Sets with almost coinciding representation functions
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Abstract

For a given integer n and a set S C N denote by Rglg(n) the number of solutions of

the equation n = s;, +--- +s;,, s;; €S, = 1,...,h. In this paper we determine
all pairs (A, B), A,B C N for which Rglv)ét(n) = Réll)g(n) from a certain point on.
We discuss some related problems.
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1 Introduction

Let N be the set of nonnegative integers. For a given infinite set A C N the representation
functions Rﬁz‘t(n), R,(fll(n) and RS’ ’y(n) are defined in the following way:

Rg{i(n):#{(ail,...,aih):ail—i—---—I—aih =n,a,...,a, €A},

»

R,(1234(n):#{(ai1,...,aih):ail—i—---+a,~h =n,a,..., 0, €Aa, < <a},
(

Rh?z‘l(n):#{(ah?""aih):ail_'—..'_‘_a/ih =N, Q45 - - -5 A4, eAa&h < <aih}'

Representation functions have been extensively studied by many authors and are still a
fruitful area of research in additive number theory. Using generating functions, Nathanson
[6] proved the following result.

Let A, B and T be finite sets of integers. If each residue class modulo m contains exactly
the same number of elements of A as elements of B, then we write A = B (mod m). If
the number of solutions of the congruence a +t =n (mod m) with a € A, t € T, equals
the number of solutions of the congruence b+t =n (mod m) with b € B, t € T for each
residue class n modulo m then we write A+17 = B+ 1T (mod m).
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Nathanson s Theorem. Let A and B be infinite sets of nonnegative integers, A # B.
Then R2 A( ) = RSB( ) from a certain point on if and only if there exist positive integers
N, m andﬁmte sets A, B, T with AUB C {0,1,...,N} and T C {0,1,...,m—1} such
that A+T =B+ T (mod m), and A= AUC and B= BUC, where C ={c> N|c=t
(mod m) for some t¢€T}.

R (n)
2

W ()
It is clear that Réﬂ(n) = [ and R(S) an) = {RQ‘A( )J, thus for the sets A, B in

2

Nathanson’s Theorem we have R(22J)4(n) = Ré%(n) and Rgi)‘l(n) = Régl)g(n) from a certain
point on. It is easy to see that the symmetric difference of the sets A and B in the above
theorem is finite. A. Sarkozy asked whether there exist two infinite sets of nonnegative
integers A and B with infinite symmetric difference, i.e.

((AUB)\ (AN B)| =

and , ,
B3 a(n) = Ry (n)
if n > ng, fori=1, 2, 3. For i = 1 the answer is negative (see in [3]). For i = 2 G. Dombi
[3] and for i = 3 Y. G. Chen and B. Wang [2] proved that the set of nonnegative integers
can be partitioned into two subsets A and B such that R;’Ll(n) = Rg%g(n) for all n > ny.
In [5] Lev gave a common proof to the above mentioned results of Dombi [3] and Chen
and Wang [2]. Using generating functions Cs. Sédndor [7] determined the sets A C N for
which either
Réﬂ(n) = R%)N\ a(n) forall n>ng

or
Ré?’A( ) = Rg’%\A(n) for all n > ny.

In [8] M. Tang gave an elementary proof of Cs. Sédndor’s results and in [1] Y. G. Chen and
M. Tang studied related questions. We can rewrite Nathanson’s Theorem in equivalent
form:

Equivalent form of Nathanson’s Theorem. Let A and B be infinite sets of nonnega-
tive integers, A # B. Then R(l) an) = R;ll)g( ) from a certain point on if and only if there
exist positive integers ng, M and finite sets Fu, Fg, T with F,UFg C {0,1,..., Mny—1}
and T C {0,1,..., M — 1} such that

A=F,U{kM +t:k>ngteT}
B=FgU{kM+t:k>ngteT},

and
(1= 2")| (Falz) = Fs(2)) T(2).
We conjecture that Nathanson’s theorem can be generalized in the following way.

Conjecture. Let h > 2, A and B be infinite sets of nonnegative integers, A # B. Then
Rglli‘(n) = R%(n) from a certain point on if and only if there exist positive integers ny,



M and sets Fu, Fg and T such that F,UFg C {0,1,...,Mno—1}, T C {0,1...., M —1},

A=F U{kM+t:k>noteT},
B=FsU{kM+t:k>ngteT}

and
(1= 2" (Fa(z) = Fs(2)) T(2)" .

The next theorem proves the sufficiency of Conjecture.

Theorem 1. Let A and B be infinite sets of nonnegative integers, A # B. If there exist
positive integers ng, M and finite sets Fy, Fg and T with FAU Fg C {0,1,..., Mny—1},
T c{0,1....,M — 1} such that

A=FU{kM+t:k>ngteT},

B=FgU{kM+t:k>ngteT},
and

(1= 2" (Falz) = Fi(2) T ()"
then R,(lllt(n) = R;ng(n) from a certain point on.

We can only prove the above conjecture in the case h = 3.

Theorem 2. Let A and B be infinite sets of nonnegative integers, A # B. Then
(1) NG . : : ‘ ‘ o

Ry 4(n) = R3p(n) from a certain point on if and only if there exist positive integers

no, M and sets Fy, Fg and T with FyUFg C {0,1,...,Mno—1}, T C{0,1...., M —1}

such that

A=F,U{kM +t:k>ngteT} (1)

B=FgU{kM+t:k>mnyteT}, (2)
and

(1= 2")?| (Fa(2) — Fp(2)) T(2)*. (3)

In 2011, Yang [9] gave another proof of Nathanson’s theorem without using generating
functions. In his paper he posed the following problem.

Problem. Ifp > 3 is a prime and A is an infinite set of nonnegative integers, then does
there exist an infinite set of nonnegative integers B with A # B such that R;lil(n) =

R](;l)g(n) for all sufficiently large n?
In this paper we show that the answer of Yang’s question is negative.

Theorem 3. For every prime p there exists an infinite set of nonnegative integers A such
that for any infinite set of integers B, A # B, we have R;&(n) + R;%)B(n) for infinitely
many positive integer n.



We studied some similar problems and get the following results.

Theorem 4. For every positive integer H > 2 there exist infinite sets of nonnegative
integers A, B, A # B such that R,(ll)A(n) = R;i)B(n), for everyl =1,2,3 and2 < h < H
from a certain point on.

In the special case [ = 1, Theorem 4 cannot be extended for infinitely many h.

Theorem 5. If for some infinite sets of nonnegative integers A and B the representation
function R,(llll(n) = Rﬁg(n), for n > ng(h), for infinitely many positive integer h > 2,
then A = B.

In this paper let A(z), B(z), F4(2), Fg, T(2), S(z) denote the generating functions of
the sets A, B, Fla, Fz, T and S C N (i.e. A(z) =) . 42% where z is a complex number,

z=r1-e¥® and these functions converge in the open unit disc).

2 Proof of Theorem 1.

In order to prove Theorem 1 we need to show that A(2)" — B(2)" = P(z), where P(z) is
a polynomial. By definition of A and B we have

AG) = Paz) + 5
and T ()
B(Z) = Flg(Z) + W

Therefore using the binomial theorem we get that

46 = By = (Fate) + SN (g ZTOY

1—2M 1—2M

) (22 - o,

Now we verify that for 1 <k < h — 1 we have
(1= M) [T(2)F (Fa(e)f — F(2)")

Since

Fa(2) = Fs(2)|Fa(2)" = Fs(2)",
it is enough to show that

(1= 2" T ()" (Falz) - Fs(2))-

For a given integer m, m|M denote by ®,,(z) the mth cyclomatic polynomial. It remains
to prove that
O, (2)" T (2)" " (Falz) — Fs(2)) -
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Let T(2) = ®,,(2)"u(z) and Fu(2) — Fg(z) = ®,,(2)*v(2), where u(z) and v(z) are
polynomials with property ®,,(2) fu(z)v(z). By assumption of Theorem 1 we know that
(h —1)k1 + ko > h — 1. Thus either k; = 0, then ky > h — 1, therefore

@y (2)"F| Falz) — Fis(2),

or k; > 1 and therefore
O, (2)"H|T(2)"7F,

which completes the proof. B

3 Proof of Theorem 2.

First we would like to prove, that if R:(,)li‘(n) = Réll)g(n) from a certain point on then we
have nonnegative integers ng, M and finite sets of nonnegative integers Fly, F, T with
FAUFz C {0,1,...,Mno—1}, T C {0,1...., M —1} such that (1), (2) and (3) hold. It is
easy to see that there exists a positive integer Ny such that AN[Ny, +00) = BN[Np, +00),
because Rélv)él(n) =0 (mod 3) if § ¢ A, and Réljél(n) =1 (mod 3) if ¥ € A. Similarly
Réll)g(n) =0 (mod 3) if § ¢ B, and Réll)g(n) =1 (mod 3) if § € B. Thus there exists an
integer N, finite sets of nonnegative integers Fl4, F and an infinite set of nonnegative
integers S with Fu, Fg C {0,1,..., N1}, S C {N;+ 1, Ny +2...} such that

A=F,4US (4)

and

B=FzUS. (5)

Since A(z) and B(z) are the generating functions of the sets A and B, we have
A(z) =" R ()2,

and

Since Réﬂ(n) = Ré%(n), for n > No, it is clear that there is a polynomial Q(z) such that

D Rya(m)a" =D Ryp(n)2" = Q(2). (6)
n=1 n=1
Thus we have A3(z) — B3(z) = Q(z). In view of (4) and (5) it follows that
A(z) = Fa(z) + 5(2)

and
B(z) = Fp(z) + S(2).



Hence

(S(2) + Fa(2))” = (S(2) + Fs(2))* =
= 35%(2)Fal2) + 35(2) FA(2) — 38%(2) Fis(2) — 3S(2) F(2) + Fa(2) — Fig(2) = Q(2).
Since F 4 and Fp are finite sets there is a polynomial P(z) such that
35(2) (S(2) + Fa(z) + F5(2)) (Fa(z) = F5(2)) = P(2).
It follows that there are relatively prime polynomials P;(z) and P(z) such that

P(z) _ h()

The left hand side of (7) converges in the open unit disc. Then
Fa(z) — Fg(2) = 2'(co + c12 4 ... +¢42%),
where || =1 and |¢,| = 1. Thus
Py(2) = 2¥(do + dyz + ... + dpz®),

where |dy| = 1 and |d,,| = 1. Assume that k # 0. Then the right hand side of (7) tends to
infinity in absolute value and the left hand side of (7) converges in absolute value when
z — 0, which is absurd. So we get that £ = 0. Thus we have

PQ(Z) = dg + dlz + ...+ dwzw,
and

Ny
Fa(2) = Fs(2) = Y _ fu?",
n=0

where all the f,,’s are integers and |f,,| < 1.
We prove the following lemma:

Lemma 1. If for some complex number zy, Py(zy) = 0, then |zo| > 1.

Proof. We prove by contradiction. Assume that there exists zyp € C such that Py(z) =0
and |zo| < 1. Take the limit z — zo in (7). Then

35(2) (S(2) + Fa(z) + Fg(2)) = 35(20) (S(20) + Fa(z0) + F5(20)) ,
and
135(2) (S(2) + Fa(2) + F5(2))| = |35(20) (S(20) + Falz0) + Fs(20))| € R.
Since Pi(z) and P,(z) are relatively prime, P;(z) # 0, we have

Pl(Z)
PQ(Z)

Y

as z — 2g, which is absurd. W



We may suppose that d,, = 1. This means that the roots of P,(z) are algebraic integers.
In this case the products of the roots of the polynomial P5(z) is dy and |dy| = 1. It follows
from Lemma 1, that the absolut value of each root is 1. Since d,, = 1 it is well-known that
the roots lies with their conjugates in the closed unit disc. It follows from a well-known
theorem of Kronecker [4] that every root is a root of unity. Thus we obtain that

u

Py(z) = [ [z =)™,

Jj=1

where ¢; is a root of unity and has the multiplicity m;.
We prove that for every j, m; < 2. Assume that there exists an m; > 3. Then from (7)
we have

Py(z)

R(2)(z —g;)mi=%
where R(z) is a polynomial and R(e;) # 0 and Pi(g;) # 0. Then

35(2) (S(=) + Fa(z) + Fi(2)) (z — £)* =

(8)

P1<7’€j) 3 00

R(re;)(re; —e;)mi? 7
as 7 — 17. For z = re; we have |z — ;> = |re; — ) = (1 — 7)? and S(z) =
> o xs(n)z", where xg(n) is the characteristic function of the set S (i.e. xg(n) =1, if
)

n € S and xs =0, if n ¢ .5) we get the following estimation to the left hand side of (8
for r <1

3S(re;)| - (S(re;) + Falre;) + Fa(re;))| - Ire; — g;]* <

3 <Z X(”)|T‘|n> (Z x(n)lr* + Cl) (L-7)* <

&

2'(1—7’)2202,

which is absurd.

Thus for some positive integer M we have Py(2)|(1— 2*)2, so there is a polynomial Ps(z)
such that
Py(2)
35(2) (S(2) + Fa(z) + Fp(2)) = 1= e (9)
Multiplying equation (9) by 12 and adding 9 (F4(z) + FB(z)) to it, we have
2 Py(z)

So
(65(2) + 3F4(2) + 3F3(2))* (1 — 2M)? = Py(2).

We prove that Py(z) = (u(z))?, where u(z) is a polynomial with integer coefficients.
Let

|(65(2) + Fa(2) + Fs(2))°] - [(1 — =M = [Pa(2)], (10)




where ¢, € Z. Since Py(z) is a polynomial, the integral f02ﬂ |P;(2)]df is bounded for
r < 1. On the other hand if there exist infinitely many n such that g, # 0, that is g2 > 1,
then using the Parseval-formula we get

2w | 2 o0
/ Z gn2"| df = Zgir% — 00,
0 n=0 n=0

as 7 — 17, which is absurd. Thus the series Z gn2" = u(z) is a polynomial.

This means that there is an integer K such nth(z]it if n > K, then g, = 0, and according
to formula (10) if n > N3 then g, = 6 (x(n) — x(n+ M)) = 0. So x is periodic in
M. Therefore there exist positive integer ng, finite sets Fu, Fg, T with F, U Fg C
{0,1,...,Mnoy— 1}, T C {0,1,..., M — 1} such that

A:FAU{I{?M—FtIk’ZTlo,tET},

and
B=FgU{kM +t:k>ngteT}.

Hence the generating function of A and B

A) = Fale) + S
and T ol
B(z) = Fy(2) 1(2_)ZZM

Then from (6) we have

45(z) - BY(z) = (M " FA<z>)3 - (M n Fg<z>)3 —Q(). ()

1—2M 1—2M
Thus
e (B + R+ Fale)) (Bale) — Fae) = P2, (12)
that is
T(2)zM (TN 4 (Fal2) + Fs(:) A= 20) (Fald) = Fs(2)) _ g
(1 _ ZM)2 )

where R(z) is also a polynomial. Using (1 — 2, 2mM) = 1 we obtain that
(1= 2" T (2) (T(2)2"M + (Fal2) + Fp(2)) (1 = 2M)) (Fa(2) = Fp(2)) (14)
that is
(1=2M)? "M (Fa(2) = Fp(2))T(2)* + (1= ") (Fa(2) + Fp(2)) (Fa(2) = Fp(2))T(2). (15)
We prove that 1 — zM|(F4(2) — Fs(2))T(2). By contradiction, assume that

1—2M N(Fa(z) — Fg(2)T(2).

8



This means that there exists an integer k, such that k|M and
O(2) M(Fa(z) — Fi(2))T(2)
(the polynomial ®(z) denotes the kth cyclotomic polynomial). Then by (14) we get
Op(2)|T(2)2" Y + (Falz) + Fs(2)) (1 = 2%).

Thus ®4(2)|T(2)2™M, but using that (®p(2),2"M) = 1 we get ®x(2)|T(2), which is
absurd. Then

(1= 2")? (1= 2")(Fa(2) + Fp(2)) (Fal2) = Fo(2))T(2)
therefore by (15) we get that
(1= M) [ M (Fa(z) = Fp(2))T(2) .

But using the fact that ((1 — 2*)?, 2"*) =1 this means that (3) holds, as desired.
The other direction is the corollary of Theorem 1.1

4 Proof of Theorem 3.

Let A be a sparse, set which means that a(N) < N# (here a(N) = [[0, N] N A). Let
A ={ay,as,...}. We prove by contradiction. Assume that A, B are different sets and

R;&(n) = R]g%(n) from a certain point on. Since a(ay) =k < a,lc/p it follows that a; > kP.
The generating function of A is

o0

=2 —ZXA =2 (a(n) —an - 1) r" =
acA n=0
= Za(n) (" =" =1 —-7r) Za(n)r —

’G\H

—o (==

) =o(a-n7+), 0

as r — 17, where y4(n) is the characteristic function of the set A (i.e. xa(n) = 1, if
neAdand y4(n)=0,ifng A).
Since Rﬁ“(n) = R;%(n) it is clear that there is a polynomial P(r) such that

AP(r) — BP(r) = P(r).

It is easy to see that there exists a positive integer Ny such that A N [Ny, +o00) = BN
[Ny, +00), because R;&(n) = 0 (mod p) if 2 ¢ A, and R;}A(n) =1 (mod p) if 2 € A.
Similarly Rﬁt)g(n) =0 (mod p) if + ¢ B, and Rgl)s,(n) =1 (mod p) if 3 € B. Thus A(r)
differs from B(r) in a polynomial which means that

Br)=0((1=r)+), (17)

9



as r — 17, as well. So
(A(r) = B(r)) (A"} (r) + -+ + B"}(r)) = P(r). (18)
Therefore there exist relatively prime polynomials R(r) and S(r) such that
R(r) (AP (r)+ -+ B !(r)) = S(r). (19)
Asr — 17 in (18) we get that S(r) and R(r) are bounded, and
AP ) + -+ BPH(r) — oo.
Therefore r = 1 must be the root of R(r). Thus
R(r) = (1-1)Q(r).
Now we can write (19) into the following form
(1=7r)Q(r) (A" (r)+ -+ B"(r)) = S(r), (20)

Since Q(r) is a polynomial it is bounded. It follows from (16) and (17) that

p—1

AP )+ 4+ BT (r) =0 ((1 — r)_T) .

So the order of the left hand side of (20) is O ((1 — 7“)%>, as r — 17. This means S(r)

tends to zero as r — 17. So S(r) = (1 —r)T(r), and this contradicts to (R(r),S(r)) = 1.
|

5 Proof of Theorem 4.

The construction of these sets A and B are the following. Let n be a positive integer.
Take the binary representation of n

loga(m)]
n = Z /82 2" )

=0

where ; = 0 or 1. Denote by Bin(n) = ZZLE(%Q(")J B; the number of the ones in the binary
representation of n. Let

Fu:={kH'|0 <k <2¥ Bin(kH')=0 (mod 2)},

and
Fp = {kH!|0 <k <2 Bin(kH!) =1 (mod 2)}.

We will show that the sets

A=F Uu{H"”2% HI29 +1,...}

10



and
B=Fgu{H"2" HI2" +1,...}

are suitable. Let h be a fixed integer, 2 < h < H. Then we have

H-1
FA( H"Q1
[T(1-=").
and therefore .
(1 —zh!)...(l — 22 h!)\FA(z) — Fg(2). (21)

Hence
(1—2)...(1=2""N(1 = 2M|Fa(z) — Fa(2).

The generating function of Rhl A(n), I = 1,2,3 can be written by sieve formula with
suitable real numbers Cy,

..... k-
o h
! L
SEMWS - Y G I -
n=0 (K1 sk i=1
k14-2ko+-+hky=h
ki>0,i=1,....h

We would like to prove that there is a polynomial P(z) such that

SR ()2 =Y RYg(n)2" = P(2). (23)

n=0 n=0

From (22) we get that the left hand side of (23) is equivalent to the following

(kl 7777 kh Z 1 i:1
k142ka+---+hkp=h
ki>0,i=1,...,h
In view of
ZH!QH
A(Z) = F_A(Z) +
1—=z2
and .
1
SH!2

B(Z) = FB(Z) + 1=

we get that (24) is equivalent to the following

h ZHIQH h ZzH'QH ki
Z Ckl 77777 kp, H (F-A(Z ) 1 _ Z@) H (FB 1 — 22) ' (25)
(k’l ..... kh) =1 =1

k14+2ko+---+hkp=h
ki>0,=1,...,h

11



It is enough to show that the difference of the products in (25) is polynomial for every
h-tuple (ki,...,kp). Let the h-tuple (ki,..., k) be fixed. Using the binomial theorem
we get for suitable constants D;, ;, this expression is equal to the following

.....

[ () e (55))-IE 6 e (5) ) -

(J1,--n) =1

We will show that

f1(2) ) (e T

i=1

is a polynomial. To show this we will prove that there is a polynomial Q(z) such that

ho o imei\ M - 002)
H<1—2i> T (1—2)... (1= 21 = zh) (27)

and
h

; h T
[T (Faz)" =TT (Fs(z0)" (28)

i=1 =1

(1—2)...(1=2""Ha -2

To prove equation (27) it is enough to show that

h

H(l _ Zi)k‘i—jz‘

=1

(1—2)...(1=2""Ha =2,

A root of the product [l (1 — 2%)%J is a primitive ith roots of unity, for some i <
h. Let ¢; denote a primitive ¢th root of unity. The multiplicity of &; in polynomial
(1—2)...(1=2""1)(1—2")is [%]. The multiplicity of &; in polynomial H?Zl(l — Zt)kidi

1S

We know that ki + 2k + - - - + hky = h, therefore
1k + ikoy + - - - < ik 4+ 2iko; + - - - < 1ky + 2ko + ... hky = h,

that means

ki + kgi +--- < {EJ;
i

which proves equation (27).
It remains to prove the following lemma, which verifies equation (28).

12



Lemma 3. If (1 —2)...(1 —2""Y(1 — 2")|Fa(2) — Fs(2) then for all t-tuple (I, ..., 1;)
H li — H (F3<Z .

=1

(1—2)...(1=2"Ha -2

Proof. We prove by induction on t. If ¢ = 1 then we show that

(1= 2). (1= (1 = ) (Fala)" = (Fo()" (29)
Since
(Fa(2)" = (Fs(z)" = (Fa(=) = Fi(2) (Fa(2)" ™ 4+ (Fs(2)" ).

we get that the case ¢ = 1 holds.
Now assume that the lemma holds for all ¢ or less. For ¢ + 1 we need to show that

(1=2) (1= =M [T (Fal=)" - T (Fs=)" (30)

The right hand side of (30) is equal to

(FA(z))ll .. (FA(Zt+1)lt+1) . (FA(Z))h N (F (2 )) (FB<Zt+1))lt+1
+ (Fa(2)" - (Fa(2h)" (Fu(z") " = (Fp(2))" ... (Fs(1) " =
= (FA(Z))ll - (FA(zt))lt ((FA t+1 )lt+1 FB t+1 )lt+1> B

(
= (Fs(= )" ((Fal)" o (Fal)") = (Fe()" . (Fs(=)")

Because of our assumption the second term is divisible by (1 — z)...(1 — z"1)(1 — zh).

Since
(1—2)...(1=2""NHa-2" ‘(1 A1 - zh(t—l—l))

and
(1 _ Zt—l—l) o (1 _ Zh(t—l—l)) ‘(FA(ZH-I))Z,:H . (FB(ZH-I))Z,:H) :

which completes the induction. H

6 Proof of Theorem 5.

We prove by contradiction. Assume that for infinite sets of nonnegative integers A, B,
A # B there is an infinite sequence of integers 2 < hy < hy < ...h; < ... and polynomials
P;(r) such that

() = () = 3 (RO4() = B () 17 = ().

n=0

Then
Py(r) = AM(r) = B"(r) = (A(r) = B(r)) (A" (r) + A¥2(r)B(r) +--- + B"7(r)) .
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Asr — 17 we get

Pia(r) _ AN () + AV (r)B(r) 4 - - - + BM 7 (r) -
PZ(T) Ahi+1_1(r) + Ahi+1_2(r)B(r) 44 Bhi“_l(r) =
h; - max {Ahi_l(r), Bhi—l(r)}
~ max { Ahit1=1(r), Bhiti=1(r)}

— 0.

Let Pi(r) = (1 —r)™Q;(r), where m; is a nonnegative integer and @Q;(r) is a polynomial
and Q;(1) # 0. Thus
Bipa(r) (A =r)™ " Qin(r)

P(r) — (I=r)mQi(r)

and m;1 1 < m;. We get that m; > ms > ..., which is absurd. B
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