{(h-2) h}$ form primitive residue classes modulo h. If $0 \leq k \leq h-2$ we get that

$$
a_{k h}=\sum_{j=k+1}^{h-1}(-1)^{k} a_{j}^{\prime}\binom{j-1}{k} .
$$

For $1 \leq j \leq h-2$ we have $h \mid a_{j}^{\prime}$, thus using Wilson's Theorem we get

$$
\begin{gathered}
a_{k h} \equiv(-1)^{k} a_{h-1}^{\prime}\binom{h-2}{k} \equiv(-1)^{k} \frac{\prod_{j=0}^{h-2}\left(h^{2}+1-j h\right)}{(h-1)!} \cdot(-1)^{h-1} \frac{(h-2)!}{k!(h-2-k)!} \equiv \\
\equiv(-1)^{k} \cdot \frac{1}{-1} \cdot(-1)^{h-1} \frac{(h-1)!}{(-1)(k+1)!(h-2-k)!} \cdot(k+1) \equiv \\
\equiv(-1)^{k+h-1} \frac{(h-1)!(-1)^{k+1}}{(h-1)(h-2) \ldots(h-k-1)(h-k-2)!} \cdot(k+1) \equiv \\
\equiv(-1)^{h} \frac{(h-1)!}{(h-1)!}(k+1) \equiv-(k+1) \quad(\bmod h) .
\end{gathered}
$$

This show that statement 2 holds. This completes the proof of Theorem 2.

Acknowledgement: The authors would like to thank Imre Z. Ruzsa for the valuable discussions.

References

[1] Yong-Gao Chen, Min Tang, Partitions of natural numbers with the same representation functions, Journal of Number Theory, Vol. 129 (2009), 2689-2695.
[2] Yong-Gao Chen, Bin Wang, On additive properties of two special sequences, Acta Arithmetica, Vol. 110.3 (2003), 299-303.
[3] G. Dombi, Additive properties of certain sets, Acta Arithmetica, Vol. 103.2 (2002), 137-146.
[4] S. Z. Kiss, E. Rozgonyi, Cs. Sándor, Sets with almost coinciding representation functions, Bulletin of the Australian Math. Soc., Vol. 89 (2014), 97-111.
[5] L. Kronecker, Zwei sätse über Gleichungen mit ganzzahligen Coefficienten, Journal für die Reine und Angewandte Mathematik, Vol. 53 (1857), 173-175.
[6] V. F. Lev, Reconstructing integer sets from their representation functions, Electronic Journal of Combinatorics, Vol. 11 (2004), R78.
[7] M. B. Nathanson, Representation functions of sequences in additive number theory, Proceedings of the American Mathematical Society, Vol. 72, (1978), 16-20.
[8] Cs. Sándor, Partitions of natural numbers and their representation functions, Integers, Vol. 4 (2004), A18.
[9] Min Tang, Partitions of the set of natural numbers and their representation functions, Discrete Mathematics, Vol. 308 (2008), 2614-2616.
[10] Quan-Hui Yang, Another Proof of Nathanson's Theorems, Journal of Integer Sequences, Vol. 14 (2011).

[^0]: *Institute of Mathematics, Budapest University of Technology and Economics, H-1529 B.O. Box, Hungary; MTA-BME Stochastic Research Group (temporary affiliation), Budapest, Hungary; reszti@math.bme.hu
 ${ }^{\dagger}$ Institute of Mathematics, Budapest University of Technology and Economics, H-1529 B.O. Box, Hungary; csandor@math.bme.hu; This author was supported by the OTKA Grant No. K81658.

