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Abstract

Let G be a finite (abelian) group. In this paper we determine all subsets A ⊂ G

such that the number of solutions of g = x + y, x, y ∈ A equals to the number of

solutions of g = x+ y, x, y ∈ G \A. We discuss some related problems.
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1 Introduction

Let X be a semigroup, written additively. Let A1, . . . , Ah be subsets of X and let x
be an element of X. We define the ordered representation function

RA1+···+Ah
(x) = #{(a1, . . . , ah) ∈ A1 × · · · × Ah : a1 + · · ·+ ah = x}.

If Ai = A for i = 1, . . . , h, then we write

R
(1)
A,h(x) = #{(a1, . . . , ah) : ai ∈ A : a1 + · · ·+ ah = x}.

LetX be an abelian semigroup, written additively. For A ⊂ X, let Ah denote the set of all
h-tuples of A. Two h-tuples (a1, . . . , ah) ∈ Ah and (a′1, . . . , a

′
h) ∈ Ah are equivalent if there
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is a permutation α : {1, . . . , h} → {1, . . . , h} such that aα(i) = a′i for i = 1, . . . , h. Two
other representation functions arise often and naturally in additive number theory. The
unordered representation function R

(2)
A,h(x) counts the number of equivalence classes of

h-tuples (a1, . . . , ah) such that a1+ · · ·+ah = x. The unordered restricted representation
function R

(3)
A,h(x) counts the number of equivalence classes of h-tuples (a1, . . . , ah) of

pairwise distinct elements of A such that a1 + · · ·+ ah = x.
Alternative definitions for R(2)

A,2(x) and R
(3)
A,2(x) are the following. Denote by

DA(x) = #{a : a ∈ A, a+ a = x}

then
R

(2)
A,2(x) =

1

2
R

(1)
A,2(x) +

1

2
DA(x)

and
R

(3)
A,2(x) =

1

2
R

(1)
A,2(x)−

1

2
DA(x)

Let N be the set of nonnegative integers. Let X = N. Answering a question of Sárközy,
Lev [1] and independently Sándor [2] characterized all subsets A ⊂ N such that R(2)

A,2(n) =

R
(2)
N\A,2(n) or R

(3)
A,2(n) = R

(3)
N\A,2(n) from a certain point on. The precise theorems are the

following.

Theorem (Lev, Sándor, 2004). Let X = N. Let N be a positive integer. The equality
R

(2)
A (n) = R

(2)
N\A(n) holds for n ≥ 2N − 1 if and only if |A ∩ [0, 2N − 1]| = N and

2m ∈ A⇔ m ∈ A, 2m+ 1 ∈ A⇔ m 6∈ A for m ≥ N .

Theorem (Lev, Sándor, 2004). Let X = N. Let N be a positive integer. The equality
R

(3)
A (n) = R

(3)
N\A(n) holds for n ≥ 2N − 1 if and only if |A ∩ [0, 2N − 1]| = N and

2m ∈ A⇔ m 6∈ A, 2m+ 1 ∈ A⇔ m ∈ A for m ≥ N .

Similar statement can not be formulated for the representation function R(1)
A (n) be-

cause R(1)
A (n) is odd if and only if n

2
∈ A, therefore either R(1)

A (2m) or R(1)
N\A(2m) is

odd.
A nontrivial result is the following in this direction.

Theorem 1. Let X = N. The equality R(1)
A+B(n) = R

(1)
N\A+N\B(n) holds from a certain

point on if and only if |N \ (A ∪B))| = |A ∩B| <∞

The modular questions were solved by Chen and Yang [3].

Theorem (Chen, Yang, 2012). Let X = Zm. The equality R(1)
A,2(n) = R

(1)
N\A,2(n) holds for

all n ∈ Zm if and only if m is even and |A| = m/2.
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Theorem (Chen, Yang, 2012). Let X = Zm. For i ∈ {2, 3}, the equality R(i)
A = R

(i)
Zm\A(n)

holds for all n ∈ Zm if and only if m is even and t ∈ A ⇔ t + m/2 6∈ A for t =

0, 1, . . . ,m/2− 1.

We extend the first theorem to arbitrary finite group G and the second theorem to
finite abelian group.

Theorem 2. Let X = G be a finite group. The equality RA+B(g) = RG\A+G\B(g) holds
for all g ∈ G if and only if |A|+ |B| = |G|

A direct consequence is the following.

Corollary 1. Let X = G be a finite group. The equality R(1)
A (g) = R

(1)
G\A,2(g) holds for

all g ∈ G if and only if |G| is even and |A| = |G|/2.

Theorem 3. Let X = G be a finite abelian group. For i ∈ {2, 3}, the equality R(i)
A (g) =

R
(i)
G\A,2(g) holds for all g ∈ G if and only if DA(g) = DG\A(g) for every g ∈ G.

2 Proof

Proof of Theorem 1. Denote by S(x) the generating function of a subset S ⊂ N, i.e.
S(x) =

∑
s∈S

xs. The generating function of RA+B(n) is A(x)B(x), while the generating

function of RN\A+N\B(n) is ( 1
1−x − A(x))(

1
1−x − B(x)). Hence the condition RA+B(n) =

RN\A+N\B(n) holds from a certain point on is equivalent to

A(x)B(x)− (
1

1− x
− A(x))( 1

1− x
−B(x)) = p(x),

where p(x) is a polynomial. This is equivalent to

A(x) +B(x) =
1

1− x
+ p(x)(1− x). (1)

Let A(x) + B(x) =
∑∞

n=0 cnx
n, where cn = 0, 1 or 2. The equation (1) holds if and

only if cn = 1 except for finitely many integer n and the number of n for which cn = 0

is equal to the number of n for which cn = 2. This is equivalent to the condition
|N \ (A ∪B))| = |A ∩B| <∞. �

Proof of Theorem 2. For a given S ⊂ G denote by χS its characteristic function,
that is χS(g) = 1 if g ∈ S and χS(g) = 0 if g 6∈ S for every g ∈ G. Then χG\S = 1− χS.
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Obviously, for every g ∈ G we have

RA+B(g)−RG\A+G\B(g) =
∑
c∈G

χA(c)χB(−c+ g)−
∑
c∈G

χG\A(c)χG\B(−c+ g) =

∑
c∈G

χA(c)χB(−c+g)−
∑
c∈G

(1−χA(c))(1−χB(−c+g)) =
∑
c∈G

χA(c)+
∑
c∈G

χB(−c+g)−
∑
c∈G

1 =

|A|+ |B| − |G|.

Hence if RA+B(g) = RG\A+G\B(g) for every g ∈ G then |A|+ |B| = |G| and if |A|+ |B| =
|G| then RA+B(g) = RG\A+G\B(g) for every g ∈ G. �

Proof of Theorem 3. We only prove the case i = 2, because the proof of case i = 3

are very similar. Obviously, for every fixed g ∈ G we have

|A| = #{(a, y) : a ∈ A, y ∈ G, a+ y = g} =

#{(a, y) : a ∈ A, y ∈ A, a+ y = g}+#{(a, y) : a ∈ A, y ∈ G \ A, a+ y = g} =

RA+A(g) +RA+G\A(g) = 2R
(2)
A,2(g)−DA(g) +RA+G\A(g),

thus
R

(2)
A,2(g) =

1

2
|A|+ 1

2
DA(g)−

1

2
RA+G\A(g).

Similarly,
|G \ A| = #{(x, b) : x ∈ G, b ∈ G \ A, x+ b = g} =

#{(x, b) : x ∈ G \ A, b ∈ G \ A, x+ b = g}+#{(x, b) : x ∈ A, b ∈ G \ A, x+ b = g} =

RG\A+G\A(g) +RA+G\A(g) = 2R
(2)
G\A,2(g)−DG\A(g) +RA+G\A(g),

thus
R

(2)
G\A,2(g) =

1

2
|G \ A|+ 1

2
DG\A(g)−

1

2
RA+G\A(g).

Hence for every g ∈ G we have

R
(2)
A,2(g)−R

(2)
G\A,2(g) =

1

2
|A|+ 1

2
DA(g)− (

1

2
|G \ A|+ 1

2
DG\A(g)) =

|A| − 1

2
|G|+ 1

2
(DA(g)−DG\A(g)).
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Suppose that R(2)
A,2(g) = R

(2)
G\A,2(g) for every g ∈ G. Then we have

(
|A|+ 1

2

)
=
∑
g∈G

R
(2)
A,2(g) =

∑
g∈G

R
(2)
G\A,2(g) =

(
|G \ A|+ 1

2

)
,

therefore |A| = |G \ A|, that is |A| = |G| − |A|. Hence we get that DA(g) = DG\A(g) for
every g ∈ G.

Finally, suppose that DA(g) = DG\A(g) for every g ∈ G. Then we have

|A| =
∑
g∈G

DA(g) =
∑
g∈G

DG\A(g) = |G \ A|,

therefore |A| = |G| − |A|, thus we get that R(2)
A,2(g) = R

(2)
G\A,2(g) for every g ∈ G, which

completes the proof. �
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