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Abstract

We say the sets of nonnegative integers A and B are additive comple-
ments if their sum contains all sufficiently large integers. In this paper
we prove a conjecture of Chen and Fang about additive complement
of a finite set.
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1 Introduction

Let N denote the set of positive integers and let A C N and B C N be finite
or infinite sets. Let R4.5(n) denote the number of solutions of the equation

at+b=n, a€ A, beB.
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We put

A(n) = Zl and B(n) = Zl

acA b

respectively. We say a set B C N is an additive complement of the set A C N
if every sufficiently large n € N can be represented in the form a + b = n,
a € A be B, ie, Rasg(n) > 1 for n > ng. Additive complement is an
important concept in additive number theory, in the past few decades it was
studied by many authors [4], [6], [8], [9]. In [8] Sarkézy and Szemerédi proved
a conjecture of Danzer [4], namely they proved that for infinite additive
complements A and B if

limsup ——= < 1,

r—r+00 X

then
liminf(A(z)B(z) — z) = +o0.

T—+400

In [1] Chen and Fang improved this result and they proved that if

A(z)B A(z)B 5
lim sup —(x) () > 2, or limsup —(x) () < -,

then
lim (A(x)B(z) —z) = +o0.

T—+00

In the other direction they proved in [2] that for any integer a > 2, there
exist two infinite additive complements A and B such that

, A(x)B(z) 2a+2
lim sup = ,
T——+00 € a—+ 2

but there exist infinitely many positive integers z such that A(z)B(z)—z = 1.
In [3] they studied the case when A is a finite set. In this case the situation
is different from the infinite case. Chen and Fang proved that for any two
additive complements A and B with |A] < +o0 or |B| < +oo, if

lim sup M

T——+00 X

> 1,

then
xEIEm(A(x)B(x) — ) = +00.

They also proved that if

A={a+im*+km*™:i=0,.,m—1},
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where |A| = m, a, s > 0 and k; are integers, then there exists an additive
complement B of A such that A(x)B(z) —x = O(1). In the special case
|A| = 3 they proved that if A is not of the form {a+:3*+k£;3°T! : i = 0,1,2},
where a, s > 0 and k; are integers, then for any additive complement B of
A,

lim (A(z)B(z) — z) = 400

T—+00
holds. Chen and Fang posed the following conjecture (Conjecture 1.5. in

13]):

Conjecture 1 If the set of nonnegative integers A is not of the form
A={a+im*+km*:i=0,.,m—1},

where a,m > 0, s > 0 and k; are integers, then, for any additive complement

B of A, we have
lim (A(x)B(x) —z) = .
Jim (A(2)B(z) — ) = +oo
In this paper we prove this conjecture, when the number of elements of the
set A is prime:

Theorem 1 Let p be a positive prime and A is a set of nonnegative integers
with |A| = p. If A is not of the form

A={a+ip° +kpt:i=0,..,p—1}, (1)

where a > 0, s > 0 and k; are integers, then, for any additive complement B

of A, we have
lim (A(x)B(z) — x) = +oc. (2)

r—r-+00

In the case when the number of elements of A is a composite number, we
disprove Conjecture 1.5. in [3]:

Theorem 2 For any composite number n > 0, there exists a set A and a
set B such that |A| = n, B is an additive complement of A and A is not of
the form

A={a+in* +kn**t:i=0,..,n—1},

where s > 0, a > 0, and k; are integers, and
A(x)B(z) —z = O(1).

In the next section we give a short survey about the algebraic concepts which
play a crucial role in the proof of Theorem 1.
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2 Preliminaries

In our proof we are working with cyclotomic polynomials. Both the defini-
tion and the most important properties of these polynomials are well-known.
Interested reader can find these in [5, p. 63-66]. We denote the degree of a
polynomial f by deg f. Let 6 be an algebraic number. We say the monic
polynomial f is the minimal polynomial of 8 if f is the least degree such that
f(0) = 0. It is well-known that if f is the minimal polynomial of 6, and ¢
is a polynomial such that g(f) = 0, then f|g. A pu complex number is called
primitive nth root of unity if u is the root of the polynomial ™ — 1 but not
of 2™ —1 for any m < n. The cyclotomic polynomial of order n is defined by

2.() = [[(= - 0.

¢

where ¢ runs over all the primitive nth root of unity. This is a monic irre-
ducible polynomial with degree ¢(n), and ®,(z) has integer coefficients. It
is well-known that ®,,(z) is the minimal polynomial of ¢ and

1+z+22+...+zn_1:H<I>l(z). (3)

ln

I>1

It is easy to see that

Bypor(2) = 1 22" 4 2 4y 000 )

3 Proof of Theorem 1

We will prove that if there exists an additive complement B of A, |A] = p
such that

lir—?igof(A(x)B(x) — ) < +o00,
then A is the form (1). Let us suppose that R4.5(n) > 1 for n > ny. First we
prove that there exists an integer n; such that Ry, 5(n) =1 for n > n;. We
argue as Sarkozy and Szemerédi in |9, p.238|. As B is an additive complement
of A, it follows that

+oo > C = lirgiglof(A(x)B(m) —z) = liﬂll&f ((Z 1) (Z 1) - ZL‘) >

acA beB
alzx b<z



2%@&25(( > 1)~ )—1;2225(2%6 r) >

acAbeB

a+b<z
x
> l;r_r}igof( Z Rayp(n) —a:) > I;I_r}igof ([x] —ng + Z 1-— x) >
n=ng+1 ng<n<z
Ratp(n)>1
> Tim i B
> lir_rggof ( Z 1) (no +1),
ng<n<z
Ratp(n)>1
thus we have
lir_rﬁg)f< Z 1) <C+mno+1,
ng<n<z
Ratp(n)>1

where C' is a positive constant. As B is an additive complement of A, it
follows that there exists an integer n; such that

Ryip(n) =1 for n>mn. (5)

In the next step we prove that A is of the form (1). Let z = re*™ = re(a),
where r < 1. Let the generating functions of the sets A and B be f4(z) =
Ywen 2 and fz(z) = 3,5 2" respectively. (By 7 < 1 these infinite series
and all the other infinite series of the proof are absolutely convergent.) In
view of (5) we have

6166 = (S () = 55 Ravste -

acA beB
ni—1 +oo an
= HZ:O Raip(n)z" + 7;1 Rais(n)2" = pi(2) + 11—
where p;(z) is a polynomial of z. Thus we have
(1 —=2)falz) - f8(z) = (1 = 2)pi(2) + 2™ (6)
In next step we prove that fz(z) can be written in the form
T(z
i) = File) + o0, )



where M is a positive integer, F(z) and T'(z) are polynomials. We argue
as Nathanson in [7, p.18-19]. Let (1 — 2)fa(z) = 20, an2", where ay # 0
and ax # 0, and let fg(z) = e,z", where e, € {0,1}. Then we have

(1_Z)fA chz )

n=0

where ¢, = 0 from a certain point on. It is clear that if n is large enough,
then ¢, = e,_xax + e,k 1041+ ... +e,_nyay = 0. This shows that the
coefficients of the power series fg(z) satisfy a linear recurrence relation from
a certain point on. These coefficients are either 0 or 1 from a certain point
on. It is easy to see that a sequence defined by a linear recurrence relation
on a finite set must be eventually periodic, which proves (7).

It follows from (6) and (7) that

falz) <F3<z>+ (=) ):pl<z>+

1—2M 1—2’

hence for every z € C
(1=2") fa(2) Fs(2) + fa(2)T(2) = (1=2")p1 (2) + (12 +27 4. 42171
By putting z = 1, we obtain that

fa()T(1) = M. (9)

As fa(1) = |A| = p, it follows from (9) that p|M. Define k by p*|M but
pFt 4 M. Tt follows from (8) that

(T4 2422+ + 2 fa(2)T(2).
It follows from (3) that for any 1 < ¢ < k we have
Dy (2)] fa(2)T(2).

Assume that for any 1 <t < k we have ®,:(2)|T(z). Then

= (H %(2)) -q(2)

where ¢(z) is a polynomial with integer coefficients. By putting z = 1 we ob-
tain that T'(1) = p*q(1), hence M = f4(1)T(1) = p*T1q(1) which contradicts
the definition of k. It follows that there exists an integer 0 < s < k — 1 such
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that ®,s+1(2)|fa(2), thus fa(z) = ®pe+1(2) - a(z), where a(z) is a polynomial.
As A = {ay,...,a,}, we have fa(z) = > 7 2%. Let w be the following

p*T1th root of unity,
2m
w = exp e il.

It follows that fa(w) = 0, thus we have Y 7 | w% = 0. Let a; = Lip*t* + 1,
where 0 < 7; < p**1. Without loss of generality we may assume that

0<rm <rm<...<r,<pth (10)
Define 7,41 = p*tt + 1. Since Y7 (riy1 — 1) = rpy1 —r1 = p*t! then it
follows that there exists a j with 1 < 7 < p such that
Tigr =15 2 P’ (11)
In the next step we prove that this implies
a; — i =np T+t (12)

where 1 < i < pand 0 <t; < p*t! — p* holds. Assume that i < j. By the
definition of a; we have a; —rj11 = L;p**' +r; — ;1. It follows from (10) and
(11) that 7j11 —ri < 7jp < phand —p ™t <y —rjpy <rj—rjp < —pt
Thus we have 0 < r; — rjq + p*™' < p*™' — p*, which implies (12). In the
second case assume that ¢ > j + 2. It is clear from (10) that r; — 7,41 > 0.
By the definition of a; and (10), (11) we have

a; — Tj—i—l — lz'pSH 4 ri — Tj—&-l < lips—i-l +ps+1 . Tj—i—l S lips—l-l +ps+1 . ps7

which implies (12). It follows that there exists an integer a such that a; =
a + n;p**t! +t;, where n; is an integer and

0<t; <pt—ps (13)

As fa(w) =0, and the definition of w we obtain that

p p p
E wai = E wa+n¢ps+1+ti = E wa+ti = 0.

Let h(z) = > 7, 2% Thus we obtain that h(w) = 0. As ®,1(2) is a
minimal polynomial of w we have ®,.11(2)|h(2). It follows from (13) that
deg(Zle zti> < p*tt —pf = o(p*t!) = deg (¢ps+1(z)). Therefore, by using
(4) we have P | 2t = ®peri(2) = 14 27" + 22" + ... + 2P~V and then
we have {t1,...,t,} = {0,p%,2p%,...,(p — 1)p°}. It follows that there exist
integers a > 0 and k;, such that A = {a + ip* + k;p**'}, as desired.
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4 Proof of Theorem 2

Let n = dids, di, dy > 1 be integers, and consider the following two sets:
A={u+v-didy: 0<u<d; —1,0<v<dy—1},

B:{kdldg—l—wdl]CEN,OSUJSCZQ—]_}

It is easy to see that |A| = dydy. It is clear that A(z) = didy if x is large
enough and B(z) = ;%- + O(1), which implies A(z)B(z) — x = O(1). Let
m be a fixed positive integer. It is clear that any positive integer m can be

written uniquely in the form

m = kdyd3 + ud, + ldydy + v,

where k is a nonnegative integer, 0 < u,l < ds, 0 < v < d;. Hence B is an
additive complement of A. In the next step we prove that the set A is not of
the form (1). Assume that A is the form (1). It is clear that the difference
of any two elements from A divisible by n®. As A also contains consecutive
integers we have n®|1, which implies s = 0. Thus A = {a +i+ kn : i =
0,...,n — 1}, that is A is a complete residue system modulo n, which is a
contradiction.
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