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Abstract

Let A be a set of positive integers. For a fixed k ě 1 and a positive integer n let
RA,kpnq denote the number of representations of n as the sum of k terms from the set
A. In this paper we give a necessary and sufficient condition to the multiplicativity
of the function c1RA,1pnq ` c2RA,2pnq, where c1 and c2 are integers and c2 ‰ 0.
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1 Introduction

Let Z` denote the set of positive integers. Let A “ ta1, a2, . . . u, 0 ď a1 ă a2 ă . . . be an
infinite sequence of nonnegative integers. Let RA,kpnq denote the number of solutions of
the equation

ai1 ` . . . ` aik “ n, ai1 , . . . , aik P A,

where n P Z`. In a series of papers P. Erdős, A. Sárközy and V. T. Sós studied the ad-
ditive representation functions. In [2], [3], [4] they investigated the regularity properties,
while [5] and [6] focused on the monotonicity of the additive representation functions.
Grekos, Haddad, Helou and Pihko [7] proved that the representation function cannot be
periodic. One can find some other results in surveys [11] and [12]. We say an arith-
metic function fpnq is multiplicative if fpabq “ fpaqfpbq for every a, b P Z` which are
coprime. Obviously, if fpnq is a multiplicative arithmetic function, then fp1q “ 1, while
RA,kp1q ‰ 1. This implies that the additive representation function RA,kpnq cannot be
multiplicative. Define the function gpnq by

gpnq “ c1RA,1pnq ` c2RA,2pnq ` . . . ` ckRA,kpnq,

where c1, . . . , ck are integers. In this paper we focus on the multiplicativity of gpnq. As
far as we know this function has not been investigated yet. In the case when k “ 2, i.e.,
for the representation function corresponding the two terms sums we give a necessary and
sufficient condition for the multiplicativity of gpnq. In particular, we prove the following
theorem.
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Theorem 1. If A Ă Z` and c1, c2 P Z, c2 ‰ 0, then the function gpnq “ c1RA,1pnq `
c2RA,2pnq is multiplicative if and only if one of the following conditions holds: A “ t1u
and c1 “ 1 or A “ Z` and c1 “ c2 “ 1 or A “ tn2 : n P Z`u and c1 “ c2 “ 1.

Unfortunately we could not settle the case k ě 3 thus it remains open.

Problem 1. When k ě 3 what conditions on the set A are needed to ensure that the
function gpnq is multiplicative?

Let hpzq denote the generating function of the set A, i.e.,

hpzq “
ÿ

aPA

za,

where z “ re2iπα and r ă 1, thus this infinite series is absolutely convergent. For a fixed
m nonzero integer consider the polynomial ppzq “ z `mz2. It is easy to see that gpmq
is the coefficient of zm in pphpzqq. In view of this observation Theorem 1. asserts that
for an infinitely set A the function gpnq is multiplicative if and only if ppzq “ z ` z2 and
set A is the set of positive integers or the set of positive square numbers . However, our
proof of Theorem 1. is elementary, the analytic approach may help to handle the general
case when k ě 3. On the other hand when A “ Z` we give a full description of the
multiplicativity. Let Spn, kq denote the number of partitions of a set of n elements into k
nonepty subsets. By convention, we write Sp0, 0q “ 1. The sequence of Spn, kq is called
Stirling numbers of the second kind [13].

Theorem 2. If A “ Z` and ppzq “
řd
i“1 ciz

i is a polynomial of degree d, then the

function gpnq is multiplicative if and only if ci “ pi´ 1q! ¨ Spd, i´ 1q
řd
j“i´1

`

d´1
j

˘

.

2 Proof of Theorem 1.

First we prove the sufficiency. We denote the cardinality of a set A by |A|. If A “ t1u
and c1 “ 1, then it follows that gp1q “ 1, gp2q “ c2, and gpnq “ 0 if n ě 3, thus gpnq is
multiplicative. In the next step when A “ Z` and c1 “ c2 “ 1, we get that

gpnq “ RA,1pnq `RA,2pnq “ 1` pn´ 1q “ n,

which is obviously multiplicative. In the last case when A “ tn2 : n ě 1, n P Nu and
c1 “ c2 “ 1 we use the formula for the number of representations of a positive integer
as the sum of two squares [9]. This asserts that if the prime decomposition of n is
n “ 2α ¨ pα1

1 ¨ ¨ ¨ p
αs
s ¨ q

β1
1 ¨ ¨ ¨ q

βt
t , where pi ” 1 mod 4 and pj ” 3 mod 4, for every 1 ď i ď s

and 1 ď j ď t, then

|tpx, yq : x, y P Z, x2 ` y2 “ nu| “

$

’

&

’

%

4
s
ź

i“1

pαi ` 1q, if t “ 0

0, if t ą 0

.

This implies that

|tpx, yq : x, y P Z, x2 ` y2 “ nu| “ 4|tpx, yq : x, y P Z`, x2 ` y2 “ nu|
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`4|tx : x P Z`, x2 “ nu| “ 4RA,2pnq ` 4RA,1pnq,

thus we have

gpnq “ RA,1pnq `RA,2pnq “

$

’

&

’

%

s
ź

i“1

pαi ` 1q, if t “ 0

0, if t ą 0

.

Then it follows immediately that gpnq is multiplicative. This proves the sufficient condi-
tions.

In the next step we prove the other direction. Assume that the function gpnq is
multiplicative. As A Ă Z`, thus we have RA,2p1q “ 0, which implies that gp1q “
c1RA,1p1q ` c2RA,2p1q “ c1RA,1p1q. For a multiplicative function gpnq we know that
gp1q “ 1. Thus we have c1 “ 1 and RA,1p1q “ 1, which implies that 1 P A. Let
A “ ta1, a2, . . . u, where 1 “ a1 ă a2 ă . . . . Assuming that k ‰ l, we have

gpak ` alq “ RA,1pak ` alq ` c2RA,2pak ` alq

“ |ti : ai “ ak ` alu| ` c2|tpi, jq : ai ` aj “ ak ` alu|.

In the above formula we have |ti : ai “ ak ` alu| “ 0 or |ti : ai “ ak ` alu| “ 1 and
|tpi, jq : ai ` aj “ ak ` alu| ě 2, thus we have

gpak ` alq ‰ 0, (1)

if k ‰ l. In view of the fact that a1 “ 1, for i ą 1 we have

gpai ` 1q ‰ 0. (2)

Proposition 1. If A ‰ t1u, then |A| “ 8.

Proof. We prove by contradiction. Assume that A ‰ t1u, but |A| ă 8. Let a˚ be the
maximal element of the set A. If a˚ “ 2, then A “ t1, 2u, thus we have gp1q “ 1,
gp2q “ 1` c2, gp3q “ 2c2, gp4q “ c2. It follows that gp12q “ gp3q ¨ gp4q “ 2c22, but

gp12q “ |ti : ai “ 12, ai P Au| ` c2|tpi, jq : ai ` aj “ 12, ai, aj P Au| “ 0

which is absurd. If a˚ ą 2 we have two cases.
Case 1. a˚

2
R A. Then we have

gpa˚q “ |ti : ai “ a˚, ai P Au| ` c2|tpi, jq : ai ` aj “ a˚, ai, aj P Au|,

which implies that 2 - gpa˚q, thus gpa˚q ‰ 0 and we get from (2) that gpa˚ ` 1q ‰ 0. It
follows that gpa˚pa˚ ` 1qq “ gpa˚q ¨ gpa˚ ` 1q ‰ 0. Since for every element of A we have

ai ď a˚ ă
a˚pa˚ ` 1q

2
,

it follows that

gpa˚pa˚`1qq “ |ti : ai “ a˚pa˚`1q, ai P Au|`2c2|tpi, jq : ai`aj “ a˚pa˚`1q, ai, aj P Au| “ 0.
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Case 2. Assume that a˚

2
P A. As a˚ ą 2 and in view of (2) it follows that gpa

˚

2
` 1q ‰ 0

and gpa˚ ` 1q ‰ 0. Since 2
`

a˚

2
` 1

˘

´ pa˚ ` 1q “ 1 it follows that a˚

2
` 1 and a˚ ` 1 are

obviusly coprime. Thus we have

gpp
a˚

2
` 1qpa˚ ` 1qq “ gp

a˚

2
` 1q ¨ gpa˚ ` 1qq ‰ 0.

On the other hand

gpp
a˚

2
`1qpa˚`1qq “ |ti : ai “ p

a˚

2
`1qpa˚`1q, ai P Au|`|tpi, jq : ai`aj “ p

a˚

2
`1qpa˚`1q, ai, aj P Au|.

Since

ai ď a˚ ă a˚ ` 1 ă
a˚

2
` 1

2
pa˚ ` 1q,

which implies that gppa
˚

2
` 1qpa˚ ` 1qq “ 0 a contradiction.

Let p be a positive prime and Mp “ 2p´1 denote a Mersenne prime. Let Fn “ 22n`1
a Fermat number. In the next proposition we compute the possible values of a2.

Proposition 2. If A ‰ t1u, then a2 “Mp or a2 “ 8 or a2 “ Fm ´ 1.

Proof. In the first step we prove that a2 is a power of a prime, that is a2 “ pα, α ě 1.
Assume that a2 ą 2 and a2 “ u ¨ v, where u, v are coprime positive integers and u, v ą 1.
It is clear that u, v ă a2 and gpa2q “ 1. On the other hand gpa2q “ gpuvq “ gpuq ¨ gpvq,
thus gpuq “ 0 and gpvq “ 0, but conditions 1 ă w ă a2 and gpwq “ 0 imply w “ 2,
contradiction. The same argument shows that a2 ` 1 is also a power of a prime. As a2
and a2 ` 1 have different parity, one of them is a power of two. If a2 “ 2n and a2 ` 1 is
a prime number, then n “ 2m, that is a2 “ Fm ´ 1. If a2 ` 1 “ pα, α ą 1, then it is well
known [8] that the Catalan - equation 2n ` 1 “ pα has the only solution n “ 3, p “ 3,
α “ 2 . This implies that a2 “ 8. In the second case when a2` 1 “ 2n, then a2 “ 2n´ 1,
but 2n ´ 1 “ pα when α ą 1, thus 2n ´ 1 is a Mersenne prime.

In the next proposition we study a3.

Proposition 3. Let a2 “Mp. Then a3 “ 8 or a3 “ Fm ´ 1.

Proof. In the first step we prove that a3 is a power of a prime. Assume that a3 “ u ¨ v,
where u, v are coprime positive integers and u, v ą 1. If n is a positive integer such that
gpnq ‰ 0 and n ă a3, then n “ 2 or n “ Mp or n “ Mp ` 1 or n “ 2Mp. This implies
that a3 “ 2Mp or a3 “MppMp ` 1q. We distinguish three cases.

Case 1. When a3 “ 2Mp and a2 ą 3, then it follows from (1) that gpa3 ` a2q ‰ 0
and since gp3q “ 0 we have gpa3 ` a2q “ gp3Mpq “ gp3qgpMpq “ 0 which is absurd.

Case 2. If a2 “ 3 and a3 “ 2a2 “ 6, then gp2q “ c2, gp3q “ 1, gp6q ě 1 ` c2 and
gp6q “ gp2qgp3q a contradiction.

Case 3. When a3 “MppMp`1q, then gpa3`a2q “ gpMppMp`1q`Mpq “ gpMppMp`

2qq “ gpMpqgpMp ` 2q. It is clear that if n ă a3 then gpnq ‰ 0 when n “ 1, 2,Mp,Mp `

1, 2Mp. Thus we have gpa3 ` a2q “ 0 which contradicts (1).
In the next step we prove that a3`1 is a power of a prime similarly as above. We prove

by contradiction. It follows that a3 ` 1 “ 2Mp or a3 ` 1 “MppMp ` 1q. If a3 ` 1 “ 2Mp
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and p “ 2 then M2 “ 3 and a3 “ 5. Thus gp2q “ c2 and gp3q “ 1, which implies
that gp6q “ gp2qgp3q “ c2. As gp6q “ RA,1p6q ` c2RA,2p6q “ RA,1p6q ` 3c2 “ c2 so that
RA,1p6q “ ´2c2 a contradiction. If a2 “Mp ą 3, then a2 ě 7 and a3 “ 2Mp´1. It follows
from (1) that gpa3`a2q ‰ 0. AsMp ” 7 mod 8 it follows that a3`a2 “ 3Mp´1 ” 4 mod 8.
Thus we have

0 ‰ gpa3 ` a2q “ g
`

4p
3Mp ´ 1

4
q
˘

“ gp4qg
`3Mp ´ 1

4

˘

.

Since gp4q “ 0, this is a contradiction. In the second case when a3 “ MppMp ` 1q ´ 1,
then

gpa3 ` a2q “ gpM2
p ` 2Mp ´ 1q “ g

`

2pMp `
M2

p ´ 1

2
q
˘

“ gp2qg
`

Mp `
M2

p ´ 1

2

˘

.

It follows from (1) that

gpMp `
M2

p ´ 1

2
q ‰ 0.

On the other hand if n ăM2
p `Mp´ 1 “ a3 and gpnq ‰ 0 then n “ 1, 2,Mp,Mp` 1, 2Mp

a contradiction. A similar argument to the end of the proof of Proposition 2 gives that
a3 must be Mp1 or 8 or Fm ´ 1. If a3 “ Mp1 , then 0 “ gpa2 ` a3q “ gp2p ` 2p

1

´ 2q “
gp2qgp2p´1 ` 2p

1´1 ´ 1q, but conditions 1 ă w ă a3, gpwq “ 0 and w is odd implies that
w “ 2p ´ 1, a contradiction.

We may assume that |A| “ 8. We distiguish three cases.
Case 1. c2 ă 0. Then gpnq ď 1. We have two subcases.
Case 1a. For every p prime we have gppαq P t1,´1, 0u.
In this case gpnq P t1,´1, 0u. It is clear that if k ‰ l, then ak` al P A since otherwise

gpak ` alq “ RA,1pak ` alq ` c2RA,2pak ` alq “ c2|tpi, jq : ai ` aj “ ak ` alu| ď ´2

a contradiction. Thus we have a1 ` a2 P A, pa1 ` a2q ` a1 P A, which implies that

gp2a1`2a2q “ RA,1p2a1`2a2q`c2RA,2p2a1`2a2q ď 1´|tpi, jq : ai`aj “ 2a1`2a2u| ď ´2.

Since 2a1 ` 2a2 “ pa1 ` a2q ` pa1 ` a2q “ p2a1 ` a2q ` a2 we get gp2a1 ` 2a2q ď ´2 a
contradiction.

Case 1b. There exists a prime q such that gpqβq ă ´1 for some β ě 1. If q ‰ p
prime and gppαq ď ´1, then gppαqβq “ gppαqgpqβq ě 2 a contradiction. This implies that
gppαq P t0, 1u. We proved that if k ‰ l, then gpak ` alq ‰ 0. We denote by pα||n if pα|n
but pα`1 - n. It follows that if p is a prime such that pα||ak ` al, k “ l then gppαq ‰ 0.
We need the following lemma of Erdős and Turán [10].

Lemma 1. If 1 ď a1 ă a2 ă . . . ă a12 integers, then the numbers ak`al has at least four
prime divisors, that is there exist p1, p2, p3 different primes, pi “ q such that pα1

1 ||ar`as,
pα2
2 ||at ` au, pα3

3 ||av ` aw, where 1 ď r, s, t, u, v, w ď 6, r “ s, t “ u, v “ w.

Then we have gppαq P t0, 1u. As gppαi
i q ‰ 0, thus we have gppαi

i q “ 1, which implies that
pαi
i P A. It follows from (1) that gppαi

i ` p
αj

j q ď ´1. Since pi ‰ pj and if q - n, then
gpnq ě 0, it follows that q|pα1

1 ` pα2
2 , q|pα1

1 ` pα3
3 , q|pα2

2 ` pα3
3 . Thus we have

q|ppα1
1 ` pα2

2 q ` pp
α1
1 ` pα3

3 q ´ pp
α2
2 ` pα3

3 q “ 2pα1
1 .
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It follows that q|2, thus q “ 2 and gp2m ` 1q P t0, 1u. If ai is even then it follows from
(2) that gpai ` 1q ď ´1 a contradiction, which implies that ai is odd. Then it follows
from Proposition 2. that a2 “Mp “ 2p ´ 1 and a3 “ 8 or a3 “ Fm ´ 1 by Proposition 3,
a contradiction. The proof of Case 1. is completed.

Case 2. c2 ě 2. In view of Proposition 2. we have three possibilities for a2. As
a1 “ 1, if a2 “ Fm ´ 1 we have

gpFmq “ gpa2 ` 1q ě c2|tpi, jq : ai ` aj “ a2 ` 1u| ě 2c2,

and
gp2q ě c2|tpi, jq : ai ` aj “ 2u| ě c2.

Thus we have gp2Fmq “ gp2qgpFmq ě 2c22. The quantity 2Fm has the following three
possible representations as the sum of two terms from the sequence A.

2Fm “ 1` p2Fm ´ 1q “ pFm ´ 1q ` pFm ` 1q “ Fm ` Fm.

We prove that Fm ` 1 cannot be contained in A. We prove by contradiction. Assume
that Fm ` 1 P A. If m ą 0 then we have

gpFm ` 1q “ gp22m
` 2q “ gp2p22m´1

` 1qq “ gp2qgp22m´1
` 1q.

On the other hand 2 ă 22m´1 ` 1 ď 22m ´ 1 ă Fm, thus we have gp22m´1 ` 1q ‰ 0 a
contradiction. If m “ 0, then we have a1 “ 1, a2 “ 2, a3 ď 4, which implies that gp2q “
c2`1, gp3q ě 2c2 so that gp6q “ gp2qgp3q ě pc2`1q2c2. Clearly 6 “ 1`5 “ 2`4 “ 3`3,
thus we have

gp6q ď 1` 2c2 ` 2c2 ` c2 “ 5c2 ` 1 ă pc2 ` 1q2c2 ď gp6q

a contradiction. It follows that the quantity 2Fm has the following two possible represen-
tations as the sum of two terms from the sequence A.

2Fm “ 1` p2Fm ´ 1q “ Fm ` Fm.

Thus we have
2c22 ď gp2Fmq ď 1` 2c2 ` c2 “ 3c2 ` 1,

which is a contradiction if c2 ě 2.
In the second case we assume that a2 “ 8. As 9 “ 8` 1 “ a2`a1 we have gp9q ě 2c2.

It follows that gp18q “ gp9qgp2q ě 2c2c2 “ 2c22. It is clear that 18 has the following
possible representations as the sum of two terms from A: 1 ` 17 “ 8 ` 10 “ 9 ` 9. As
gp10q “ gp2qgp5q, if 10 P A, then gp10q ‰ 0 and so gp5q ‰ 0 a contradiction. Hence
gp18q ď 1` 2c2 ` c2 “ 1` 3c2 ă 2c22 ď gp18q, a contradiction.

Thus a2 “ Mp. It follows from Proposition 3. that a3 “ 8 or a3 “ Fm ´ 1. Assume
that a3 “ 8. Then a2 “ 3 or a2 “ 7. If a2 “ 3, then gp3q “ 1 and gp4q “ 2c2, thus we
have gp12q “ gp3qgp4q “ 2c2. It is clear that 12 has the following possible representations
as the sum of two terms from A: 1` 11 “ 3` 9. If 9 P A then clearly a4 “ 9. It follows
that gp10q “ gp2qgp5q “ gpa4`a1q ‰ 0 , thus we have gp5q ‰ 0 a contradiction. If 11 P A,
then gp14q “ gp2qgp7q “ gp3 ` 11q ‰ 0 , thus we have gp7q ‰ 0 a contradiction. Thus
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gp12q ď 1 which is a contradiction. If a2 “ 7, then gpa2 ` a3q “ gp15q “ gp3qgp5q ‰ 0,
which implies that gp5q ‰ 0 a contradiction.

In the next case assume that a3 “ Fm ´ 1, m ě 1. Then we have gp2q “ c2. We show
that gpFmq ě 2c2. Clearly

gpFmq “ |ti : ai “ Fmu| ` c2|tpi, jq : ai ` aj “ Fmu|.

Applying the fact that Fm “ 1`pFm´1q “ a1`a3, we obtain gpFmq ě 2c2 and therefore
gp2Fmq “ gp2qgpFmq ě 2c22 we have gp2Fmq ě 2c22. The quantity 2Fm has the following
four possible representations as the sum of two terms from the sequence A.

2Fm “ 1` p2Fm ´ 1q “ pFm ´ 1q ` pFm ` 1q “ Fm ` Fm “Mp ` pFm ´Mpq.

In the next step we prove that gp2Fm´ 1q “ 0. We prove by contradiction. Assume that
gp2Fm ´ 1q ‰ 0. Then clearly 3 | 2Fm ´ 1, i.e., 2Fm ´ 1 “ 3uv, where 3 - v. For m ą 1
we know from Catalan’s equation that 2Fm ´ 1 “ 22m`1 ` 1 ‰ 3u, thus v ą 1. It follows
that gp2Fm´ 1q “ gp3uqgpvq. We proved above that if n is odd and n ă a3 and gpnq ‰ 0,
then n “ 1 or n “ Mp which is a contradiction. For m “ 1 we have a2 “ Mp “ 3,
a3 “ Fm ´ 1 “ F1 ´ 1 “ 4. Thus we have gp2q “ c2, gp3q “ 1, so that gp6q “ c2. It is
clear that 6 has the following possible representations as the sum of two terms from A:
6 “ 1 ` 5 “ 3 ` 3. It follows that 5, 6 R A. Thus we have gp4q “ 2c2 ` 1, gp5q “ 2c2.
Thus we have gp10q “ gp2qgp5q “ 2c22. It is clear that 10 has the following possible
representations as the sum of two terms from A: 10 “ 1`9 “ 3`7. Since c2 | gp10q, thus
10 R A and 7, 9 P A. An easy calculation shows that gp7q “ 2c2`1. Similarly we get that
gp12q “ gp3qgp4q “ 2c2` 1, thus 11 R A. Thus we have gp14q “ gp2qgp7q “ c2p2c2` 1q. It
is clear that 14 has the following possible representations as the sum of two terms from
A: 14 “ 1` 13 “ 7` 7, which implies that gp14q ď 1` 3c2 a contradiction.

Equation gp2Fm ´ 1q ‰ 0 implies that 2Fm ´ 1 R A and Fm R A because Fm ´ 1 P A.
We prove that Fm ` 1 R A. We prove by contradiction. Let us suppose that Fm ` 1 P A,
which implies gpFm ` 1q ‰ 0. On the other hand

gpFm ` 1q “ gp22m
` 2q “ gp2p22m´1

` 1qq “ gp2qgp22m´1
` 1q,

and m ą 0, thus we have gp22m´1 ` 1q ‰ 0. We proved above that if n is odd and
n ă a3 “ Fm ´ 1 and gpnq ‰ 0, then n “ 1 or n “ Mp. In the latter case we have
22m´1 ` 1 “ Mp “ 2p ´ 1, which implies that p “ 2, m “ 1. In this case a1 “ 1, a2 “ 3
and a3 “ 4. We have already seen this case.

We get that the only possible representations of 2Fm from A 2Fm “Mp`pFm´Mpq.
It follows that gp2Fmq ď 1 ` 2c2. As we proved above that gp2Fmq ě 2c22 we get a
contradiction. The proof of Case 2. is completed.

Case 3. c2 “ 1. In this case we have gpnq “ R1,Apnq ` R2,Apnq. We prove that if
a2 “ 2, then A “ Z`. We distinguish two subcases.

Case 3a. Assume that a2 “ 2, a3 “ 3. We prove by induction that an “ n and
gpnq “ n. For n ď 3 the statement is obvious. It follows from the well known Bertrand
postulate that if n ě 3 there exists an odd prime p between n{2 and n. Thus we get
from the inductive step that gp2pq “ gp2qgppq “ 2p. On the other hand gp2pq “ |ti : ai “
2pu| ` |tpi, jq : ai ` aj “ 2pu|. It is easy to see that |tpi, jq : ai ` aj “ 2pu| ď 2p ´ 1 and
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the equality holds if and only if ai “ i for i ď 2p ´ 1. This implies that if i ď 2p then
ai “ i. In our situation 2p ě n` 1, we obtain that an`1 “ n` 1 and gpn` 1q “ n` 1.

Case 3b. Assume that a2 “ 2, a3 ą 3. Then we have gp2q “ 2 and gp3q “ 2, thus
we have gp6q “ gp2qgp3q “ 4 “ |ti : ai “ 6u| ` |tpi, jq : ai ` aj “ 6u|. This implies
that a3 “ 4, a4 “ 5 and 6 R A. It follows that gp4q “ 2, gp5q “ 3. We get that
gp10q “ gp2qgp5q “ 6 “ |ti : ai “ 10u| ` |tpi, jq : ai ` aj “ 10u|. This implies that
8, 9, 10 P A. It is clear that 12 has the following possible representations as the sum of
two terms from A: 12 “ 1 ` 11 “ 2 ` 10 “ 4 ` 8 “ 5 ` 7, and gp12q “ gp3qgp4q “ 4,
which implies that 7, 11 R A. Thus gp7q “ 2. It is clear that gp14q “ gp2qgp7q “ 4 and
14 has the following representations as the sum of two terms from A: 4 ` 10 “ 5 ` 9,
which implies that 12, 13, 14 R A. Obviously gp15q “ gp3qgp5q “ 6, but counting the
possible representation as the sum of two terms from set A we get that gp15q ď 5 which
is a contradiction.

In the next step we prove that if a2 ą 2 then a2 “ 4. We have two subcases.
Case 3c. Assume that a2 “ 3. Then we have gp2q “ 1, gp3q “ 1. As gp6q “ gp2qgp3q “

1, thus we have 5, 6 R A. If 4 R A, we get that gp4q “ 2, gp5q “ 0, which implies that
gp10q “ gp2qgp5q “ 0 thus we have 7, 9, 10 R A. We get that gp7q “ 0, which implies that
gp14q “ gp2qgp7q “ 0. This gives that 11, 13, 14 R A. As gp12q “ gp3qgp4q “ 2 and in
view of the above facts we obtain that gp12q ď 1 which is a contradiction. Thus we get
that a3 “ 4, gp4q “ 3, gp5q “ 2. Assume that 9 P A. Then we have from 10 “ 1` 9 that
gp10q “ gp2qgp5q “ 2, so 7, 10 R A, and gp7q “ 2. It follows that gp12q “ gp3qgp4q “ 3
and 12 “ 3 ` 9, thus we have 8, 11 R A and 12 P A. In view of gp14q “ gp2qgp7q “ 2,
thus 13 P A and 14 R A. The representation 21 “ 9` 12 and gp21q “ gp3qgp7q “ 2 imply
that 17, 18, 20, 21 R A. It is clear that 20 has the following possible representations as
the sum of two terms from A: 20 “ 1 ` 19 “ 4 ` 16, and gp20q “ gp4qgp5q “ 6, which
implies that gp20q ď 4 which is a contradiction. We get that 9 R A. Because of 4 P A,
we have gp1q “ 1, gp2q “ 1, gp3q “ 1, gp4q “ 3, therefore gp6q “ gp2qgp3q “ 1, thus
5, 6 R A, and gp5q “ 2. In view of gp10q “ gp2qgp5q “ 2 we obtain that 7 P A and
10 R A. As gp12q “ gp3qgp4q “ 3, thus we have 12 P A. It is clear that gp7q “ 3. Since
gp15q “ gp3qgp5q “ 2, we have 8, 11, 14, 15 R A, and therefore gp12q ď 1, which is absurd.
Thus we have a2 ‰ 3.

Case 3d. Assume that a2 ą 4. We know that a2 “ Fm ´ 1 or a2 “Mp or a2 “ 8.
Let us suppose that a2 “ Fm ´ 1, m ě 2. Then we have gpa2 ` a1q “ gpFmq ě 2 and

gp2Fmq “ gp2qgpFmq ě 2. But the possible representations as the sum of two terms of A
are 2Fm “ pFm ´ 1q ` pFm ` 1q “ Fm ` Fm “ 1` p2Fm ´ 1q. If Fm ` 1 P A, then

gpFm ` 1q “ gp22m
` 2q “ gp2p22m´1

` 1qq “ gp2qgp22m´1
` 1q ‰ 0,

thus gp22m´1 ` 1q ‰ 0, a contradiction, which implies that Fm ` 1 R A. We show that
gp2Fm ´ 1q “ 0. Suppose that gp2Fm ´ 1q ą 0. It is clear that 3|2Fm ´ 1 and so
2Fm ´ 1 “ 3α ¨ t, where t ą 1 and 3 - t. It follows that

gp2Fm ´ 1q “ gp3α ¨ tq “ gp3αq ¨ gptq ‰ 0,

thus we have gp3αq ‰ 0, gptq ‰ 0 a contradiction. We obtain that Fm, 2Fm ´ 1 R A,
because 2Fm ´ 1 “ pFm ´ 1q ` Fm. Thus gp2Fmq ď 1 which is absurd. This implies that
a2 ‰ Fm ´ 1.
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Assume that a2 “ 8. Then we have gp9q “ gp1`8q ě 2, therefore gp18q “ gp2qgp9q ě 2
and we have three possibilities to write integer 18 as the sum of two terms from A as
18 “ 1 ` 17 “ 9 ` 9 “ 8 ` 10. If 9 P A or 10 P A, then gp10q “ 0. Hence we have
gp10q “ gp2qgp5q ‰ 0, thus gp5q ‰ 0 a contradiction. It follows that 17 P A. Then we
have gp8 ` 17q “ gp25q ě 2, thus gp50q ě 2. As gp3q “ gp4q “ gp5q “ gp7q “ 0, and
for every decomposition 50 “ k ` p50 ´ kq, 1 ď k ď 25 one can find a prime power
pα P t3, 4, 5, 7u and an integer l P t0, 1, 8, 17u such that pα||k ` l or pα||50´ k ` l we get
that either gpkq “ 0 or gp50´kq “ 0, therefore either k R A or 50´k R A, thus gp50q ď 1,
contradiction.

It follows that a2 “ Mp. By Proposition 3 we have a3 “ Fm ´ 1 or a3 “ 8. If
a3 “ Fm ´ 1, then gp22m ` 1q ě 2, hence gp22m`1 ` 2q “ gp2qgp22m ` 1q ě 2. It follows
that the possible representations of 22m`1 ` 2 are the following

22m`1
`2 “ 1`p22m`1

`1q “ 2p´1`p22m`1
´2p`3q “ 22m

`p22m
`2q “ p22m

`1q`p22m
`1q.

It is clear that if gp22m`1`1q “ 0, then 22m`1`1 “ 3αt, 3 - t, t ą 1 (now m ą 1), therefore
gp3αq “ 0 and gptq “ 0, which is absurd, because only for one odd w, 1 ă w ă a3 holds
gpwq “ 0. This implies that 22m ` 1 R A and 22m`1 ` 1 R A. If 22m`1 ´ 2p ` 3 P A then
we have gpp22m`1 ´ 2p ` 3q ` 1q “ gp4qgp22m´1 ´ 2p´2 ` 1q ‰ 0, thus gp4q ‰ 0 which is
absurd. In the last case if 22m ` 2 P A then we have gp22m ` 2q “ gp2qgp22m´1 ` 1q ‰ 0,
thus gp22m´1` 1q ‰ 0 which is impossible. Hence gp22m`1` 2q ď 1, a contradiction. This
implies that a2 “ 4.

In the next step we prove that a3 “ 9. If a3 “ 5, then gp2q “ 1, gp3q “ 0 and
2 ď gp6q “ gp2qgp3q “ 0 a contradiction. If a3 “ 6, then gp2q “ 2, gp3q “ 0 and
1 “ gp6q “ gp2qgp3q “ 0 a contradiction. If a3 “ 7, then gp3q “ 0 and gp9k ` 3q “
gp3p3k ` 1qq “ gp3qgp3k ` 1q “ 0, thus 9k ` 3 R A. On the other hand gp9k ` 6q “
gp3p3k ` 2qq “ gp3qgp3k ` 2q “ 0, thus 9k ` 6 R A. It is clear that if 9k ` 2 P A, then
9k ` 3 “ p9k ` 2q ` 1, thus gp9k ` 3q ě 2 which is impossible. It is easy to see similarly
that 9k ´ 1, 9k ´ 4 R A. This implies that 3k ` 2 R A, specially 8 R A. The equality
gp10q “ gp2qgp5q “ 2 implies 9 P A and 10 R A. Then gp14q “ gp2qgp7q “ 1, which
implies that 13 R A. We know gp18q “ gp2qgp9q “ 1, which implies that 18 R A. Thus
we have gp40q “ gp5qgp8q “ 2 ¨ 3 “ 6, but gp40q ď 5, because the possible representation
as the sum of two terms from the set A are 40 “ 4 ` 36 “ 9 ` 31. If a3 “ 8, then
gp12q “ gp3qgp4q “ 0, but 12=4+8, 4, 8 P A, therefore gp12q ą 0, which is absurd. On
the other hand if a3 ě 10, then 1 ě gp10q “ gp2qgp5q “ 1 ¨ 2 “ 2 which is impossible. It
follows that a3 “ 9.

In the next step we will prove that a4 “ 16. Assume that the first three elements of
A are 1, 4, 9 P A. For the fourth element of A we have seven possibilities. If 10 P A, then
3 “ gp10q “ gp2qgp5q “ 2 which is absurd. If 11 P A, then 2 ď gp12q “ gp3qgp4q “ 0
which is absurd. If 12 P A, then 1 ď gp12q “ gp3qgp4q “ 0 which is absurd. If 13 P A,
then 2 ď gp14q “ gp2qgp7q “ 0 which is absurd. If 14 P A, then 1 “ gp14q “ gp2qgp7q “ 0
which is absurd. If 15 P A, then 1 “ gp15q “ gp3qgp5q “ 0 which is absurd. On the other
hand if a4 ě 17, then gp20q “ gp4qgp5q “ 2, then 19 P A, thus 2 ď gp28q “ gp4qgp7q “ 0
which is impossible. It follows that a4 “ 16.

In the next step we will prove that a5 “ 25. Assume that the first four elements of A
are 1, 4, 9, 16 P A. For the fifth element of A we have nine possibilities. If 17 P A, then
2 ď gp21q “ gp3qgp7q “ 0 which is absurd. If 18 P A, then 2 ď gp22q “ gp2qgp11q “ 0

9



which is absurd. If 19 P A, then 4 ď gp20q “ gp4qgp5q “ 2 which is absurd. If 20 P A,
then 3 “ gp20q “ gp4qgp5q “ 2 which is absurd. If 21 P A, then 1 “ gp21q “ gp3qgp7q “ 0
which is absurd. If 22 P A, then 1 “ gp22q “ gp2qgp11q “ 0 which is absurd. If 23 P A,
then 2 ď gp24q “ gp3qgp8q “ 0 which is absurd. If 24 P A, then 1 “ gp24q “ gp3qgp8q “ 0
which is absurd. On the other hand if a5 ě 26, then 1 ě gp26q “ gp2qgp13q “ 2 which is
impossible. It follows that a5 “ 25.

We will prove that the nth element of A is an “ n2 for every n.
Assume that the first five elements of A are a1 “ 1, a2 “ 4, a3 “ 9, a4 “ 16 and a5 “ 25.

It is clear that If 26 P A, then 3 “ gp26q “ gp2qgp13q “ 2 which is absurd. If 27 P A,
then 2 ď gp28q “ gp4qgp7q “ 0 which is absurd. If 28 P A, then 1 “ gp28q “ gp4qgp7q “ 0
which is absurd. If 29 P A, then 2 ď gp30q “ gp3qgp10q “ 0 which is absurd. If 30 P A,
then 1 “ gp30q “ gp3qgp10q “ 0 which is absurd. If 31 P A, then 2 ď gp35q “ gp5qgp7q “ 0
which is absurd.

Let us suppose that a1 “ 1, a2 “ 4, . . . , an “ n2 for n ě 5 and an`1 ě 32. We prove
that an`1 “ pn` 1q2. We have two cases.

Case 1. an`1 ă pn` 1q2. We prove the following proposition.

Proposition 4. If an`1 and an`1 ` 1 are both prime power and an`1 is not a square,
an`1 ě 32, then pn` 1q2 ´ an`1 ą 16.

Proof. It is clear that one of an`1 and an`1 ` 1 is even, thus we have two possibilities.
If an`1 “ 2α, so that α is odd, thus 3|an`1 ` 1 “ 2α ` 1. It follows that 2α ` 1 “ 3β.
This implies that α “ 3 and an`1 “ 8 a contradiction. If an`1 ` 1 “ 2α, but an`1 is a
power of a prime, thus 2α´ 1 “ pγ. It follows from [8] that an`1 is a prime, then we have
an`1 “ Mp, where p ě 7. It is easy to see that 2p ` 1 ‰ pn ` 1q2, 2p ` 4 ‰ pn ` 1q2 and
2p ` 9 ‰ pn` 1q2, thus we have 2p ` 16 ď pn` 1q2, therefore pn` 1q2 ´ an`1 ě 17.

In the next step we show that both an`1 and an`1 ` 1 must be a power of a prime.
Assume contrary that an`1 “ u ¨ v, where u and v are coprime positive integers and u,
v ą 1. Let Gpkq denote that values of gpkq which are corresponding to the set of squares.
Then we have

gpan`1q “ gpuqgpvq “ GpuqGpvq “ Gpan`1q.

On the other hand

gpan`1q “ 1`|tpi, jq : ai`aj “ an`1, i, j ď nu| “ 1`|tpi, jq : i2`j2 “ an`1u| “ 1`Gpan`1q,

which is a contradiction. Assume that an`1`1 “ u ¨v, where u and v are coprime positive
integers and u, v ą 1. Then we have

gpan`1 ` 1q “ gpuvq “ gpuqgpvq “ GpuqGpvq “ Gpan`1 ` 1q.

On the other hand

gpan`1 ` 1q ě 2` |tpi, jq : i2 ` j2 “ an`1 ` 1u|,

and
Gpan`1 ` 1q ď 1` |tpi, jq : i2 ` j2 “ an`1 ` 1, i, j ď nu|,
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which is absurd. We have already shown that if both an`1 and an`1 ` 1 are a power of a
prime and an ě 32, then an`1 ă pn` 1q2 ´ 16. It is clear that there are exactly two even
numbers among an`1, an`1 ` 1, an`1 ` 4, an`1 ` 9 and neither of them are a power of 2,
i.e., an`1 ` l

2 “ 2αv, where v ą 1 odd and 0 ď l ď 3. Then we have

gpan`1 ` l
2
q “ gp2αvq “ gp2αqgpvq “ Gp2αqGpvq “ Gpan`1 ` l

2
q.

On the other hand

gpan`1`l
2
q ě 1`|tpi, jq : i2`j2 “ an`1`l

2
u| ą |tpi, jq : i2`j2 “ an`1`l

2
u| “ Gpan`1`l

2
q,

which is impossible. The proof of Case 1. is completed.
Case 2. an`1 ą pn` 1q2. It is clear that there are exactly two even numbers among

pn` 1q2, pn` 1q2 ` 1. We have two possibilities. If pn` 1q2 is even, but not a power of
2, then pn` 1q2 “ u ¨ v, where u, v ą 1 coprime positive integers. Then we have

gppn` 1q2q “ gpuvq “ gpuqgpvq “ GpuqGpvq “ Gppn` 1q2q.

On the other hand

Gppn`1q2q “ 1`|tpi, jq : i2`j2 “ pn`1q2, i, j ą 0u| ą |tpi, jq : i2`j2 “ pn`1q2, i, j ą 0u| “ gpn`1q,

which is impossible. If pn` 1q2 ` 1 is even, i.e., pn` 1q2 ` 1 “ 2v, where 2 - v.

gppn` 1q2 ` 1q “ gp2vq “ gp2qgpvq “ Gp2qGpvq “ Gppn` 1q2 ` 1q.

On the other hand

Gppn` 1q2 ` 1q “ |tpi, jq : i2 ` j2 “ pn` 1q2 ` 1, i, j ą 0u| “

2` |tpi, jq : i2 ` j2 “ pn` 1q2 ` 1, 1 ď i, j ď n` 1u| ą

1` |tpi, jq : i2 ` j2 “ pn` 1q2 ` 1, 1 ď i, j ď nu| ě gppn` 1q2 ` 1q

ą 2`|tpi, jq : i2`j2 “ pn`1q2`1, 1 ď i, j ď n`1u| ě 1`|tpi, jq : i2`j2 “ pn`1q2`1, 1 ď i, j ď n`1u| ě gppn`1q2`1q ě gppn`1q2`1q

which is impossible.
If pn` 1q2 “ 22m, then we have

Gp22m
` 4q “ Gp4p1` 22m´2

qq “ Gp4qGp1` 22m´2
q “ gp4qgp1` 22m´2

q “ gp22m
` 4q.

Gp22m
` 4q “ 2` |tpi, jq : i2 ` j2 “ 22m

` 4, 0 ď i, j ă 2mu| “ gp22m
` 4q,

therefore 22m ` 3 P A Thus we have

gp22m
` 12q “ gp4p3` 22m´2

qq “ gp4qgp3` 22m´2
q “ Gp4qGp3` 22m´2

q “ Gp22m
` 12q.

On the other hand

Gp22m
` 12q “ |tpi, jq : i2 ` j2 “ 22m

` 12, 0 ă i, j ă 2mu|

but
gp22m

` 12q “ 2` |tpi, jq : i2 ` j2 “ 22m
` 12, 0 ă i, j ă 2mu|,

which is impossible.
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3 Proof of Theorem 2.

It is easy to see that

ppgpzqq “ p
´ z

1´ z

¯

“ c1
z

1´ z
` c2

´ z

1´ z

¯2

` . . . ` cd

´ z

1´ z

¯d

=

c1

8
ÿ

k“1

ˆ

k ´ 1

1´ 1

˙

zk ` c2

8
ÿ

k“2

ˆ

k ´ 1

1

˙

zk ` c3

8
ÿ

k“3

ˆ

k ´ 1

2

˙

zk ` . . . ` cd

8
ÿ

k“t

ˆ

k ´ 1

d´ 1

˙

zk.

As gpkq “
řd
s“1 ci

`

k´1
s´1

˘

if ct ă 0, then gpkq ă 0,fFor k ě k0, then for p, q ą k0, where
pp, qq “ 1, then we have gppq ă 0, gpqq ă 0 which implies that 0 ą gppqq “ gppqgpqq ą 0
a contradiction. It follows that cd ą 0. This implies that there exists k0 such that for
k ą k0 we have gpkq ą 0. In fact, for every k P Z`, gpkq ą 0, because for prime number
p ą k0 and p ą k we have gpkpq “ gppqgpkq ą 0, and gppq ą 0, which implies that
gpkq ą 0. It is clear that there exists k ě k1 such that gpkq is monotonous increasing. As
gpkq is multiplicative, then log gpkq is additive and lim infplog gpk ` 1q ´ log gpkqq ě 0,
then it follows form a well known theorem of Erdős [1] then log gpkq “ d log k, where d is
a positive constant. Thus we have gpkq “ kd´1. On the other hand

pn´ 1qd “
d
ÿ

i“1

ˆ

n´ 1

i´ 1

˙

pi´ 1q! ¨ Spd´ 1, i´ 1q.

Thus we have

nd´1 “ pn´ 1` 1qd´1 “
d´1
ÿ

j“0

ˆ

d´ 1

j

˙

pn´ 1qj

“

d´1
ÿ

j“0

ˆ

d´ 1

j

˙ j`1
ÿ

i“1

ˆ

n´ 1

i´ 1

˙

pi´1q!¨Spd´1, i´1q “
d
ÿ

i“1

ˆ

n´ 1

i´ 1

˙

pi´1q!¨Spd´1, i´1q
d´1
ÿ

j“i´1

ˆ

d´ 1

j

˙

“

d
ÿ

i“1

ˆ

n´ 1

i´ 1

˙

ci,

where ci “ pi´ 1q! ¨ Spd´ 1, i´ 1q
řd´1
j“i´1

`

d´1
j

˘

. The proof of Theorem 2. is completed.
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al., Bolyai Soc. Math. Studies, 15, Conference on Finite and Infinite Sets, 2006, J.
Bolyai Math. Soc. and Springer; 329-339.
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