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A family of self-similar sets with overlaps
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ABSTRACT

In this note we consider a family of self-similar iterated function system on the line with overlapping
cylinders. We point out that there exists an uncountable family of parameters for which the Hausdorff-
dimension of the attractor is smaller than one although the similarity dimension is bigger than one.

1. INTRODUCTION

Our research was motivated by R. Tijdeman’s question which was posed in Budapest
January 2003:

‘Is there a nonempty interval I such that every number S ∈ I can be written in
the form S = ∑∞

n=1 a1a2 · · ·an, where an ∈ {1/3,1/2}?’
In this note we are going to study some more general problems. Let λ̄ = {0 <

λ1 < λ2 < · · · < λm < 1} and

�λ̄ =
{

x: x =
∞∑

n=1

λi1λi2 · · ·λin , in ∈ {1,2, . . . ,m}
}

.
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Define the maps Si(x) = λix + λi for i = 1,2, . . . ,m. It easy to see that

�λ̄ =
m⋃

i=1

Si

(
�λ̄

)
,

where Si(�
λ̄) = {λix + λi | x ∈ �λ̄}. A set that is a union of a number of smaller

similar copies of itself is called self-similar set. Denote I λ̄ = [λ1/(1 − λ1), λm/(1 −
λm)]. Then we have

(Si1 ◦ Si2 ◦ · · · ◦ SiN )
(
I λ̄

) = λi1 + λi1λi2 + · · · + λi1 · · ·λiN + λi1 · · ·λiN I λ̄.

First we deal with the cases where either the sum of the contractions is less then
one or the cylinders Si(I

λ̄), Si+1(I
λ̄) intersect each other for i = 1,2, . . . ,m − 1.

Theorem 1 (Hutchinson [3]). (a) Let us suppose that λ1 +λ2 +· · ·+λm < 1, then
the Hausdorff dimension dimH �λ̄ � t < 1, where λt

1 + λt
2 + · · · + λt

m = 1, thus its

Lebesgue measure Leb(�λ̄) = 0. If the cylinders Si(I
λ̄), Si+1(I

λ̄) are disjoint, i.e.,
λi/(1 − λm) < λi+1/(1 − λ1), for i = 1, . . . ,m − 1 then dimH �λ̄ = t .

(b) If λi/(1 − λm) � λi+1/(1 − λ1) for i = 1,2, . . . ,m − 1, then �λ̄ = I λ̄.

Using the above theorem we can completely describe the case m = 2:

Corollary 1. (a) For λ1 + λ2 < 1, i.e., λ1/(1 − λ2) < λ2/(1 − λ1) we have
dimH �λ̄ = t < 1, where λt

1 + λt
2 = 1, therefore Leb(�λ̄) = 0.

(b) If λ1 +λ2 � 1, i.e., λ1/(1−λ2) � λ2/(1−λ1), then �λ̄ = [λ1/(1−λ1), λ2/(1−
λ2)].

For λ1 = 1/k2, λ2 = 1/(k2 − 1), . . . , λk2−k+1 = 1/k we get a result of Tijdeman
and Yuan (see [8], the case k = 2 was handled in [2]).

Corollary 2. Let k > 1 be an integer. Let S ∈ [1/(k2 − 1),1/(k − 1)]. Then there
exist an ∈ {k, k + 1, . . . , k2} such that S = ∑∞

n=1
1

a1a2···an
.

In particular, we have a negative answer to Tijdeman’s question since 1/3 +
1/2 < 1.

The case m = 3 seems to be much more complicated. By Theorem 1 the condition
λ1 + λ2 + λ3 < 1 implies dimH �λ̄ < 1. But in contrast to the case m = 2 we can
construct positive numbers 0 < λ1 < λ2 < λ3 < 1, where λ1 + λ2 + λ3 > 1 and
dimH �λ̄ < 1.

Theorem 2. There exist uncountable many 0 < λ1 < λ2 < λ3 < 1 such that λ1 +
λ2 + λ3 > 1 and dimH �λ̄ < 1.

Here we point out that we can construct an uncountable exceptional set of �λ̄ and
the Hausdorff dimension of the exceptions is at least two. So far we have not been
able to answer the following question:
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Is it true that for Lebesgue a.e. 0 < λ1 < λ2 < λ3 < 1, λ1 + λ2 + λ3 > 1 we have
Leb(�λ̄) > 0?

Fix the real numbers λ̄ = {0 < λ1 < λ2 < λ3 < 1, λ1 +λ2 +λ3 > 1}. Consider the
following random series:

Xλ̄ =
∞∑

n=1

λi1λi2 . . .λin , in ∈ {1,2,3},

where the ins are chosen independently, with uniform distribution. Let νλ̄ be the
distribution of Xλ̄. If we could prove that νλ̄ is absolutely continuous for a.e. λ̄ then
we could answer our question affirmatively.

Similar problems were introduced by Keane, Smorodinsky, Solomyak (see [4]):
Is the Hausdorff dimension dimH(�(λ)) of the parameter family of Cantor sets

�(λ) =
{ ∞∑

k=1

ikλ
k | ik ∈ {0,1,3}

}

continuous on the interval λ ∈ [1/4,1/3]?
In this case �(λ) = ⋃

i=0,1,3 Sλ
i (�(λ)), where Sλ

i (�(λ)) = λx + i . Here all three
maps share the same contractions but the translations are different. In our case
(�λ̄ = ⋃m

i=1 Si(�
λ̄)) however the contractions and translations are different in all

three maps. For the K-S-S problem, Pollicott and Simon (see [5]) proved that
for almost all λ ∈ [1/4,1/3] (with respect to the Lebesgue-measure) we have
dimH(�(λ)) = − log 3

logλ
.

A similar problem is the following question of P. Erdős: Let λ ∈ [0,1) and

Yλ =
∞∑

n=0

±λn

where the signs are chosen independently, the plus sign with probability 1/2 and the
minus sign with probability 1/2. Let νλ be the distribution of Yλ. This is called a
Bernoulli convolution since νλ is the infinite convolution product of (δ−λn + δλn)/2.
A question which has been intensively studied since the 1930s is Erdős’ question:
for which λ is the measure νλ absolutely continuous with respect to the Lebesgue
measure. It is easy to see that for Fλ(x) = νλ(−∞, x):

Fλ(x) = 1

2

[

Fλ

(
x − 1

λ

)

+ Fλ

(
x + 1

λ

)]

.

That is νλ is the self-similar measure for the iterated function system {λx − 1, λx +
1} with probability (1/2,1/2). B. Solomyak proved (see [7]) (using many ideas
from the work of Pollicott and Simon) that νλ is absolutely continuous for a.e. λ ∈
[1/2,1) (the known exceptions are the so called Pisot numbers). This problem can
be interpreted as

Yλ =
∞∑

n=1

λ1λ2 · · ·λn,
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where λn = λ with probability 1/2 and λn = −λ with probability 1/2. We do not
know yet if the exceptional sets in the two examples above are uncountable. Some
experts strongly believe that these exceptional sets are countable in fact [6].

The main result of this paper is to construct a family of fractals of overlapping
where we can prove the existence of an uncountable set.

2. PROOFS

Theorem 1 is well known. For the convenience of the reader we present its proof
except for the last statement of part (a), which is somewhat lengthy (see also [1]).

2.1. Proof of Theorem 1

(a) Fix the positive integer N . Then we have

�λ̄ =
⋃

(i1,i2,...,iN )
ij ∈{1,2,...,m}

(Si1 ◦ Si2 ◦ · · · ◦ SiN )
(
�λ̄

)
.

Let d = λm/(1 − λm) − λ1/(1 − λ1). Then diam(Si1 ◦ Si2 ◦ · · · ◦ SiN )(�λ̄) =
λiN λiN−1 · · ·λi1d and for any real number s we have

∑

(i1,i2,...,iN )
ij ∈{1,2,...,m}

(
diam(Si1 ◦ Si2 ◦ · · · ◦ SiN )

(
�λ̄

))s

=
∑

(i1,i2,...,iN )
ij ∈{1,2,...,m}

λs
iN

λs
iN−1

· · ·λs
i1
ds = (

λs
1 + λs

2 + · · · + λs
m

)N
ds,

which proves that the Hausdorff dimension dimH �λ̄ � t < 1 where λ1 +λ2 +λ3 > 1
and dimH �λ̄ < 1.

(b) Using the condition λi/(1 − λm) � λi+1/(1 − λ1) for i = 1,2, . . . ,m − 1 we
have I λ̄ = ⋃m

i=1 Si(I
λ̄), but the attractor of the system {Si}mi=1 is unique, thus �λ̄ =

I λ̄ = [λ1/(1 − λ1), λm/(1 − λm)], which proves part (b).

2.2. Proof of Theorem 2

Choose 1/3 < λ1 < λ2 < 1/3 + ε/6, with ε sufficiently small, and put λ3 = λ2 +
λ2/λ1 − 1.

Fix the positive integer N . Let d = λ3/(1 − λ3) − λ1/(1 − λ1). For 1 � ij � 3,
j = 1,2, . . . ,N we have

(Si1 ◦ Si2 ◦ · · · ◦ SiN )(x) =
N∑

n=1

λi1λi2 · · ·λin + λi1λi2 · · ·λiN x

and

diam(Si1 ◦ Si2 ◦ · · · ◦ SiN )
(
I λ̄

) = λi1λi2 · · ·λiN d �
(

1

3
+ ε

)N

d.
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Obviously, we have

�λ̄ ⊂
⋃

(i1,i2,...,iN )
ij ∈{1,2,3}

(Si1 ◦ Si2 ◦ · · · ◦ SiN )
(
I λ̄

)
.

We will separate this union into two parts:

T
(1)
N =

⋃

(i1,i2,...,iN )
ij ∈{1,2,...,m}

(Si1 ◦ Si2 ◦ · · · ◦ SiN )
(
I λ̄

)
,

where in the vector (i1, i2, . . . , iN ) there are either at most cN j ’s for which
(ij , ij+1, ij+2) = (1,3,2) or at most cN j ’s for which (ij , ij+1, ij+2) = (2,1,3).
If the positive number c is small enough then a standard argument (for example
by the Markov inequality) shows that T

(1)
N is a union of at most (c13)N intervals,

where c1 < 1. Thus the set T
(1)
N can be covered by intervals I

(1)
1 , I

(1)
2 , . . . , I

(1)
K , where

diam I
(1)
j � (1/3 + ε)Nd and K � (c13)N .

The second part is

T
(2)
N =

⋃

(i1,i2,...,iN )
ij ∈{1,2,3}

(Si1 ◦ Si2 ◦ · · · ◦ SiN )
(
I λ̄

)
,

where in the vector (i1, i2, . . . , iN ) there are at least cN j ’s for which (ij , ij+1,

ij+2) = (1,3,2) and at least cN j ’s for which (ij , ij+1, ij+2) = (2,1,3). We know
that

(Si1 ◦ Si2 ◦ · · · ◦ SiN )
(
I λ̄

) =
N∑

n=1

λi1λi2 · · ·λin + λi1λi2 · · ·λiN I λ̄.

It is easy to see that the condition λ1 + λ1λ3 = λ2 + λ2λ1 implies that in the vector
(i1, i2, . . . , iN ) replacing (ij , ij+1, ij+2) = (1,3,2) by (ij , ij+1, ij+2) = (2,1,3) we
get the same interval

N∑

n=1

λi1λi2 · · ·λin + λi1λi2 · · ·λiN I λ̄.

Therefore there is a c2 > 0 such that the interval

[
N∑

n=1

λj1λj2 · · ·λjn,

N∑

n=1

λj1λj2 · · ·λjn + λj1λj2 · · ·λjN

(
1

3
+ ε

)N
]

contains at least 2c2N intervals

(Si1 ◦ Si2 ◦ · · · ◦ SiN )
(
I λ̄

)
.
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Thus the set T
(2)
N can be covered by intervals I

(2)
1 , I

(2)
2 , . . . , I

(2)
L , where diam I

(2)
j �

(1/3 + ε)Nd and L � 3N/(2c2N).
So if the positive number c is small enough then there exist positive numbers

c1 < 1, c2 such that for s > 0

K∑

i=1

(
diam I

(1)
i

)s +
L∑

i=1

(
diam I

(2)
i

)s � (c13)N
(

1

3
+ ε

)Ns

ds + 3N

2c2N

(
1

3
+ ε

)Ns

ds,

where c1, c2 do not depend on ε and s. For some s < 1 and small enough ε this
expression tends to zero as N → ∞, which completes the proof.
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