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Abstract

We say the sets of nonnegative integers A and B are additive comple-
ments if their sum contains all sufficiently large integers. In this paper
we prove a conjecture of Chen and Fang about additive complement
of a finite set.
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1 Introduction
Let N denote the set of positive integers and let A ⊆ N and B ⊆ N be finite
or infinite sets. Let RA+B(n) denote the number of solutions of the equation

a+ b = n, a ∈ A, b ∈ B.
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We put
A(n) =

∑
a≤n

a∈A

1 and B(n) =
∑
b≤n

b∈B
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respectively. We say a set B ⊆ N is an additive complement of the set A ⊆ N
if every sufficiently large n ∈ N can be represented in the form a + b = n,
a ∈ A, b ∈ B, i.e., RA+B(n) ≥ 1 for n ≥ n0. Additive complement is an
important concept in additive number theory, in the past few decades it was
studied by many authors [4], [6], [8], [9]. In [8] Sárközy and Szemerédi proved
a conjecture of Danzer [4], namely they proved that for infinite additive
complements A and B if

lim sup
x→+∞

A(x)B(x)

x
≤ 1,

then
lim inf
x→+∞

(A(x)B(x)− x) = +∞.

In [1] Chen and Fang improved this result and they proved that if

lim sup
x→+∞

A(x)B(x)

x
> 2, or lim sup

x→+∞

A(x)B(x)

x
<

5

4
,

then
lim

x→+∞
(A(x)B(x)− x) = +∞.

In the other direction they proved in [2] that for any integer a ≥ 2, there
exist two infinite additive complements A and B such that

lim sup
x→+∞

A(x)B(x)

x
=

2a+ 2

a+ 2
,

but there exist infinitely many positive integers x such that A(x)B(x)−x = 1.
In [3] they studied the case when A is a finite set. In this case the situation
is different from the infinite case. Chen and Fang proved that for any two
additive complements A and B with |A| < +∞ or |B| < +∞, if

lim sup
x→+∞

A(x)B(x)

x
> 1,

then
lim

x→+∞
(A(x)B(x)− x) = +∞.

They also proved that if

A = {a+ ims + kim
s+1 : i = 0, ...,m− 1},
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where |A| = m, a, s ≥ 0 and ki are integers, then there exists an additive
complement B of A such that A(x)B(x) − x = O(1). In the special case
|A| = 3 they proved that if A is not of the form {a+ i3s+ki3

s+1 : i = 0, 1, 2},
where a, s ≥ 0 and ki are integers, then for any additive complement B of
A,

lim
x→+∞

(A(x)B(x)− x) = +∞

holds. Chen and Fang posed the following conjecture (Conjecture 1.5. in
[3]):

Conjecture 1 If the set of nonnegative integers A is not of the form

A = {a+ ims + kim
s+1 : i = 0, ...,m− 1},

where a,m > 0, s ≥ 0 and ki are integers, then, for any additive complement
B of A, we have

lim
x→+∞

(A(x)B(x)− x) = +∞.

In this paper we prove this conjecture, when the number of elements of the
set A is prime:

Theorem 1 Let p be a positive prime and A is a set of nonnegative integers
with |A| = p. If A is not of the form

A = {a+ ips + kip
s+1 : i = 0, ..., p− 1}, (1)

where a > 0, s ≥ 0 and ki are integers, then, for any additive complement B
of A, we have

lim
x→+∞

(A(x)B(x)− x) = +∞. (2)

In the case when the number of elements of A is a composite number, we
disprove Conjecture 1.5. in [3]:

Theorem 2 For any composite number n > 0, there exists a set A and a
set B such that |A| = n, B is an additive complement of A and A is not of
the form

A = {a+ ins + kin
s+1 : i = 0, ..., n− 1},

where s ≥ 0, a > 0, and ki are integers, and

A(x)B(x)− x = O(1).

In the next section we give a short survey about the algebraic concepts which
play a crucial role in the proof of Theorem 1.
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2 Preliminaries
In our proof we are working with cyclotomic polynomials. Both the defini-
tion and the most important properties of these polynomials are well-known.
Interested reader can find these in [5, p. 63-66]. We denote the degree of a
polynomial f by deg f . Let θ be an algebraic number. We say the monic
polynomial f is the minimal polynomial of θ if f is the least degree such that
f(θ) = 0. It is well-known that if f is the minimal polynomial of θ, and g
is a polynomial such that g(θ) = 0, then f |g. A µ complex number is called
primitive nth root of unity if µ is the root of the polynomial xn − 1 but not
of xm− 1 for any m < n. The cyclotomic polynomial of order n is defined by

Φn(z) =
∏
ζ

(z − ζ),

where ζ runs over all the primitive nth root of unity. This is a monic irre-
ducible polynomial with degree ϕ(n), and Φn(z) has integer coefficients. It
is well-known that Φn(z) is the minimal polynomial of ζ and

1 + z + z2 + . . . + zn−1 =
∏
l|n
l>1

Φl(z). (3)

It is easy to see that

Φps+1(z) = 1 + zp
s

+ z2p
s

+ . . . + z(p−1)p
s

(4)

3 Proof of Theorem 1
We will prove that if there exists an additive complement B of A, |A| = p
such that

lim inf
x→+∞

(A(x)B(x)− x) < +∞,

then A is the form (1). Let us suppose that RA+B(n) ≥ 1 for n ≥ n0. First we
prove that there exists an integer n1 such that RA+B(n) = 1 for n ≥ n1. We
argue as Sárközy and Szemerédi in [9, p.238]. As B is an additive complement
of A, it follows that

+∞ > C = lim inf
x→+∞

(A(x)B(x)− x) = lim inf
x→+∞

((∑
a∈A
a≤x

1
)(∑

b∈B
b≤x

1
)
− x

)
≥

4



≥ lim inf
x→+∞

(( ∑
a∈A,b∈B
a+b≤x

1
)
− x

)
= lim inf

x→+∞

( x∑
n=0

RA+B(n)− x
)
≥

≥ lim inf
x→+∞

( x∑
n=n0+1

RA+B(n)− x
)
≥ lim inf

x→+∞

(
[x]− n0 +

∑
n0<n≤x

RA+B(n)>1

1− x

)
≥

≥ lim inf
x→+∞

( ∑
n0<n≤x

RA+B(n)>1

1

)
− (n0 + 1),

thus we have

lim inf
x→+∞

( ∑
n0<n≤x

RA+B(n)>1

1

)
< C + n0 + 1,

where C is a positive constant. As B is an additive complement of A, it
follows that there exists an integer n1 such that

RA+B(n) = 1 for n ≥ n1. (5)

In the next step we prove that A is of the form (1). Let z = re2iπα = re(α),
where r < 1. Let the generating functions of the sets A and B be fA(z) =∑

a∈A z
a and fB(z) =

∑
b∈B z

b respectively. (By r < 1 these infinite series
and all the other infinite series of the proof are absolutely convergent.) In
view of (5) we have

fA(z) · fB(z) =
(∑
a∈A

za
)(∑

b∈B

zb
)

=
+∞∑
n=0

RA+B(n)zn =

=

n1−1∑
n=0

RA+B(n)zn +
+∞∑
n=n1

RA+B(n)zn = p1(z) +
zn1

1− z
,

where p1(z) is a polynomial of z. Thus we have

(1− z)fA(z) · fB(z) = (1− z)p1(z) + zn1 . (6)

In next step we prove that fB(z) can be written in the form

fB(z) = FB(z) +
T (z)

1− zM
, (7)
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where M is a positive integer, FB(z) and T (z) are polynomials. We argue
as Nathanson in [7, p.18-19]. Let (1− z)fA(z) =

∑N
n=K anz

n, where aN 6= 0
and aK 6= 0, and let fB(z) =

∑∞
n=0 enz

n, where en ∈ {0, 1}. Then we have

(1− z)fA(z) · fB(z) =
∞∑
n=0

cnz
n,

where cn = 0 from a certain point on. It is clear that if n is large enough,
then cn = en−KaK + en−K−1aK+1 + . . . + en−NaN = 0. This shows that the
coefficients of the power series fB(z) satisfy a linear recurrence relation from
a certain point on. These coefficients are either 0 or 1 from a certain point
on. It is easy to see that a sequence defined by a linear recurrence relation
on a finite set must be eventually periodic, which proves (7).
It follows from (6) and (7) that

fA(z) ·

(
FB(z) +

T (z)

1− zM

)
= p1(z) +

zn1

1− z
,

hence for every z ∈ C

(1−zM)fA(z)FB(z)+fA(z)T (z) = (1−zM)p1(z)+(1+z+z2+. . . +zM−1)zn1 .
(8)

By putting z = 1, we obtain that

fA(1)T (1) = M. (9)

As fA(1) = |A| = p, it follows from (9) that p|M . Define k by pk|M but
pk+1 -M . It follows from (8) that

(1 + z + z2 + . . . + zM−1)|fA(z)T (z).

It follows from (3) that for any 1 ≤ t ≤ k we have

Φpt(z)|fA(z)T (z).

Assume that for any 1 ≤ t ≤ k we have Φpt(z)|T (z). Then

T (z) =

(
k∏
t=1

Φpt(z)

)
· q(z),

where q(z) is a polynomial with integer coefficients. By putting z = 1 we ob-
tain that T (1) = pkq(1), hence M = fA(1)T (1) = pk+1q(1) which contradicts
the definition of k. It follows that there exists an integer 0 ≤ s ≤ k− 1 such

6



that Φps+1(z)|fA(z), thus fA(z) = Φps+1(z) ·a(z), where a(z) is a polynomial.
As A = {a1, . . . , ap}, we have fA(z) =

∑p
i=1 z

ai . Let ω be the following
ps+1th root of unity,

ω = exp

(
2π

ps+1
i

)
.

It follows that fA(ω) = 0, thus we have
∑p

i=1 ω
ai = 0. Let ai = lip

s+1 + ri,
where 0 ≤ ri < ps+1. Without loss of generality we may assume that

0 ≤ r1 ≤ r2 ≤ . . . ≤ rp < ps+1. (10)

Define rp+1 = ps+1 + r1. Since
∑p

i=1(ri+1 − ri) = rp+1 − r1 = ps+1 then it
follows that there exists a j with 1 ≤ j ≤ p such that

rj+1 − rj ≥ ps. (11)

In the next step we prove that this implies

ai − rj+1 = nip
s+1 + ti, (12)

where 1 ≤ i ≤ p and 0 ≤ ti ≤ ps+1 − ps holds. Assume that i ≤ j. By the
definition of ai we have ai−rj+1 = lip

s+1 +ri−rj+1. It follows from (10) and
(11) that rj+1 − ri ≤ rj+1 < ps+1 and −ps+1 < ri − rj+1 ≤ rj − rj+1 ≤ −ps.
Thus we have 0 ≤ ri − rj+1 + ps+1 ≤ ps+1 − ps, which implies (12). In the
second case assume that i ≥ j + 2. It is clear from (10) that ri − rj+1 > 0.
By the definition of ai and (10), (11) we have

ai − rj+1 = lip
s+1 + ri − rj+1 < lip

s+1 + ps+1 − rj+1 ≤ lip
s+1 + ps+1 − ps,

which implies (12). It follows that there exists an integer a such that ai =
a+ nip

s+1 + ti, where ni is an integer and

0 ≤ ti ≤ ps+1 − ps. (13)

As fA(ω) = 0, and the definition of ω we obtain that
p∑
i=1

ωai =

p∑
i=1

ωa+nip
s+1+ti =

p∑
i=1

ωa+ti = 0.

Let h(z) =
∑p

i=1 z
ti . Thus we obtain that h(ω) = 0. As Φps+1(z) is a

minimal polynomial of ω we have Φps+1(z)|h(z). It follows from (13) that
deg
(∑p

i=1 z
ti

)
≤ ps+1 − ps = ϕ(ps+1) = deg

(
Φps+1(z)

)
. Therefore, by using

(4) we have
∑p

i=1 z
ti = Φps+1(z) = 1 + zp

s
+ z2p

s
+ . . . + z(p−1)p

s and then
we have {t1, . . . , tp} = {0, ps, 2ps, . . . , (p − 1)ps}. It follows that there exist
integers a > 0 and ki, such that A = {a+ ips + kip

s+1}, as desired.
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4 Proof of Theorem 2
Let n = d1d2, d1, d2 > 1 be integers, and consider the following two sets:

A = {u+ v · d1d2 : 0 ≤ u ≤ d1 − 1, 0 ≤ v ≤ d2 − 1},

B = {kd1d22 + w · d1 : k ∈ N, 0 ≤ w ≤ d2 − 1}.
It is easy to see that |A| = d1d2. It is clear that A(x) = d1d2 if x is large
enough and B(x) = x

d1d2
+ O(1), which implies A(x)B(x) − x = O(1). Let

m be a fixed positive integer. It is clear that any positive integer m can be
written uniquely in the form

m = kd1d
2
2 + ud1 + ld1d2 + v,

where k is a nonnegative integer, 0 ≤ u, l ≤ d2, 0 ≤ v ≤ d1. Hence B is an
additive complement of A. In the next step we prove that the set A is not of
the form (1). Assume that A is the form (1). It is clear that the difference
of any two elements from A divisible by ns. As A also contains consecutive
integers we have ns|1, which implies s = 0. Thus A = {a + i + kin : i =
0, . . . , n − 1}, that is A is a complete residue system modulo n, which is a
contradiction.
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